Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere
SUKARNI, SUDJITO, Nurkholis HAMIDI, Uun YANUHAR, I.N.G. WARDANA
Thermogravimetric kinetic analysis of Nannochloropsis oculata combustion in air atmosphere
The thermal behavior of Nannochloropsis oculata combustion in air atmosphere were investigated by performing experiments on STA PT1600 Thermal Analyzer at heating rates of 10°C/min, 40°C/min and 70°C/min and range of temperatures from room temperature to 1200°C. The kinetic parameters were evaluated by using Kissinger and Ozawa methods. The result showed that Nannochloropsis oculata combustion occurred in five stages. Started with initial devolatilization, the main thermal decomposition and combustion process, transition stage, the combustion of char and the last stage was the slow burning reaction of residual char. In line with increasing heating rate, the mass loss rate increased as well, but it delayed the thermal decomposition processes toward higher temperatures. The average activation energy at the main thermal decomposition stage and the stage of char combustion were approximately 251 kJ/mol and 178 kJ/mol, respectively.
Nannochloropsis oculata / combustion / kinetic parameters / air atmosphere / thermogravimetric
[1] |
Khan S A, Rashmi
CrossRef
Google scholar
|
[2] |
Tabatabaei M, Tohidfar M, Jouzani G S, Safarnejad M, Pazouki M. Biodiesel production from genetically engineered microalgae: future of bioenergy in Iran. Renewable & Sustainable Energy Reviews, 2011, 15(4): 1918–1927
CrossRef
Google scholar
|
[3] |
De La Torre Ugarte D, Walsh M E, Shapouri, H, Slinsky, S P. The economic impacts of bioenergy crop production on US agriculture. Oak Ridge National Laboratory, 2000, 292(5519):41
|
[4] |
Banerjee A, Sharma R, Chisti Y, Banerjee U C. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 2002, 22(3): 245–279
CrossRef
Google scholar
|
[5] |
Sawayama S, Minowa T, Yokoyama S. Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass and Bioenergy, 1999, 17(1): 33–39
CrossRef
Google scholar
|
[6] |
Ross A B, Biller P, Kubacki M L, Li H, Lea-Langton A, Jones J M. Hydrothermal processing of microalgae using alkali and organic acids. Fuel, 2010, 89(9): 2234–2243
CrossRef
Google scholar
|
[7] |
Chisti Y. Biodiesel from microalgae. Biotechnology Advances, 2007, 25(3): 294–306
CrossRef
Google scholar
|
[8] |
Metting F B Jr. Biodiversity and application of microalgae. Journal of Industrial Microbiology & Biotechnology, 1996, 17(5-6): 477–489
CrossRef
Google scholar
|
[9] |
Demirbas A. Use of algae as biofuel sources. Energy Conversion and Management, 2010, 51(12): 2738–2749
CrossRef
Google scholar
|
[10] |
Mirón A S, García M C C, Gómez A C, Camacho F G, Grima E M, Chisti Y. Shear stress tolerance and biochemical characterization of phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochemical Engineering Journal, 2003, 16(3): 287–297
CrossRef
Google scholar
|
[11] |
Poncet J M, Véron B. Cryopreservation of the unicellular marine alga, Nannochloropsis oculata. Biotechnology Letters, 2003, 25(23): 2017–2022
CrossRef
Google scholar
|
[12] |
Chiu S Y, Kao C Y, Tsai M T, Ong S C, Chen C H, Lin C S. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 2009, 100(2): 833–838
CrossRef
Google scholar
|
[13] |
Suryanto H., Sukarni
|
[14] |
Volkman J K, Brown M R, Dunstan G A, Jeffrey S. The biochemical composition of marine microalgae from the class eustigmatophyceae. Journal of Phycology, 1993, 29(1): 69–78
CrossRef
Google scholar
|
[15] |
Lubián L M, Montero O, Moreno-Garrido I, Huertas I E, Sobrino C, González-del Valle M, Parés G. Nannochloropsis (eustigmatophyceae) as source of commercially valuable pigments. Journal of Applied Phycology, 2000, 12(3-5): 249–255
CrossRef
Google scholar
|
[16] |
Lee M Y, Min B S, Chang C S, Jin E. Isolation and characterization of a xanthophyll aberrant mutant of the green alga Nannochloropsis oculata. Marine Biotechnology (New York, N.Y.), 2006, 8(3): 238–245
CrossRef
Google scholar
|
[17] |
Osinga R, Kleijn R, Groenendijk E, Niesink P, Tramper J, Wijffels R H. Development of in vivo sponge cultures: particle feeding by the tropical sponge pseudosuberites aff. andrewsi. Marine Biotechnology (New York, N.Y.), 2001, 3(6): 544–554
CrossRef
Google scholar
|
[18] |
Ferreira M, Coutinho P, Seixas P, Fábregas J, Otero A. Enriching rotifers with “premium” microalgae. Nannochloropsis gaditana. Marine Biotechnology (New York, N.Y.), 2009, 11(5): 585–595
CrossRef
Google scholar
|
[19] |
Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 2009, 102(1): 100–112
CrossRef
Google scholar
|
[20] |
Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production. Journal of Applied Phycology, 2009, 21(5): 493–507
CrossRef
Google scholar
|
[21] |
Sanchez A, González A, Maceiras R, Cancela Á, Urrejola S. Raceway pond design for microalgae culture for biodiesel. Chemical Engineering Transactions, 2011, 25: 845–850
CrossRef
Google scholar
|
[22] |
Park J B K, Craggs R J, Shilton A N. Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 2011, 102(1): 35–42
CrossRef
Google scholar
|
[23] |
Sierra E, Acién F G, Fernández J M, García J L, González C, Molina E. Characterization of a flat plate photobioreactor for the production of microalgae. Chemical Engineering Journal, 2008, 138(1–3): 136–147
CrossRef
Google scholar
|
[24] |
Sato T, Yamada D, Hirabayashi S. Development of virtual photobioreactor for microalgae culture considering turbulent flow and flashing light effect. Energy Conversion and Management, 2010, 51(6): 1196–1201
CrossRef
Google scholar
|
[25] |
Hsieh C H, Wu W T. A novel photobioreactor with transparent rectangular chambers for cultivation of microalgae. Biochemical Engineering Journal, 2009, 46(3): 300–305
CrossRef
Google scholar
|
[26] |
Briassoulis D, Panagakis P, Chionidis M, Tzenos D, Lalos A, Tsinos C, Berberidis K, Jacobsen A. An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresource Technology, 2010, 101(17): 6768–6777
CrossRef
Google scholar
|
[27] |
Das P, Obbard J P. Incremental energy supply for microalgae culture in a photobioreactor. Bioresource Technology, 2011, 102(3): 2973–2978
CrossRef
Google scholar
|
[28] |
Wahlen B D, Willis R M, Seefeldt L C. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresource Technology, 2011, 102(3): 2724–2730
CrossRef
Google scholar
|
[29] |
Gong Y, Jiang M. Biodiesel production with microalgae as feedstock: from strains to biodiesel. Biotechnology Letters, 2011, 33(7): 1269–1284
CrossRef
Google scholar
|
[30] |
John R P, Anisha G S, Nampoothiri K M, Pandey A. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresource Technology, 2011, 102(1): 186–193
CrossRef
Google scholar
|
[31] |
Harun R, Danquah M K. Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochemistry, 2011, 46(1): 304–309
CrossRef
Google scholar
|
[32] |
Harun R, Jason W S Y, Cherrington T, Danquah M K. Exploring alkaline pre-treatment of microalgal biomass for bioethanol production. Applied Energy, 2011, 88(10): 3464–3467
CrossRef
Google scholar
|
[33] |
Harun R, Danquah M K, Forde G M. Microalgal biomass as a fermentation feedstock for bioethanol production. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2010, 85(2): 199–203
|
[34] |
Mussgnug J H, Klassen V, Schlüter A, Kruse O. Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 2010, 150(1): 51– 56
CrossRef
Google scholar
|
[35] |
Doušková I, Kaštánek F, Maléterová Y, Kaštánek P, Doucha J, Zachleder V. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energy Conversion and Management, 2010, 51(3): 606–611
CrossRef
Google scholar
|
[36] |
Razon L F, Tan R R. Net energy analysis of the production of biodiesel and biogas from the microalgae: haematococcus pluvialis and nannochloropsis. Applied Energy, 2011, 88(10): 3507–3514
CrossRef
Google scholar
|
[37] |
Collet P, Hélias A, Lardon L, Ras M, Goy R A, Steyer J P. Life-cycle assessment of microalgae culture coupled to biogas production. Bioresource Technology, 2011, 102(1): 207–214
CrossRef
Google scholar
|
[38] |
Sukarni, Sudjito, Hamidi N, Yanuhar U, Wardana I N G. Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. International Journal of Energy and Environmental Engineering, 2014, 5(4): 279–290
CrossRef
Google scholar
|
[39] |
Beamish B B. Proximate analysis of New Zealand and Australian coals by thermogravimetry. New Zealand Journal of Geology and Geophysics, 1994, 37(4): 387–392
CrossRef
Google scholar
|
[40] |
Mayoral M C, Izquierdo M T, Andres J M, Rubio B. Different approaches to proximate analysis by thermogravimetry analysis. Thermochimica Acta, 2001, 370(1–2): 91–97
CrossRef
Google scholar
|
[41] |
Nhuchhen D R, Abdul Salam P. Estimation of higher heating value of biomass from proximate analysis: a new approach. Fuel, 2012, 99: 55–63
CrossRef
Google scholar
|
[42] |
Gašparovič L, Koreňová Z, Jelemenský Ľ. Kinetic study of wood chips decomposition by TGA. Chemical Papers, 2010, 64(2): 174–181
CrossRef
Google scholar
|
[43] |
Açıkalın K. Thermogravimetric analysis of walnut shell as pyrolysis feedstock. Journal of Thermal Analysis and Calorimetry, 2011, 105(1): 145–150
CrossRef
Google scholar
|
[44] |
Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Applied Energy, 2012, 97: 491–497
CrossRef
Google scholar
|
[45] |
Biagini E, Fantei A, Tognotti L. Effect of the heating rate on the devolatilization of biomass residues. Thermochimica Acta, 2008, 472(1–2): 55–63
CrossRef
Google scholar
|
[46] |
Sonibare O O, Ehinola O A, Egashira R, KeanGiap L. An investigation into the thermal decomposition of Nigerian coal. Journal of Applied Sciences, 2005, 5(1): 104–107
CrossRef
Google scholar
|
[47] |
Chen C, Ma X, Liu K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Applied Energy, 2011, 88(9): 3189–3196
CrossRef
Google scholar
|
[48] |
Tang Y, Ma X, Lai Z. Thermogravimetric analysis of the combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresource Technology, 2011, 102(2): 1879–1885
CrossRef
Google scholar
|
[49] |
Vamvuka D, Sfakiotakis S. Combustion behaviour of biomass fuels and their blends with lignite. Thermochimica Acta, 2011, 526(1–2): 192–199
CrossRef
Google scholar
|
[50] |
Wang Q, Zhao W, Liu H, Jia C, Xu H. Reactivity and kinetic analysis of biomass during combustion. Energy Procedia, 2012, 17: 869–875
CrossRef
Google scholar
|
[51] |
Maloney D, Sampath R, Zondlo J. Heat capacity and thermal conductivity considerations for coal particles during the early stages of rapid heating. Combustion and Flame, 1999, 116(1–2): 94–104
CrossRef
Google scholar
|
[52] |
Kissinger H. Reaction kinetics in differential thermal analysis. Analytical Chemistry, 1956, 1957(29): 1702–1706
|
[53] |
Jiang G, Nowakowski D J, Bridgwater A V. A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010, 498(1–2): 61–66
CrossRef
Google scholar
|
[54] |
Hu S, Jess A, Xu M. Kinetic study of chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel, 2007, 86(17–18): 2778–2788
CrossRef
Google scholar
|
[55] |
Ounas A, Aboulkas A, El Harfi K, Bacaoui A, Yaacoubi A. Pyrolysis of olive residue and sugar cane bagasse: non-isothermal thermogravimetric kinetic analysis. Bioresource Technology, 2011, 102(24): 11234–11238
CrossRef
Google scholar
|
/
〈 | 〉 |