The thermal behavior of Nannochloropsis oculata combustion in air atmosphere were investigated by performing experiments on STA PT1600 Thermal Analyzer at heating rates of 10°C/min, 40°C/min and 70°C/min and range of temperatures from room temperature to 1200°C. The kinetic parameters were evaluated by using Kissinger and Ozawa methods. The result showed that Nannochloropsis oculata combustion occurred in five stages. Started with initial devolatilization, the main thermal decomposition and combustion process, transition stage, the combustion of char and the last stage was the slow burning reaction of residual char. In line with increasing heating rate, the mass loss rate increased as well, but it delayed the thermal decomposition processes toward higher temperatures. The average activation energy at the main thermal decomposition stage and the stage of char combustion were approximately 251 kJ/mol and 178 kJ/mol, respectively.
The operating mechanism of the pulsating heat pipe (PHP) is not well understood and the present technology cannot predict required design parameters for a given task. The aim of research work presented in this paper is to better understand the operation regimes of the PHP through experimental investigations. A series of experiments were conducted on a closed loop PHP with 5 turns made of copper capillary tube of 2 mm in inner diameter. Two different working fluids viz. ethanol and acetone were employed. The operating characteristics were studied for the variation of heat input, filling ratio (FR) and inclination angle of the tested device. The results strongly demonstrate the effect of the filling ratio of the working fluid on the operational stability and heat transfer capability of the device. Important insight into the operational characteristics of PHP has been obtained.
The analysis of the failure mechanics, namely hydrogen permeation of vacuum insulated tubing (VIT), indicated that the failure of VIT could be decreased but could not be avoided. To solve this problem, some measures by using non-vacuum materials were proposed and analyzed in this paper. The results show that to fill the tubing with foam-glass beads or high pressure argon may lead to a good performance.
Conventional power grids across the globe are reforming to smart power grids with cutting edge technologies in real time monitoring and control methods. Advanced real time monitoring is facilitated by incorporating synchrophasor measurement units such as phasor measurement units (PMUs) to the power grid monitoring system. Several physical and economic constraints limit the deployment of PMUs in smart power grids. This paper proposes a pragmatic multi-stage simulated annealing (PMSSA) methodology for finding the optimal locations in the smart power grid for installing PMUs in conjunction with existing conventional measurement units (CMUs) to achieve a complete observability of the grid. The proposed PMSSA is much faster than the conventional simulated annealing (SA) approach as it utilizes controlled uphill and downhill movements during various stages of optimization. Moreover, the method of integrating practical phasor measurement unit (PMU) placement conditions like PMU channel limits and redundant placement can be easily handled. The efficacy of the proposed methodology has been validated through simulation studies in IEEE standard bus systems and practical regional Indian power grids.
This paper aims to develop a new microemulsions system comprising diesel and palm oil methyl ester (PME) that have the potential to be used as alternative fuels for diesel engines. The water-in-diesel-biodiesel microemulsions were prepared by applying PME mixed with diesel, non-ionic surfactants, co-surfactants and water to make the water-in-oil (W/O) microemulsion system. This microemulsified fuel was achieved through low-energy microemulsification by using the constant composition method. The diesel used was mixed with four different concentrations of PME, i.e., 10% (w/w) (B10), 20% (w/w) (B20), 30% (w/w) (B30) and neat diesel (B0). The amount of water was fixed at 20% (w/w). The phase behavior of the water/mixed non-ionic surfactant/diesel-PME system were studied by constructing pseudoternary phase diagrams with the goal of formulating optimized systems. The results showed that the microemulsions were formed and stabilized with a mixture of non-ionic surfactants at a weight ratio of 80:20 at 20% (w/w), and with mixed co-surfactants at a weight ratio of 25:75, 20:80 and 10:90 for B0, B10, B20 and B30 respectively. The particle size, kinematic viscosity at 40°C, refractive index, density, heating value, cloud point, pour point and flash point of the selected water-in-diesel microemulsion were 19.40 nm (polydispersity of 0.12), 2.86 mm2/s, 1.435, 0.8913 g/mL, 31.87 MJ/kg, 7.15°C, 10.5°C and 46.5°C respectively. The corresponding values of the water-in-diesel-PME selected were 20.72 nm to 23.74 nm, 13.02 mm2/s to 13.29 mm2/s, 1.442, 0.8939 g/mL to 0.8990 g/mL, 31.45 MJ/kg to 27.34 MJ/kg, 7.2°C to 6.8°C, 8.5°C to 1.5°C and 47.5°C to 52.0°C. These preliminary findings were further studied as potential fuels for diesel engines.
When designing a maximum power point tracking (MPPT) algorithm, it is often difficult to correctly predict, before field testing, the behavior of this MPPT under varying solar irradiation on photovoltaic (PV) panels. A solution to this problem is to design a maximum power point trackers simulator of a PV system used to test MPPT algorithms. This simulator must have the same role as the MPPT card of the PV panel and thus will fully emulate the response of a real MPPT card of the PV panel. Therefore, it is a good substitute to help to test the peak power trackers of the PV system in the laboratory. This paper describes a simple peak power trackers simulator of the PV system which has a short response time thus, can be used to test MPPT algorithms under very rapid variation condition. The obtained results and the theoretical operation confirm the reliability and the superior performance of the proposed model.
The aims of this paper is to investigate the effects of various materials inside the solar still on the increase of the productivity of potable water. Here, blue metal stones and cow dung cakes were used as materials. To investigate their effect, three identical solar stills with an effective area of 1 m square made from locally available materials were tested in climate conditions of Mehsana (23°50′ N 72° 23′). The first and second solar stills were filled with blue metal, stones and cow dung cakes, while the third one was taken as a reference which consisted of only blue paint at the basin. The experiments show that blue metal stones have the highest distillate output at daytime, followed by cow dung cakes solar still and reference solar still. On the other hand, the overall distillate output of blue metal stones and cow dung cakes at daytime as well as at night were 35% and 20% compared with that of reference solar still.
To increase the output efficiency of a photovoltaic (PV) system, it is important to apply an efficient maximum power point tracking (MPPT) technique. This paper describes the analysis, the design and the experimental implementation of the tracking methods for a stand-alone PV system, using two approaches. The first one is the constant voltage (CV) MPPT method based on the optimum voltage, which was deduced experimentally, and considered as a reference value to extract the optimum power. The second one is the increment conductance (Inc-Cond) MPPT method based on the calculation of the power derivative extracted by the installation. The output controller can adjust the duty ratio to the optimum value. This optimum duty ratio is the input of a DC/DC boost converter which feeds a set of Moto-pump via a DC/AC inverter. This paper presents the details of the two approaches implemented, based on the system performance characteristics. Contributions are made in several aspects of the system, including converter design, system simulation, controller programming, and experimental setup. The MPPT control algorithms implemented extract the maximum power point (MPP), with satisfactory performance and without steady-state oscillation. MATLAB/Simulink and dSpace DS1104 are used to conduct studies and implement algorithms. The two proposed methods have been validated by implementing the performance of the PV pumping systems installed on the roof of the research laboratory in INSAT Tunisia. Experimental results verify the feasibility and the improved functionality of the system.
Partial shading is a common phenomenon in PV arrays. They drastically reduce the power output because of mismatch losses, which are reliant on the shape of the shade as well as the locations of shaded panels in the array. The power output can be improved by distributing the shade over various rows to maximize the current entering the node. A Su-Do-Ku configuration can be used to rearrange the physical locations of the PV modules in a total cross tied PV array with the electrical connections left unchanged. However, this arrangement increases the length of the wire required to interconnect the panels thus increasing the line losses. In this paper, an improved Su-Do-Ku arrangement that reduces the length of the wire required for the connection is proposed. The system is designed and simulated in a Matlab/Simulink environment for various shading patterns and the efficacies of various arrangements are compared. The results prove that the power output is higher in the proposed improved Su-Do-Ku reconfiguration technique compared to the earlier proposed Su-Do-Ku technique.
With the latest introduction of the demand side management (DSM) in smart grids, the power distribution units are able to modify the load schedules of the consumers. This involves a co-operative interaction of the utility and the consumers so as to achieve customer load modifications in which the customer, utility and society all are benefited. The interaction is performed with the help of the devices known as the smart meter. This paper shows the use of game theory and logical mathematical expressions in order to achieve the objectives. The objectives are to minimize the peak to average ratio (PAR) and the energy cost. The outcome of the game between supplier and customers helps to shape the load profile. The design proposed in this paper is very user-friendly and is based on simple logarithmic programming computations. In this paper, residential, commercial and industrial types of loads are taken into account. A basic 24 h load schedule along with the fluctuating prices at each hour of the day is forecasted by the supplier of the various shiftable and non-shiftable loads and then that schedule is conveyed to the user. The users are encouraged to shift their high load devices to off-peak hours which will not only reduce their electricity costs but also substantially reduce the PAR in the load demand.
With the rapid development of education cause, the increasing energy consumption of school buildings is gradually causing widespread concern in recent years in China. This paper presented an analysis of energy consumption of 270 schools located in the city of Tianjin, China. The analysis focused specifically on calculating the space heating energy consumption indexes and non-heating energy consumption indexes of different types of schools, aiming at providing reliable and precise data for the government to elaborate policies and measures. The space heating energy consumption of schools adopting district heating and gas boiler were 92.04 kWh/(m2·a) and 64.25 kWh/(m2·a), respectively. Comparing to the schools without a canteen, the non-heating energy consumption index of schools with a canteen can increase by 8%–37%. Furthermore, clustering of different energy sources, the total primary energy consumption indexes were also presented. Space heating energy consumption accounted for approximately 64%–79% of the total primary energy consumption. When using time-sharing control and self-contained gas boiler instead of district heating, an amount of almost 27.8 kWh/(m2·a) and 77.5 kWh/(m2·a) can be saved respectively. Through extensive statistical analysis of the data collected, this paper demonstrated that gross floor area, heating energy source and canteen had a close relationship with the total primary energy consumption regarding complete schools. Eventually, a linear regression equation was established to make a simple prediction about the total energy consumption of existing complete schools and to estimate the energy consumption of complete schools to be built.
The aim of non-intrusive appliance load monitoring (NIALM) is to disaggregate the energy consumption of individual electrical appliances from total power consumption utilizing non-intrusive methods. In this paper, a systematic approach to ON-OFF event detection and clustering analysis for NIALM were presented. From the aggregate power consumption data set, the data are passed through median filtering to reduce noise and prepared for the event detection algorithm. The event detection algorithm is to determine the switching of ON and OFF status of electrical appliances. The goodness-of-fit (GOF) methodology is the event detection algorithm implemented. After event detection, the events detected were paired into ON-OFF pairing appliances. The results from the ON-OFF pairing algorithm were further clustered in groups utilizing the K-means clustering analysis. The K-means clustering were implemented as an unsupervised learning methodology for the clustering analysis. The novelty of this paper is the determination of the time duration an electrical appliance is turned ON through combination of event detection, ON-OFF pairing and K-means clustering. The results of the algorithm implementation were discussed and ideas on future work were also proposed.
In this paper, the effect of adding an antioxidant mixture in Jatropha biodiesel as fuel, in a single cylinder, direct injection compression ignition engine was experimentally investigated and the level of pollutants in the exhaust and performance characteristics of the engine were analyzed. Nine test fuels were prepared with three antioxidants, namely, Succinimide (C4H5NO2), N,N-dimethyl-p-phenylenediamine-dihydrochloride (C8H14Cl2N2), and N-phenyl-p-phenylenediamine (C6H5NHC6H4NH2) added to neat biodiesel at 500 parts per million (ppm), 1000 ppm and 2000 ppm and the observed experimental results were compared with those of neat biodiesel and neat diesel as base fuels. The comparison showed that NO emission was reduced drastically for the test fuels with the antioxidant addition of 2000 ppm. The maximum reduction of 10% of NO emission was observed for the antioxidant mixture in neat biodiesel, with a slight increase in unburned HC, CO and smoke opacity. In addition, the obtained experimental results reveal that the addition of two antioxidants as mixture in neat biodiesel caused improved NO emission reduction for all test fuels.