Linear mixed-effects models are a powerful tool for the analysis of longitudinal data. The aim of this paper is to study model averaging for linear mixed-effects models. The asymptotic distribution of the frequentist model average estimator is derived, and a confidence interval procedure with an actual coverage probability that tends to the nominal level in large samples is developed. The two confidence intervals based on the model averaging and based on the full model are shown to be asymptotically equivalent. A simulation study shows good finite sample performance of the model average estimators.
Let Xn be a standard real symmetric (complex Hermitian) Wigner matrix, y1, y2, ..., yn a sequence of independent real random variables independent of Xn. Consider the deformed Wigner matrix Hn, α = n−1/2Xn + n−α/2(y1,..., yn), where 0 < α < 1. It is well known that the average spectral distribution is the classical Wigner semicircle law, i.e., the Stieltjes transform mn, α(z) converges in probability to the corresponding Stieltjes transform m(z). In this paper, we shall give the asymptotic estimate for the expectation $\mathbb{E}m_{n,\alpha } \left( z \right)$ and variance Var(mn, α(z)), and establish the central limit theorem for linear statistics with sufficiently regular test function. A basic tool in the study is Stein’s equation and its generalization which naturally leads to a certain recursive equation.
A supersaturated design (SSD), whose run size is not enough for estimating all the main effects, is commonly used in screening experiments. It offers a potential useful tool to investigate a large number of factors with only a few experimental runs. The associated analysis methods have been proposed by many authors to identify active effects in situations where only one response is considered. However, there are often situations where two or more responses are observed simultaneously in one screening experiment, and the analysis of SSDs with multiple responses is thus needed. In this paper, we propose a two-stage variable selection strategy, called the multivariate partial least squares-stepwise regression (MPLS-SR) method, which uses the multivariate partial least squares regression in conjunction with the stepwise regression procedure to select true active effects in SSDs with multiple responses. Simulation studies show that the MPLS-SR method performs pretty good and is easy to understand and implement.
In genetic studies of complex diseases, particularly mental illnesses, and behavior disorders, two distinct characteristics have emerged in some data sets. First, genetic data sets are collected with a large number of phenotypes that are potentially related to the complex disease under study. Second, each phenotype is collected from the same subject repeatedly over time. In this study, we present a nonparametric regression approach to study multivariate and time-repeated phenotypes together by using the technique of the multivariate adaptive regression splines for analysis of longitudinal data (MASAL), which makes it possible to identify genes, gene-gene and gene-environment, including time, interactions associated with the phenotypes of interest. Furthermore, we propose a permutation test to assess the associations between the phenotypes and selected markers. Through simulation, we demonstrate that our proposed approach has advantages over the existing methods that examine each longitudinal phenotype separately or analyze the summarized values of phenotypes by compressing them into one-time-point phenotypes. Application of the proposed method to the Framingham Heart Study illustrates that the use of multivariate longitudinal phenotypes enhanced the significance of the association test.