Fluctuations of deformed Wigner random matrices

Zhonggen Su

Front. Math. China ›› 2012, Vol. 8 ›› Issue (3) : 609 -641.

PDF (224KB)
Front. Math. China ›› 2012, Vol. 8 ›› Issue (3) : 609 -641. DOI: 10.1007/s11464-012-0259-5
Research Article
RESEARCH ARTICLE

Fluctuations of deformed Wigner random matrices

Author information +
History +
PDF (224KB)

Abstract

Let Xn be a standard real symmetric (complex Hermitian) Wigner matrix, y1, y2, ..., yn a sequence of independent real random variables independent of Xn. Consider the deformed Wigner matrix Hn, α = n−1/2Xn + nα/2(y1,..., yn), where 0 < α < 1. It is well known that the average spectral distribution is the classical Wigner semicircle law, i.e., the Stieltjes transform mn, α(z) converges in probability to the corresponding Stieltjes transform m(z). In this paper, we shall give the asymptotic estimate for the expectation $\mathbb{E}m_{n,\alpha } \left( z \right)$ and variance Var(mn, α(z)), and establish the central limit theorem for linear statistics with sufficiently regular test function. A basic tool in the study is Stein’s equation and its generalization which naturally leads to a certain recursive equation.

Keywords

Asymptotic expansion / deformed Wigner matrice / Gaussian fluctuation / linear statistics / Stein’s equation

Cite this article

Download citation ▾
Zhonggen Su. Fluctuations of deformed Wigner random matrices. Front. Math. China, 2012, 8(3): 609-641 DOI:10.1007/s11464-012-0259-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson G W, Guionnet A, Zeitouni O. An Introduction to Random Matrices, 2009, Cambridge: Cambridge University Press

[2]

Erdös L. Universality of Wigner random matrices: a survey of recent results. Uspekhi Mat Nauk, 2011, 66(3): 67-198

[3]

Johansson K. From Gumbel to Tracy-Widom. Probab Theory Related Fields, 2007, 138: 75-112

[4]

Khorunzhy A M, Khoruzhenko B A, Pastur L A. Asymptotic properties of large random matrices with independent entries. J Math Phys, 1996, 10: 5033-5060

[5]

Lytova A, Pastur L. Fluctuations of matrix elements of regular functions of Gaussian random matrices. J Stat Phys, 2009, 134: 147-159

[6]

Lytova A, Pastur L. Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann Probab, 2009, 37: 1778-1840

[7]

Pastur L A. A simple approach to the global regime of Gaussian ensembles of random matrices. Ukranian Math J, 2005, 57: 936-966

[8]

Shcherbina M. Central limit theorem for linear eigenvalue statistics of the Wigner and sample covariance random matrices. arXiv: 1101.3249v1 [math-ph]

[9]

Wigner E. On the distribution of the roots of certain symmetric matrices. Ann Math, 1958, 67: 325-328

AI Summary AI Mindmap
PDF (224KB)

848

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/