Front. Energy All Journals

Collections AI Mindmap AI Analyzer

Perspectives
Publication years
Article types
  • Select all
  • PERSPECTIVES
    Analysis on carbon emission reduction intensity of fuel cell vehicles from a life-cycle perspective
    Ziyuan TENG, Chao TAN, Peiyuan LIU, Minfang HAN
    Frontiers in Energy, 2024, 18(1): 16-27. https://doi.org/10.1007/s11708-023-0909-1

    The hydrogen fuel cell vehicle is rapidly developing in China for carbon reduction and neutrality. This paper evaluated the life-cycle cost and carbon emission of hydrogen energy via lots of field surveys, including hydrogen production and packing in chlor-alkali plants, transport by tube trailers, storage and refueling in hydrogen refueling stations (HRSs), and application for use in two different cities. It also conducted a comparative study for battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs). The result indicates that hydrogen fuel cell vehicle (FCV) has the best environmental performance but the highest energy cost. However, a sufficient hydrogen supply can significantly reduce the carbon intensity and FCV energy cost of the current system. The carbon emission for FCV application has the potential to decrease by 73.1% in City A and 43.8% in City B. It only takes 11.0%–20.1% of the BEV emission and 8.2%–9.8% of the ICEV emission. The cost of FCV driving can be reduced by 39.1% in City A. Further improvement can be obtained with an economical and “greener” hydrogen production pathway.

  • PERSPECTIVE
    P2P energy trading via public power networks: Practical challenges, emerging solutions, and the way forward
    Yue ZHOU, Jianzhong WU, Wei GAN
    Frontiers in Energy, 2023, 17(2): 189-197. https://doi.org/10.1007/s11708-023-0873-9

    Peer-to-peer (P2P) energy trading is an emerging energy supply paradigm where customers with distributed energy resources (DERs) are allowed to directly trade and share electricity with each other. P2P energy trading can facilitate local power and energy balance, thus being a potential way to manage the rapidly increasing number of DERs in net zero transition. It is of great importance to explore P2P energy trading via public power networks, to which most DERs are connected. Despite the extensive research on P2P energy trading, there has been little large-scale commercial deployment in practice across the world. In this paper, the practical challenges of conducting P2P energy trading via public power networks are identified and presented, based on the analysis of a practical Local Virtual Private Networks (LVPNs) case in North Wales, UK. The ongoing efforts and emerging solutions to tackling the challenges are then summarized and critically reviewed. Finally, the way forward for facilitating P2P energy trading via public power networks is proposed.

  • PERSPECTIVE
    Thoughts on strategies and paths to achieve carbon peaking and carbon neutrality in China
    Xiangwan DU
    Frontiers in Energy, 2023, 17(3): 324-331. https://doi.org/10.1007/s11708-023-0883-7

    First, a brief introduction is made to the four basic judgments and understandings of the goals of “carbon peaking and carbon neutrality.” Then, an in-depth elaboration is provided on the eight major strategies for achieving the goals of “carbon peaking and carbon neutrality,” including conservation and efficiency priority, energy security, non-fossil energy substitution, re-electrification, resource recycling, carbon sequestration, digitalization and cooperation between countries. Next, eight major implementation paths for achieving the goals of “carbon peaking and carbon neutrality” are discussed in detail, including industrial restructuring; building a clean, low-carbon, safe and efficient energy system, and renewing the understanding of China’s energy resource endowment; accelerating the construction of a new-type power system with a gradually growing proportion of new energy, and realizing the “possible triangle” of high-quality energy system development; utilizing electrification and deep decarbonization technologies to promote the orderly peaking and gradual neutralization of carbon emissions in the industrial sector; promoting the low-carbon transition of transportation vehicles to achieve carbon peaking and carbon neutrality in the transportation sector; focusing on breaking through key green building technologies to achieve zero carbon emissions from building electricity and heat; providing a strong technical support for carbon removal to achieve carbon neutrality; accelerating the construction of the integrated planning and assessment mechanism for pollution and carbon reduction, establishing a sound strategy, planning, policy and action system, and optimizing the carbon trading system. Afterwards, it is particularly pointed out that the realization of the goals of “carbon peaking and carbon neutrality” cannot be separated from the support of sci-tech innovation. Finally, it is stressed that carbon neutrality is not the end, but an important milestone. If viewed from the perspective of future energy, the significance and historical status of the goals of “carbon peaking and carbon neutrality” will be more understandable.

  • PERSPECTIVES
    Automotive revolution and carbon neutrality
    C. C. CHAN, Wei HAN, Hanlei TIAN, Yanbing LIU, Tianlu MA, C. Q. JIANG
    Frontiers in Energy, 2023, 17(6): 693-703. https://doi.org/10.1007/s11708-023-0890-8

    The automotive industry is in the midst of a groundbreaking revolution, driven by the imperative to achieve intelligent driving and carbon neutrality. A crucial aspect of this transformation is the transition to electric vehicles (EVs), which necessitates widespread changes throughout the entire automotive ecosystem. This paper examines the challenges and opportunities of this transition, including automotive electrification, intelligence-connected transportation system, and the potential for new technologies such as hydrogen fuel cells. Meanwhile, it discusses the key technologies and progress of the hydrogen energy industry chain in the upstream hydrogen production, midstream hydrogen storage and transportation, downstream hydrogen station construction and hydrogen fuel cells in turn. Finally, it proposes the directions for future layout, providing guidance for future development.