Spontaneous firing properties of rat medial vestibular nucleus neurons in brain slices by infrared visual patch clamp technique

XIA Jiao, KONG Weijia, ZHU Yun, ZHOU Yan, ZHANG Yu, GUO Changkai

PDF(158 KB)
PDF(158 KB)
Front. Med. ›› 2008, Vol. 2 ›› Issue (3) : 264-268. DOI: 10.1007/s11684-008-0050-x

Spontaneous firing properties of rat medial vestibular nucleus neurons in brain slices by infrared visual patch clamp technique

  • XIA Jiao, KONG Weijia, ZHU Yun, ZHOU Yan, ZHANG Yu, GUO Changkai
Author information +
History +

Abstract

Domestic application of infrared patch clamp techniques on brain slices is limited. The key of the technique is to prepare high-quality brain slices. The present paper describes the preparation procedure of brainstem slices and the spontaneous firing properties of rat medial vestibular nucleus (MVN) neurons. By infrared differential interference contrast technique, neurons of rat MVN were visualized directly at the depth of 50–100 ?m underneath the surface of slices. Firing activities of MVN neurons were recorded by the whole-cell patch clamp technique in artificial cerebrospinal fluid (ACSF) and low Ca2+ - high Mg2+ fluid. The firing mode was more irregular and depressive in low Ca2+ - high Mg2+ fluid than in ACSF. According to the averaged waveform of action potentials, cells were classified as the neurons with monophasic after-hyperpolarization potential (AHP), and the neurons with biphasic AHP. The resting membrane potential (RMP), input resistance (Rin) and membrane capacitance (Cm) of neurons were recorded and compared between groups. With infrared videomicroscopy, patch clamp recordings could be made under direct observation in freshly prepared brainstem slices. The discharge activities of MVN neurons were spontaneous and the firing mode was modulated by extracellular calcium concentration. The basic membrane properties of two types of neurons were not significantly different, while the differences in waveform might play a role in the segregation between tonic and kinetic cells.

Cite this article

Download citation ▾
XIA Jiao, KONG Weijia, ZHU Yun, ZHOU Yan, ZHANG Yu, GUO Changkai. Spontaneous firing properties of rat medial vestibular nucleus neurons in brain slices by infrared visual patch clamp technique. Front. Med., 2008, 2(3): 264‒268 https://doi.org/10.1007/s11684-008-0050-x

References

1. Lisberger S G, Pavelko T A . Brain stem neurons in modifiedpathways for motor learning in the primate vestibulo-ocular reflex. Science, 1988, 242(4879): 771–773. doi:10.1126/science.3142040
2. Newlands S D, Kevetter G A, Perachio A A . A quantitative study of the vestibular commissures inthe gerbil. Brain Res, 1989, 487(1): 152–157. doi:10.1016/0006‐8993(89)90951‐7
3. Broussard D M, Lisberger S G . Vestibular inputs to brainstem neurons that participate in motor learning in the primate vestibuloocularreflex. J Neurophysiol, 1992, 68(5): 1906–1909
4. Sekirnjak C, du Lac S . Physiological and anatomicalproperties of mouse medial vestibular nucleus neurons projecting tothe oculomotor nucleus. J Neurophysiol, 2006, 95(5): 3012–3023. doi:10.1152/jn.00796.2005
5. Beraneck M, Cullen K E . Activity of vestibular nucleineurons during vestibular and optokinetic stimulation in the alertmouse. J Neurophysiol, 2007, 98(3): 1549–1565. doi:10.1152/jn.00590.2007
6. Stuart G J, Dodt H U, Sakmann B . Patch–clamp recordings from the soma and dendritesof neurons in brain slices using infrared video microscopy. Pflugers Arch, 1993, 423(5–6): 511–518. doi:10.1007/BF00374949
7. Paxinos G, Watson C . The rat brain in stereotaxiccoordinates. 2nd ed . Harcourt BraceJovanovich: Academic Press; 1986 . p61–71
8. Edmonds B, Klein M, Dale N, Kandel E R . Contributionsof two types of calcium channels to synaptic transmission and plasticity. Science, 1990, 250(4984): 1142–1147. doi:10.1126/science.2174573
9. Feig S, Lipton P . N-methyl-d-aspartate receptoractivation and Ca2+ account for poor pyramidal cell structure in hippocampalslices. J Neurochemi, 1990, 55(2): 473–483. doi:10.1111/j.1471‐4159.1990.tb04160.x
10. Cousin M A . Synaptic vesicle endocytosis: calcium works overtimes in the nerveterminal. Mol Neurobiol, 2000, 22(1–3): 115–128. doi:10.1385/MN:22:1‐3:115
11. Dodt H U, Hager G, Zieglgansberger W . Direct observation of neurotoxicity inbrain slices with infrared videomicroscopy. J Neurosci Meth, 1993, 50(2): 165–171. doi:10.1016/0165‐0270(93)90005‐C
12. Huang W, Huang H P, Mu Y, Zhang L, Jin M, Lv J, Gu J L, Xiu Y, Zhang B, Guo N, Liu T, Sun L, Song M Y, Zhang C X, Ruan H Z, Zhou Z . Real-time measurement ofnoradrenaline release in central nervous system. Sheng Li Xue Bao, 2007, 59(6): 865–870 (in Chinese)
13. Sajikumar S, Navakkode S, Frey J U . Protein synthesis-dependent long-term functional plasticity:methods and techniques. Curr Opin Neurobiol, 2005, 15(5): 607–613. doi:10.1016/j.conb.2005.08.009
14. Lin Y, Carpenter D O . Medial vestibular neuronsare endogenous pacemakers whose discharge is modulated by neurotransmitters. Cell Mol Neurobiol, 1993, 13(6): 601–613. doi:10.1007/BF00711560
15. Hausser M, Raman I M, Otis T, Smith S L, Nelson A, du Lac S, Loewenstein Y, Mahon S, Pennartz C, Cohen I, Yarom Y . The beat goes on: Spontaneous firing in mammalian neuronalmicrocircuits. J Neurosci, 2004, 24(42): 9215–9219. doi:10.1523/JNEUROSCI.3375‐04.2004
16. Takazawa T, Saito Y, Tsuzuki K, Ozawa S . Membrane andfiring properties of glutamatergic and GABAergic neurons in the ratmedial vestibular nucleus. J Neurophysiol, 2004, 92: 3106–3120. doi:10.1152/jn.00494.2004
17. Camp A J, Callister R J, Brichta A M . Inhibitory synaptic transmission differs in mouse typeA and B medial vestibular nucleus neurons in vitro. J Neurophysiol, 2006, 95(5): 3208–3218. doi:10.1152/jn.01001.2005
18. de Waele C, Serafin M, Khateb A, Yabe T, Vidal P P, Mühlethaler M . Medialvestibular nucleus in the guinea-pig: Apamin-induced rhythmic burstfiring-an in vitro and in vivo study. ExpBrain Res, 1993, 95(2): 213–222. doi:10.1007/BF00229780
19. Serafin M, Khateb A, de Waele C, Vidal P P, Mühlethaler M . Low threshold calcium spikesin medial vestibular nuclei neurons in vitro: A role in the generationof the vestibular nystagmus quick phase invivo?Exp Brain Res, 1990, 82(1): 187–190. doi:10.1007/BF00230850
20. Straka H, Vibert N, Vidal P P, Moore L E, Dutia M B . Intrinsic membrane properties of vertebratevestibular neurons: Function, development and plasticity. Prog Neurobiol, 2005, 76(6): 349–392. doi:10.1016/j.pneurobio.2005.10.002
21. Goldberg J M, Highstein S M, Moschovakis A K, Fernandez C . Inputsfrom regularly and irregularly discharging vestibular nerve afferentsto secondary neurons in the vestibular nuclei of the squirrel monkey.I. An electrophysiological analysis. JNeurophysiol, 1987, 58(4): 700–718
22. Gallagher J P, Lewis M R, Gallagher P S . An electrophysiological investigation of the rat medialvestibular nucleus in vitro. Prog ClinBiol Res, 1985, 176: 293–304
23. Serafin M, de Waele C, Khateb A, Vidal P P, Mühlethaler M . Medial vestibular nucleusin the guinea-pig. I. Intrinsic membrane properties in brainstem slices. Exp Brain Res, 1991, 84(2): 417–425
AI Summary AI Mindmap
PDF(158 KB)

Accesses

Citations

Detail

Sections
Recommended

/