Frequentist model averaging for linear mixed-effects models

Xinjie CHEN, Guohua ZOU, Xinyu ZHANG

PDF(160 KB)
PDF(160 KB)
Front. Math. China ›› 2013, Vol. 8 ›› Issue (3) : 497-515. DOI: 10.1007/s11464-012-0254-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Frequentist model averaging for linear mixed-effects models

Author information +
History +

Abstract

Linear mixed-effects models are a powerful tool for the analysis of longitudinal data. The aim of this paper is to study model averaging for linear mixed-effects models. The asymptotic distribution of the frequentist model average estimator is derived, and a confidence interval procedure with an actual coverage probability that tends to the nominal level in large samples is developed. The two confidence intervals based on the model averaging and based on the full model are shown to be asymptotically equivalent. A simulation study shows good finite sample performance of the model average estimators.

Keywords

Asymptotic equivalence / asymptotic normality / mixed-effects models / model averaging

Cite this article

Download citation ▾
Xinjie CHEN, Guohua ZOU, Xinyu ZHANG. Frequentist model averaging for linear mixed-effects models. Front Math Chin, 2013, 8(3): 497‒515 https://doi.org/10.1007/s11464-012-0254-x

References

[1]
Buckland S T, Burnham K P, Augustin N H. Model selection: An integral part of inference. Biometrics, 1997, 53: 603-618
CrossRef Google scholar
[2]
Claeskens G, Hjort N L. Model Selection and Model Averaging. New York: Cambridge University Press, 2008
CrossRef Google scholar
[3]
Danilov D, Magnus J R. On the harm that ignoring pretesting can cause. J Econometrics, 2004, 122: 27-46
CrossRef Google scholar
[4]
Di C, Crainiceanu C, Caffo B, Punjabi N. Multilevel functional principal component analysis. Ann Appl Stat, 2008, 3: 458-488
CrossRef Google scholar
[5]
Dimova R B, Markatou M, Talal A H. Information methods for model selection in linear mixed effects models with application to HCV data. Comput Statist Data Anal, 2011, 55: 2677-2697
CrossRef Google scholar
[6]
Draper D. Assessment and propagation of model uncertainty. J Roy Statist Soc Ser B, 1995, 57: 45-97
[7]
Goldenshluger A. A universal procedure for aggregating estimators. Ann Statist, 2009, 37: 542-568
CrossRef Google scholar
[8]
Greven S, Kneib T. On the behaviour of marginal and conditional AIC in linear mixed models. Biometrika, 2010, 97: 773-789
CrossRef Google scholar
[9]
Hansen B E. Least squares model averaging. Econometrica, 2007, 75: 1175-1189
CrossRef Google scholar
[10]
Hansen B E. Least squares forecast averaging. J Econometrics, 2008, 146: 342-350
CrossRef Google scholar
[11]
Hansen B E. Averaging estimators for autoregressions with a near unit root. J Econometrics, 2010, 158: 142-155
CrossRef Google scholar
[12]
Hansen B E, Racine J. Jackknife model averaging estimators. J Econometrics, 2012, 167: 38-46
CrossRef Google scholar
[13]
Hjort N L, Claeskens G. Frequentist model average estimators. J Amer Statist Assoc, 2003, 98: 879-899
CrossRef Google scholar
[14]
Hjort N L, Claeskens G. Focussed information criteria and model averaging for Cox’s hazard regression model. J Amer Statist Assoc, 2006, 101: 1449-1464
CrossRef Google scholar
[15]
Hodges J S. Some algebra and geometry for hierarchical models, applied to diagnostics (with Discussion). J Roy Statist Soc Ser B, 1998, 60: 497-536
CrossRef Google scholar
[16]
Hoeting J A, Madigan D, Raftery A E, Volinsky C T. Bayesian model averaging: A tutorial. Statist Sci, 1999, 14: 382-417
[17]
Hodegs J S, Sargent D J. Counting degrees of freedom in hierarchical and other parameterized models. Biometrika, 2001, 88: 367-379
CrossRef Google scholar
[18]
Kabaila P, Leeb H. On the large-sample minimal coverage probability of confidence intervals after model selection. J Amer Statist Assoc, 2006, 101: 619-629
CrossRef Google scholar
[19]
Laird N M, Ware J H. Random-effects models for longitudinal data. Biometrics, 1982, 38: 963-974
CrossRef Google scholar
[20]
Lee Y, Nelder J A. Hierarchical generalized linear models: A synthesis of generalized linear models, random effect models and structured dispersions. Biometrika, 2001, 88: 987-1006
CrossRef Google scholar
[21]
Li Y, Baron J. Behavioral Research Data Analysis with R. New York: Springer, 2012
CrossRef Google scholar
[22]
Liang H, Wu H, Zou G. A note on conditional AIC for linear mixed-effects models. Biometrika, 2008, 95: 773-778
CrossRef Google scholar
[23]
Liang H, Zhang X, Liu A, Ruppert D, Zou G. Selection strategy for covariance structure of random effects in linear mixed-effects models. University of Rochester, Mimeo, 2011
[24]
Liang H, Zou G, Wan A T K, Zhang X. Optimal weight choice for frequentist model average estimators. J Amer Statist Assoc, 2011, 106: 1053-1066
CrossRef Google scholar
[25]
Liu S, Yang Y. Combining models in longitudinal data analysis. Ann Inst Statist Math, 2012, 64: 233-254
CrossRef Google scholar
[26]
Ngo L, Brand R. Model selection in linear mixed effects models using SAS Proc Mixed. SAS Global Forum 22, 2002
[27]
Pinheiro J C, Bates D M. Mixed Effects Models in S and S-plus. New York: Springer, 2000
CrossRef Google scholar
[28]
Raftery A, Madigan D, Hoeting J. Bayesian model averaging for linear regression models. J Amer Statist Assoc, 1997, 92: 179-191
CrossRef Google scholar
[29]
Rao J N K. Small Area Estimation. New York: John Wiley, 2003
CrossRef Google scholar
[30]
Schomaker M, Wan A T K, Heumann C. Frequentist model averaging with missing observations. Comput Statist Data Anal, 2010, 54: 3336-3347
CrossRef Google scholar
[31]
Staiger D, Stock J H. Instrumental variables regression with weak instruments. Econometrica, 1997, 65: 557-586
CrossRef Google scholar
[32]
Tarpey T, Petkova E, Lu Y, Govindarajulu U. Optimal partitioning for linear mixed effects models: Applications to identifying placebo responders. J Amer Statist Assoc, 2010, 105: 968-977
CrossRef Google scholar
[33]
Vaida F, Blanchard S. Conditional Akaike information for mixed-effects models. Biometrika, 2005, 92: 351-370
CrossRef Google scholar
[34]
Wan A T K, Zhang X, Zou G. Least squares model averaging by Mallows criterion. J Econometrics, 2010, 156: 277-283
CrossRef Google scholar
[35]
Wang H, Zhang X, Zou G. Frequentist model averaging estimation: A review. J Syst Sci Complex, 2009, 22: 732-748
CrossRef Google scholar
[36]
Wang H, Zou G. Frequentist model average estimation for linear errors-in-variables models. J Syst Sci Math Sci, 2012, 32: 1-14
[37]
Yang Y. Adaptive regression by mixing. J Amer Statist Assoc, 2001, 96: 574-586
CrossRef Google scholar
[38]
Yuan Z, Yang Y. Combining linear regression models: When and how? J Amer Statist Assoc, 2005, 100: 1202-1214
CrossRef Google scholar
[39]
Zhang X, Liang H. Focused information criterion and model averaging for generalized additive partial linear models. Ann Statist, 2011, 39: 174-200
CrossRef Google scholar
[40]
Zhang X, Wan A T K, Zhou Z. Focused information criteria, model selection and model averaging in a Tobit model with a non-zero threshold. J Bus Econom Statist, 2012, 30: 132-142
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(160 KB)

Accesses

Citations

Detail

Sections
Recommended

/