Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  专题文章  |  热点文章  |  下载排行

ISSN 2095-1701 (Print)
ISSN 2095-1698 (Online)
CN 11-6017/TK
Postal Subscription Code 80-972
原刊名 Frontiers of Energy and Power Engineering in China
2018 Impact Factor: 1.701
  期刊介绍
    » 出版范围
    » 简介
    » 编委会
    » 数据库收录
    » 联系我们
  作者中心
    » 在线投稿
    » 作者指南
    » 模板下载
    » 作者常见问题
  审稿中心
    » 审稿指南
    » 在线审稿
    » 推荐审稿人
    » 致谢
  新闻公告 更多  
» Call for Papers: Special Issue on Cyber-Physical-Social System in Energy
  2020-07-06
» Call for Papers: Energy Internet
  2017-05-12
» Post-Paris Agreement climate change mitigation in developing world
  2016-06-15
» 新闻公告
  2014-01-18
  • 2023年, 第17卷 第6期 出版日期:2023-12-15
    选择: 合并摘要 显示/隐藏图片
    PERSPECTIVES
    Automotive revolution and carbon neutrality
    C. C. CHAN, Wei HAN, Hanlei TIAN, Yanbing LIU, Tianlu MA, C. Q. JIANG
    Frontiers in Energy. 2023, 17 (6): 693-703.   https://doi.org/10.1007/s11708-023-0890-8
    摘要   HTML   PDF (960KB)

    The automotive industry is in the midst of a groundbreaking revolution, driven by the imperative to achieve intelligent driving and carbon neutrality. A crucial aspect of this transformation is the transition to electric vehicles (EVs), which necessitates widespread changes throughout the entire automotive ecosystem. This paper examines the challenges and opportunities of this transition, including automotive electrification, intelligence-connected transportation system, and the potential for new technologies such as hydrogen fuel cells. Meanwhile, it discusses the key technologies and progress of the hydrogen energy industry chain in the upstream hydrogen production, midstream hydrogen storage and transportation, downstream hydrogen station construction and hydrogen fuel cells in turn. Finally, it proposes the directions for future layout, providing guidance for future development.

    图表 | 参考文献 | 相关文章 | 多维度评价
    REVIEW ARTICLE
    A review of bifacial solar photovoltaic applications
    Aydan GARROD, Aritra GHOSH
    Frontiers in Energy. 2023, 17 (6): 704-726.   https://doi.org/10.1007/s11708-023-0903-7
    摘要   HTML   PDF (2044KB)

    Bifacial photovoltaics (BPVs) are a promising alternative to conventional monofacial photovoltaics given their ability to exploit solar irradiance from both the front and rear sides of the panel, allowing for a higher amount of energy production per unit area. The BPV industry is still emerging, and there is much work to be done until it is a fully mature technology. There are a limited number of reviews of the BPV technology, and the reviews focus on different aspects of BPV. This review comprises an extensive in-depth look at BPV applications throughout all the current major applications, identifying studies conducted for each of the applications, and their outcomes, focusing on optimization for BPV systems under different applications, comparing levelized cost of electricity, integrating the use of BPV with existing systems such as green roofs, information on irradiance and electrical modeling, as well as providing future scope for research to improve the technology and help the industry.

    图表 | 参考文献 | 相关文章 | 多维度评价
    Emerging trends in self-healable nanomaterials for triboelectric nanogenerators: A comprehensive review and roadmap
    Prabhakar YADAV, Kuldeep SAHAY, Malvika SRIVASTAVA, Arpit VERMA, Bal Chandra YADAV
    Frontiers in Energy. 2023, 17 (6): 727-750.   https://doi.org/10.1007/s11708-023-0896-2
    摘要   HTML   PDF (8471KB)

    A thorough analysis of triboelectric nanogenerators (TENGs) that make use of self-healable nanomaterials is presented in this review. These TENGs have shown promise as independent energy sources that do not require an external power source to function. TENGs are developing into a viable choice for powering numerous applications as low-power electronics technology advances. Despite having less power than conventional energy sources, TENGs do not directly compete with these. TENGs, on the other hand, provide unique opportunities for future self-powered systems and might encourage advancements in energy and sensor technologies. Examining the many approaches used to improve nanogenerators by employing materials with shape memory and self-healable characteristics is the main goal of this review. The findings of this comprehensive review provide valuable information on the advancements and possibilities of TENGs, which opens the way for further research and advancement in this field. The discussion of life cycle evaluations of TENGs provides details on how well they perform in terms of the environment and identifies potential improvement areas. Additionally, the cost-effectiveness, social acceptability, and regulatory implications of self-healing TENGs are examined, as well as their economic and societal ramifications.

    图表 | 参考文献 | 相关文章 | 多维度评价
    RESEARCH ARTICLE
    Formic acid dehydrogenation reaction on high-performance PdxAu1−x alloy nanoparticles prepared by the eco-friendly slow synthesis methodology
    Yibo GAO, Erjiang HU, Bo HUANG, Zuohua HUANG
    Frontiers in Energy. 2023, 17 (6): 751-762.   https://doi.org/10.1007/s11708-023-0895-3
    摘要   HTML   PDF (1907KB)

    Dehydrogenation of formic acid (FA) is considered to be an effective solution for efficient storage and transport of hydrogen. For decades, highly effective catalysts for this purpose have been widely investigated, but numerous challenges remain. Herein, the PdxAu1−x (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1) alloys over the whole composition range were successfully prepared and used to catalyze FA hydrogen production efficiently near room temperature. Small PdAu nanoparticles (5–10 nm) were well-dispersed and supported on the activated carbon to form PdAu solid solution alloys via the eco-friendly slow synthesis methodology. The physicochemical properties of the PdAu alloys were comprehensively studied by utilizing various measurement methods, such as X-ray diffraction (XRD), N2 adsorption–desorption, high angle annular dark field-scanning transmission electron microscope (HAADF-STEM), X-ray photoelectrons spectroscopy (XPS). Notably, owing to the strong metal-support interaction (SMSI) and electron transfer between active metal Au and Pd, the Pd0.5Au0.5 obtained exhibits a turnover frequency (TOF) value of up to 1648 h−1 (313 K, nPd+Au/nFA = 0.01, nHCOOH/nHCOONa = 1:3) with a high activity, selectivity, and reusability in the FA dehydrogenation.

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    Conversion of polyethylene to gasoline: Influence of porosity and acidity of zeolites
    Chunyu LI, Haihong WU, Ziyu CEN, Wanying HAN, Xinrui ZHENG, Jianxin ZHAI, Jiao XU, Longfei LIN, Mingyuan HE, Buxing HAN
    Frontiers in Energy. 2023, 17 (6): 763-774.   https://doi.org/10.1007/s11708-023-0897-1
    摘要   HTML   PDF (1173KB)

    Plastic waste is causing serious environmental problems. Developing efficient, cheap and stable catalytic routes to convert plastic waste into valuable products is of great importance for sustainable development, but remains to be a challenging task. Zeolites are cheap and stable, but they are usually not efficient for plastic conversion at a low temperature. Herein a series of microporous and mesoporous zeolites were used to study the influence of porosity and acidity of zeolite on catalytic activity for plastics conversion. It was observed that H-Beta zeolite was an efficient catalyst for cracking high-density polyethylene to gasoline at 240 °C, and the products were almost C4–C12 alkanes. The effect of porosity and acidity on catalytic performance of zeolites was evaluated, which clearly visualized the good performance of H-Beta due to high surface area, large channel system, large amount accessible acidic sites. This study provides very useful information for designing zeolites for efficient conversion of plastics.

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    Alumina modified sodium vanadate cathode for aqueous zinc-ion batteries
    Linsong GAN, Fei LIU, Xinhai YUAN, Lijun FU, Yuping WU
    Frontiers in Energy. 2023, 17 (6): 775-781.   https://doi.org/10.1007/s11708-023-0902-8
    摘要   HTML   PDF (3273KB)

    Aqueous zinc-ion batteries (ZIBs) have great prospects for widespread application in massive scale energy storage. By virtue of the multivalent state, open frame structure and high theoretical specific capacity, vanadium (V)-based compounds are a kind of the most developmental potential cathode materials for ZIBs. However, the slow kinetics caused by low conductivity and the capacity degradation caused by material dissolution still need to be addressed for large-scale applications. Therefore, sodium vanadate Na2V6O16·3H2O (NVO) was chosen as a model material, and was modified with alumina coating through simple mixing and stirring methods. After Al2O3 coating modification, the rate capability and long-cycle stability of Zn//NVO@Al2O3 battery have been significantly improved. The discharge specific capacity of NVO@Al2O3 reach up to 228 mAh/g (at 4 A/g), with a capacity reservation rate of approximately 68% after 1000 cycles, and the Coulombic efficiency (CE) is close to 100%. As a comparison, the capacity reservation rate of Zn//NVO battery is only 27.7%. Its superior electrochemical performance is mainly attributed to the Al2O3 coating layer, which can increase zinc-ion conductivity of the material surface, and to some extent inhibit the dissolution of NVO, making the structure stable and improving the cyclic stability of the material. This paper offers new prospects for the development of cathode coating materials for ZIBs.

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    Cluster voltage control method for “Whole County” distributed photovoltaics based on improved differential evolution algorithm
    Jing ZHANG, Tonghe WANG, Jiongcong CHEN, Zhuoying LIAO, Jie SHU
    Frontiers in Energy. 2023, 17 (6): 782-795.   https://doi.org/10.1007/s11708-023-0905-8
    摘要   HTML   PDF (3574KB)

    China is vigorously promoting the “whole county promotion” of distributed photovoltaics (DPVs). However, the high penetration rate of DPVs has brought problems such as voltage violation and power quality degradation to the distribution network, seriously affecting the safety and reliability of the power system. The traditional centralized control method of the distribution network has the problem of low efficiency, which is not practical enough in engineering practice. To address the problems, this paper proposes a cluster voltage control method for distributed photovoltaic grid-connected distribution network. First, it partitions the distribution network into clusters, and different clusters exchange terminal voltage information through a “virtual slack bus.” Then, in each cluster, based on the control strategy of “reactive power compensation first, active power curtailment later,” it employs an improved differential evolution (IDE) algorithm based on Cauchy disturbance to control the voltage. Simulation results in two different distribution systems show that the proposed method not only greatly improves the operational efficiency of the algorithm but also effectively controls the voltage of the distribution network, and maximizes the consumption capacity of DPVs based on qualified voltage.

    图表 | 参考文献 | 相关文章 | 多维度评价
    Flow and thermal modeling of liquid metal in expanded microchannel heat sink
    Mingkuan ZHANG, Xudong ZHANG, Luna GUO, Xuan LI, Wei RAO
    Frontiers in Energy. 2023, 17 (6): 796-810.   https://doi.org/10.1007/s11708-023-0877-5
    摘要   HTML   PDF (5064KB)

    Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In this paper, it was found that expanded space at the top of fins could distribute the heat inside microchannels, reducing the temperature rise of coolant and heat sink. The orthogonal experiments revealed that expanding the top space of channels yielded similar temperature reductions to changing the channel width. The flow and thermal modeling of expanded microchannel heat sink (E-MCHS) were analyzed by both using the 3-dimensional (3D) numerical simulation and the 1-dimensional (1D) thermal resistance model. The fin efficiency of E-MCHS was derived to improve the accuracy of the 1D thermal resistance model. The heat conduction of liquid metal in Z direction and the heat convection between the top surface of fins and the liquid metal could reduce the total thermal resistance (Rt). The above process was effective for microchannels with low channel aspect ratio, low mean velocity (Um) or long heat sink length. The maximum thermal resistance reduction in the example of this paper reached 36.0%. The expanded space endowed the heat sink with lower pressure, which might further reduce the pumping power (P). This rule was feasible both when fins were truncated (h2 < 0, h2 is the height of expanded channel for E-MCHS) and when over plate was raised (h2 > 0).

    图表 | 参考文献 | 相关文章 | 多维度评价
    Design and modeling of a free-piston engine generator
    Jinlong WANG, Jin XIAO, Yingdong CHENG, Zhen HUANG
    Frontiers in Energy. 2023, 17 (6): 811-821.   https://doi.org/10.1007/s11708-022-0848-2
    摘要   HTML   PDF (1515KB)

    Free-piston engine generators (FPEGs) can be applied as decarbonized range extenders for electric vehicles because of their high thermal efficiency, low friction loss, and ultimate fuel flexibility. In this paper, a parameter-decoupling approach is proposed to model the design of an FPEG. The parameter-decoupling approach first divides the FPEG into three parts: a two-stroke engine, an integrated scavenging pump, and a linear permanent magnet synchronous machine (LPMSM). Then, each of these is designed according to predefined specifications and performance targets. Using this decoupling approach, a numerical model of the FPEG, including the three aforementioned parts, was developed. Empirical equations were adopted to design the engine and scavenging pump, while special considerations were applied for the LPMSM. A finite element model with a multi-objective genetic algorithm was adopted for its design. The finite element model results were fed back to the numerical model to update the LPMSM with increased fidelity. The designed FPEG produced 10.2 kW of electric power with an overall system efficiency of 38.5% in a stable manner. The model provides a solid foundation for the manufacturing of related FPEG prototypes.

    图表 | 参考文献 | 相关文章 | 多维度评价
    Mapping the trends and prospects of battery cathode materials based on patent landscape
    Chen YANG, Xin-Yu MU
    Frontiers in Energy. 2023, 17 (6): 822-832.   https://doi.org/10.1007/s11708-023-0900-x
    摘要   HTML   PDF (2880KB)

    Advancing portable electronics and electric vehicles is heavily dependent on the cutting-edge lithium-ion (Li-ion) battery technology, which is closely linked to the properties of cathode materials. Identifying trends and prospects of cathode materials based on patent analysis is considered a kernel to optimize and refine battery related markets. In this paper, a patent analysis is performed on 6 popular cathode materials by comprehensively considering performance comparison, development trend, annual installed capacity, technology life cycle, and distribution among regions and patent assignees. In the technology life cycle, the cathode materials majorly used in electric vehicle have entered maturity stage, while the lithium cobalt oxide (LCO) cathode that is widely used in portable electronics is still in the growth stage. In global patent distributions, China holds more than 50% of total patents. In the top 10 patent assignees of 6 cathode materials, 2 institutes are from China with the rest being Japan (6) and Republic of Korea (2), indicating that the technology of cathode materials in China is relatively scattered while cathode research is highly concentrated in Japan and Republic of Korea. Moreover, the patent distribution has to consider practical issues as well as the impacts of core patents. For example, the high cost discourages the intention of applying international patents. This paper is expected to stimulate battery research, understand technical layout of various countries, and probably forecast innovative technology breakthroughs.

    图表 | 参考文献 | 相关文章 | 多维度评价
    10 articles







  友情链接 更多  




版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn