Aug 2022, Volume 16 Issue 8
    

Cover illustration

  • Front Cover Story (see: Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang, 2022, 16(8): 97) An electroactive biofilm (EAB)-based biosensor uses whole cells as sensitive element and is a comprehensive early-warning biosensor for water quality which delivers urgently alert for composite pollutants. Antibiotic that is employed widely to treat infection has been proved feasible in this study to regulate the EAB and to increase the EAB-biosensor’s se [Detail] ...


  • Select all
  • VIEWS
    Hong Yang, Xianjin Huang, Jianlin Hu, Julian R. Thompson, Roger J. Flower

    China has been committed to achieving carbon neutrality by 2060. China’s pledge of carbon neutrality will play an essential role in galvanising global climate action, which has been largely deferred by the Covid-19 pandemic. China’s carbon neutrality could reduce global warming by approximately 0.2–0.3 °C and save around 1.8 million people from premature death due to air pollution. Along with domestic benefits, China’s pledge of carbon neutrality is a “game-changer” for global climate action and can inspire other large carbon emitters to contribute actively to mitigate carbon emissions, particularly countries along the Belt and Road Initiative (BRI) routes. In order to achieve carbon neutrality by 2060, it is necessary to decarbonise all sectors in China, including energy, industry, transportation, construction, and agriculture. However, this transition will be very challenging, because major technological breakthroughs and large-scale investments are required. Strong policies and implementation plans are essential, including sustainable demand, decarbonizing electricity, electrification, fuel switching, and negative emissions. In particular, if China can peak carbon emissions earlier, it can lower the costs of the carbon neutral transition and make it easier to do so over a longer time horizon. China’s pledge of carbon neutrality by 2060 and recent pledges at the 26th UN Climate Change Conference of the Parties (COP26) are significant contributions and critical steps for global climate action. However, countries worldwide need to achieve carbon neutrality to keep the global temperature from growing beyond the level that will cause catastrophic damages globally.

  • RESEARCH ARTICLE
    Xiaoman Liu, Chang Tian, Yanxia Zhao, Weiying Xu, Dehua Dong, Kaimin Shih, Tao Yan, Wen Song

    • Ceramic membrane filtration showed high performance for surface water treatment.

    • PTC pre-coagulation could enhance ceramic membrane filtration performance.

    • Ceramic membrane fouling was investigated by four varied mathematical models.

    • PTC pre-coagulation was high-effective for ceramic membrane fouling control.

    Application of ceramic membrane (CM) with outstanding characteristics, such as high flux and chemical-resistance, is inevitably restricted by membrane fouling. Coagulation was an economical and effective technology for membrane fouling control. This study investigated the filtration performance of ceramic membrane enhanced by the emerging titanium-based coagulant (polytitanium chloride, PTC). Particular attention was paid to the simulation of ceramic membrane fouling using four widely used mathematical models. Results show that filtration of the PTC-coagulated effluent using flat-sheet ceramic membrane achieved the removal of organic matter up to 78.0%. Permeate flux of ceramic membrane filtration reached 600 L/(m2·h), which was 10-fold higher than that observed with conventional polyaluminum chloride (PAC) case. For PTC, fouling of the ceramic membrane was attributed to the formation of cake layer, whereas for PAC, standard filtration/intermediate filtration (blocking of membrane pores) was also a key fouling mechanism. To sum up, cross-flow filtration with flat-sheet ceramic membranes could be significantly enhanced by titanium-based coagulation to produce both high-quality filtrate and high-permeation flux.

  • RESEARCH ARTICLE
    Lei Dong, Pin Xie, Xin Zhang, Junlian Qiao, Dandan Rao, Yuankui Sun, Xiaohong Guan

    • Simultaneous removal of organic contaminants and Pb(II) was achieved by Mn(VII).

    • Pb(II) enhanced Mn(VII) oxidation performance over a wide pH range.

    • Pb(II) did not alter the pH-rate profile for contaminants oxidation by Mn(VII).

    • Mn(VII) alone cannot oxidize Pb(II) effectively at pH below 5.0.

    • Pb(III) plays important roles on enhancing Mn(VII) decontamination process.

    The permanganate (Mn(VII)) oxidation has emerged as a promising technology for the remediation and treatment of the groundwater and surface water contaminated with the organic compounds. Nonetheless, only a few studies have been conducted to explore the role of the heavy metals (especially the redox-active ones) during the Mn(VII) oxidation process. In this study, taking Pb(II) as an example, its influence on the Mn(VII) decontamination performance has been extensively investigated. It was found that, with the presence of Pb(II), Mn(VII) could degrade diclofenac (DCF), 2,4-dichlorophenol, and aniline more effectively than without. For instance, over a wide pH range of 4.5–8.0, the dosing of 10 μmol/L Pb(II) accelerated the DCF removal rate from 0.006–0.25 min−1 to 0.05–0.46 min−1 with a promotion factor of 1.9–9.4. Although the UV-vis spectroscopic and high resolution transmission electron microscopy analyses suggested that Mn(VII) could react with Pb(II) to produce Mn(IV) and Pb(IV) at pH 6.0–8.0, further experiments revealed that Pb(II) did not exert its enhancing effect through promoting the generation of MnO2, as the reactivity of MnO2 was poor under the employed pH range. At pH below 5.0, it was interesting to find that, a negligible amount of MnO2 was formed in the Mn(VII)/Pb(II) system in the absence of contaminants, while once MnO2 was generated in the presence of contaminants, it could catalyze the Pb(II) oxidation to Pb(IV) by Mn(VII). Collectively, by highlighting the conversion process of Pb(II) to Pb(IV) by either Mn(VII) or MnO2, the reactive Pb(III) intermediates were proposed to account for the Pb(II) enhancement effect.

  • RESEARCH ARTICLE
    Rong Cheng, Yingying Zhang, Tao Zhang, Feng Hou, Xiaoxin Cao, Lei Shi, Peiwen Jiang, Xiang Zheng, Jianlong Wang

    • The resistance of phage PhiX174 to nZVI was much stronger than that of MS2.

    • The nZVI damaged the surface proteins of both bacteriophages.

    • The nZVI could destroy the nucleic acid of MS2, but not that of PhiX174.

    •The phage inactivation was mainly attributed to the damage of the nucleic acid.

    Pathogenic enteric viruses pose a significant risk to human health. Nanoscale zero-valent iron (nZVI), a novel material for environmental remediation, has been shown to be a promising tool for disinfection. However, the existing research has typically utilized MS2 or f2 bacteriophages to investigate the antimicrobial properties of nZVI, and the resistance difference between bacteriophages, which is important for the application of disinfection technologies, is not yet understood. Here, MS2 and PhiX174 containing RNA and DNA, respectively, were used as model viruses to investigate the resistances to nZVI. The bacteriophage inactivation mechanisms were also discussed using TEM images, protein, and nucleic acid analysis. The results showed that an initial concentration of 106 PFU/mL of MS2 could be completely inactivated within 240 min by 40 mg/L nZVI at pH 7, whereas the complete inactivation of PhiX174 could not be achieved by extending the reaction time, increasing the nZVI dosage, or changing the dosing means. This indicates that the resistance of phage PhiX174 to nZVI was much stronger than that of MS2. TEM images indicated that the viral particle shape was distorted, and the capsid shell was ruptured by nZVI. The damage to viral surface proteins in both phages was examined by three-dimensional fluorescence spectrum and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). However, the nucleic acid analysis demonstrated that the nucleic acid of MS2, but not PhiX174, was destroyed. It indicated that bacteriophage inactivation was mainly attributed to the damage of nucleic acids.

  • RESEARCH ARTICLE
    Xue Bai, Chang Li, Lingyu Ma, Pei Xin, Fengjie Li, Zhenjia Xu

    • Reclamation projects are important disturbances on microplastic risk in coasts.

    • Tidal-flat reclamation area is a large storage medium for sedimentary microplastics.

    • Aging and distribution features of soil microplastics show spatial heterogeneity.

    • Coastal weathered engineering geotextiles are a significant threat to marine health.

    Coastal tidal flats have received considerable attention in recent years, as they provide a direct channel for the discharge of terrestrial microplastics into the ocean. Land reclamation is occurring increasingly frequently in coastal tidal-flats; however, the environmental impacts of these activities remain unclear. Therefore, this pioneering study assessed the microplastic emission characteristics of reclamation geotextiles and performed a risk assessment accordingly. Morphological characterization of geotextile samples collected from five sites in Dongtai, China, provided evidence of sedimentary weathering. Based on several assumptions, the average abundance of microplastics in soil covered by geotextiles was estimated to reach 349±137 particles/kg dry weight, with the total microplastic load in the reclaimed area estimated to be 20.67±8.06 t. Compared with previous studies, this research demonstrates that coastal reclamation areas store a high concentration of microplastics, aggravating marine microplastic pollution. Moreover, conditional fragmentation model results revealed that the weathering and distribution characteristics of soil microplastics in coastal tidal-flat areas exhibit spatial heterogeneity, being more easily affected by natural factors (such as tides) than those in inland areas. As a result of tides, the annual discharge of geotextile-originating microplastics from the studied areas into the ocean was approximately 2465.52±960.77 t. These findings prove that the risks posed by engineering-microplastics are significant, indicating that further investigations are required on the precise laws of transfer and migration, as well as the toxicity mechanisms, in order to improve analytical techniques and policies in this field.

  • RESEARCH ARTICLE
    Jingyang Luo, Shiyu Fang, Wenxuan Huang, Feng Wang, Le Zhang, Fang Fang, Jiashun Cao, Yang Wu, Dongbo Wang

    • The promoting effects for VFA generation follow the order of APG>SDBS>HTAB.

    • Surfactants improve the WAS solubilization/hydrolysis and acidification processes.

    • The VFA promotion is associated with surfactants’ distinctive characteristics.

    • Surfactants induce the enrichment of functional bacteria for VFA biosynthesis.

    • The vital genes for substrates delivery, metabolism, and VFA yields are upregulated.

    Surfactants were expected to exhibit positive effects on the waste activated sludge (WAS) disposal. However, the systematic comparison of different categories of surfactants on the WAS fermentation and the functional mechanisms, especially microbial metabolic traits, have not yet been precisely explored. This study revealed the positive effects of different surfactants on the volatile fatty acid (VFA) production, which followed the order of alkyl polysaccharides (APG)>sodium dodecylbenzene sulfonate (SDBS)>hexadecyl trimethyl ammonium bromide (HTAB). Mechanistic exploration found that the presence of different surfactants improved solubilization and hydrolysis steps, and then contributed to the subsequent acidification with different efficiencies. The functional microorganisms associated with VFA generation were enriched in surfactant-conditioned reactors. Metagenomic analysis further indicated that the key genes involved in the particular process of VFA generation were over-expressed. The simultaneous bioavailable substrate improvement, functional bacterial enrichment, and metabolic activity upregulation induced by different surfactants jointly contributed to VFA promotion during WAS fermentation. This study could provide a comprehensive realization of surfactants’ impacts on the WAS fermentation process, and more importantly, it reminded the public to discern the distinct interplaying effects induced by different chemicals in regulating the WAS disposal and resource recovery.

  • RESEARCH ARTICLE
    Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu

    • PANI/Ti(OH)n(4n)+ exhibited excellent adsorption capacity and reusability.

    • Adsorption sites of Cr(VI) were hydroxyl, amino/imino group and benzene rings.

    • Sb(V) was adsorbed mainly through hydrogen bonds and Ti-O-Sb.

    • The formation of Cr-O-Sb in dual system demonstrated the synergistic adsorption.

    • PANI/TiO2 was a potential widely-applied adsorbent and worth further exploring.

    Removal of chromium (Cr) and antimony (Sb) from aquatic environments is crucial due to their bioaccumulation, high mobility and strong toxicity. In this work, a composite adsorbent consisting of Ti(OH)n(4n)+ and polyaniline (PANI) was designed and successfully synthesized by a simple and eco-friendly method for the uptake of Cr(VI) and Sb(V). The synthetic PANI/TiO2 composites exhibited excellent adsorption capacities for Cr(VI) and Sb(V) (394.43 mg/g for Cr(VI) and 48.54 mg/g for Sb(V)), wide pH applicability and remarkable reusability. The adsorption of Cr(VI) oxyanions mainly involved electrostatic attraction, hydrogen bonding and anion-π interactions. Based on X-ray photoelectron spectroscopy and FT-IR analysis, the adsorption sites were shown to be hydroxyl groups, amino/imino groups and benzene rings. Sb(V) was adsorbed mainly through hydrogen bonds and surface complexation to form Ti-O-Sb complexes. The formation of Cr-O-Sb in the dual system demonstrated the synergistic adsorption of Cr(VI) and Sb(V). More importantly, because of the different adsorption sites, the adsorption of Cr(VI) and Sb(V) occurred independently and was enhanced to some extent in the dual system. The results suggested that PANI/TiO2 is a promising prospect for practical wastewater treatment in the removal of Cr(VI) and Sb(V) from wastewater owing to its availability, wide applicability and great reusability.

  • RESEARCH ARTICLE
    Jie Wu, Jian Lu, Jun Wu

    • Effect of gastric fluid on EDCs adsorption-desorption to microplastics was evaluated.

    • The gastric fluid enhanced desorption of EDCs on the surface of microplastics.

    • Adsorption and desorption isotherms fitted the Freundlich model well.

    • Desorption ratios of EE2 (55%–59%) on PVC were larger than that of E2 (49%–55%).

    • Decrease in pH and increase in ionic strength in gastric fluid strengthen desorption.

    Microplastics and endocrine disrupting chemicals are emerging pollutants in the marine environment because of their potential hazards. The effect of gastric fluid on the adsorption and desorption of 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) to microplastics was investigated. The adsorption and desorption isotherms of E2/EE2 on microplastics could be well fitted by the Freundlich model while the Gibbs free energy of these processes were negative, proving that the reaction occurred spontaneously on the heterogeneous surface of the microplastics. Desorption ratios of EE2 (55%–59%) on PVC were larger than that of E2 (49%–55%) to indicate that EE2 was less stable in gastric fluid, which could be explained by the fact that the hydrophobicity of EE2 was greater than E2. E2/EE2 were more easily desorbed from PVC in the gastric fluid and the desorption amount (5.25–12.91/7.19–17.86 μg/g) increased by 2.51 times in comparison with that in saline solution (2.22–7.81/2.87–10.80 μg/g). The decrease of pH and the increase of ionic strength in gastric fluid could further strengthen desorption of E2/EE2 from PVC. The promotion of gastric juice on desorption of PVC was achieved by reducing the hydrophobicity of the PVC surface. The desorption rate of E2/EE2 at 18°C and 38°C was respectively 44%–47%/46%–50% and 49%–55%/56%–59%, indicating that PVC loaded with E2/EE2 had a relatively greater risk of releasing pollutants in the gastric fluid of constant temperature marine organisms while higher temperatures exposed higher hazards for variable temperature animals. The interaction between microplastics and pollutants might be mainly hydrophobic interaction.

  • RESEARCH ARTICLE
    Zhichao Shen, Lu Zhan, Zhenming Xu

    • New method of mineralizing PFCs was proposed.

    • Activated carbon was regenerated while mineralizing PFCs.

    • Molten NaOH has good mineralization effect on PFOS and PFBS.

    Current study proposes a green regeneration method of activated carbon (AC) laden with Perfluorochemicals (PFCs) from the perspective of environmental safety and resource regeneration. The defluorination efficiencies of AC adsorbed perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutanesulfonate (PFBS) using three molten sodium salts and one molten alkali were compared. Results showed that defluorination efficiencies of molten NaOH for the three PFCs were higher than the other three molten sodium salts at lower temperature. At 700°C, the defluorination efficiencies of PFOS and PFBS using molten NaOH reached to 84.2% and 79.2%, respectively, while the defluorination efficiency of PFOA was 35.3%. In addition, the temperature of molten salt, the holding time and the ratio of salt to carbon were directly proportional to the defluorination efficiency. The low defluorination efficiency of PFOA was due to the low thermal stability of PFOA, which made it difficult to be captured by molten salt.The weight loss range of PFOA was 75°C–125°C, which was much lower than PFOS and PFBS (400°C–500°C). From the perspective of gas production, fluorine-containing gases produced from molten NaOH-treated AC were significantly reduced, which means that environmental risks were significantly reduced. After molten NaOH treatment, the regenerated AC had higher adsorption capacity than that of pre-treated AC.

  • REVIEW ARTICLE
    Yueming Wu, Zhanrui Leng, Jian Li, Chongling Yan, Xinhong Wang, Hui Jia, Lingyun Chen, Sai Zhang, Xiaojun Zheng, Daolin Du

    • In sediments, the transformation of sulfides may lead to the release of heavy metals.

    • In the rhizosphere, sulfur regulates the uptake of heavy metals by plants.

    • In plants, sulfur mediates a series of heavy metal tolerance mechanisms.

    • Explore interactions between sulfur and heavy metals on different scales is needed.

    The interactions and mechanisms between sulfur and heavy metals are a growing focus of biogeochemical studies in coastal wetlands. These issues underline the fate of heavy metals bound in sediments or released into the system through sediments. Despite the fact that numerous published studies have suggested sulfur has a significant impact on the bioavailability of heavy metals accumulated in coastal wetlands, to date, no review article has systematically summarized those studies, particularly from the perspective of the three major components of wetland ecosystems (sediments, rhizosphere, and vegetation). The present review summarizes the studies published in the past four decades and highlights the major achievements in this field. Research and studies available thus far indicate that under anaerobic conditions, most of the potentially bioavailable heavy metals in coastal wetland sediments are fixed as precipitates, such as metal sulfides. However, fluctuations in physicochemical conditions may affect sulfur cycling, and hence, directly or indirectly lead to the conversion and migration of heavy metals. In the rhizosphere, root activities and microbes together affect the speciation and transformation of sulfur which in turn mediate the migration of heavy metals. As for plant tissues, tolerance to heavy metals is enhanced by sulfur-containing compounds via promoting a series of chelation and detoxification processes. Finally, to further understand the interactions between sulfur and heavy metals in coastal wetlands, some major future research directions are proposed.

  • RESEARCH ARTICLE
    Shaswati Saha, Rohan Gupta, Shradhanjali Sethi, Rima Biswas

    • Simultaneous C & N removal in Methammox occurs at wide C:N ratio.

    • Biological Nitrogen Removal at wide C:N ratio of 1.5:1 to 14:1 is not reported.

    • Ammonia removal shifted from mixotrophy to heterotrophy at high C:N ratio.

    • Acetogenic population compensated for ammonia oxidizers at high C:N ratio.

    • Methanogens increase the plasticity of nitrogen removers at high C:N ratio.

    High C:N ratio in the wastewater limits biological nitrogen removal (BNR), especially in anammox based technologies. The present study attempts to improve the COD tolerance of the BNR process by associating methanogens with nitrogen removing bacterial (NRB) populations. The new microbial system coined as ‘Methammox’, was investigated for simultaneous removal of COD (C) and ammonia (N) at C:N ratio 1.5:1 to 14:1. The ammonia removal rate (11.5 mg N/g VSS/d) and the COD removal rates (70.6 mg O/g VSS/d) of Methammox was close to that of the NRB (11.1 mg N/g VSS/d) and the methanogenic populations (77.9 mg O/g VSS/d), respectively. The activities established that these two populations existed simultaneously and independently in ‘Methammox’. Further studies in biofilm reactor fetched a balanced COD and ammonia removal (55%–60%) at a low C:N ratio (≤2:1) and high C:N ratio (≥9:1). The population abundance of methanogens was reasonably constant, but the nitrogen removal shifted from mixotrophy to heterotrophy as the C:N ratio shifted from low (C:N≤2:1) to high (C:N≥9:1). The reduced autotrophic NRB (ammonia- and nitrite-oxidizing bacteria and Anammox) population at a high C:N ratio was compensated by the fermentative group that could carry out denitrification heterotrophically. The functional plasticity of the Methammox system to adjust to a broad C:N ratio opens new frontiers in biological nitrogen removal of high COD containing wastewaters.

  • RESEARCH ARTICLE
    Chengsong Ye, Yuming Chen, Lin Feng, Kun Wan, Jianguo Li, Mingbao Feng, Xin Yu

    • UV/chlorine can effectively remove VBNC pathogens, ARGs and MGEs in reclaimed water.

    • Microbial community was changed with reduced diversity during UV/chlorine process.

    • CRBs-carried MGEswere the predominant groups during UV/chlorine process.

    • No direct co-selection strategy was shared between UV/chlorine and resistome.

    Urban wastewater contains a wide range of pathogens and antibiotic resistance genes (ARGs), which are a serious concern if reusing treated wastewater. However, few studies have explored the microbial communities in reclaimed water using ultraviolet (UV)/chlorine treatment and assessed the changes of the resistome. This study investigated the occurrence of typical pathogens, ARGs, and bacterial communities in UV/chlorine-treated reclaimed water samples. The numbers of culturable and viable but non-culturable pathogens were effectively reduced to 0 CFU/mL within 1–10 and 10–30 min after UV/chlorine treatment, respectively. Meanwhile, the physicochemical indices of water quality were not affected. UV/chlorine treatment could significantly change the bacterial community structure of reclaimed water, showing a decrease in bacterial abundance and diversity. Chlorine-resistant Acinetobacter and Mycobacterium were the dominant bacterial genera (>50%) after UV/chlorine treatment. Moreover, the number of ARGs and mobile genetic elements (MGEs) decreased with an increase in UV/chlorine exposure. However, eight ARGs and three MGEs were consistently detected in more than three seasons, making these major concerns because of their potential role in the persistence and dissemination of antibiotic resistance. Overall, the results of this study suggest that UV/chlorine treatment can potentially improve the microbiological safety of reclaimed water. And more attention should be paid to the pathogens that are both chlorine-resistant and carry MGEs because of their potential for resistance transmission.

  • RESEARCH ARTICLE
    Yingchao Zhang, Hongqiong Zhang, Xinwei Dong, Dongbei Yue, Ling Zhou

    • Liquid digestate humification was investigated under different oxidizing environment.

    • Tryptophan-like substances dominated the transformation of the liquid digestate DOM.

    • The humification sequence of the liquid digestate DOM was identified.

    • UV325 was first identified as a pre-humus intermediate during humification reaction.

    The formation of humic-like acids (HLAs) is an essential process for converting liquid digestate into organic soil amendments to enhance agricultural sustainability. The aim of this study was to investigate the impact of oxygen and/or MnO2 on the production of HLAs. Herein, abiotic humification performance of the digestate dissolved organic matter (DOM) is investigated with fluxes of air and N2 in the absence and presence of MnO2. Our results demonstrated that the fate of digestate DOM greatly depends on the oxidizing environment, the MnO2 enhanced nitrogen involved in the formation of HLAs. The synergistic effects of MnO2 and oxygen effectively improved the production of HLAs, and the corresponding component evolution was analyzed using spectroscopic evidence. The two-dimensional correlation spectroscopy results demonstrated that the reaction sequence of digestate DOM followed the order of protein-like substances, substances with an absorbance at 325 nm, substances with UV absorbance at 254 nm and HLAs. Additionally, excitation emission matrix fluorescence combined with parallel factor analysis (EEM-PARAFAC) showed that tryptophan-like C3 was more prone to transformation than tyrosine-like C2 and was responsible for the humification process. The substance with an absorbance at 325 nm was a reaction intermediate in the transformation process of protein-like substances to HLAs. The above findings can be used to promote the production of liquid fertilizer associated with carbon sequestration as well as the sustainable development of biogas production.

  • RESEARCH ARTICLE
    Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu

    • 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system.

    • Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles.

    • Functional microbial communities could be enriched in coupled anaerobic system.

    • Possible synergistic mechanism involved in enhanced dechlorination was proposed.

    Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.

  • RESEARCH ARTICLE
    Shuyi Wang, Xiang Qi, Yong Jiang, Panpan Liu, Wen Hao, Jinbin Han, Peng Liang

    • Antibiotic azithromycin employed in graphite electrode for EAB biosensor.

    • Azithromycin at 0.5% dosage increased the sensitivity for toxic formaldehyde.

    • Azithromycin increased the relative abundance of Geobacter.

    • Azithromycin regulated thickness of electroactive biofilm.

    Extensive research has been carried out for improved sensitivity of electroactive biofilm-based sensor (EAB-sensor), which is recognized as a useful tool in water quality early-warning. Antibiotic that is employed widely to treat infection has been proved feasible in this study to regulate the EAB and to increase the EAB-biosensor’s sensitivity. A novel composite electrode was prepared using azithromycin (AZM) and graphite powder (GP), namely AZM@GP electrode, and was employed as the anode in EAB-biosensor. Different dosages of AZM, i.e., 2 mg, 4 mg, and 8 mg, referred to as 0.25%, 0.5% and 1% AZM@GP were under examination. Results showed that EAB-biosensor was greatly benefited from appropriate dosage of AZM (0.5% AZM@GP) with reduced start-up time period, comparatively higher voltage output, more readable electrical signal and increased inhibition rate (30%-65% higher than control sensor with GP electrode) when exposing to toxic formaldehyde. This may be attributed to the fact that AZM inhibited the growth of non-EAM without much influence on the physiologic or metabolism activities of EAM under proper dosage. Further investigation of the biofilm morphology and microbial community analysis suggested that the biofilm formation was optimized with reduced thickness and enriched Geobacter with 0.5% AZM@GP dosage. This novel electrode is easily fabricated and equipped, and therefore would be a promising way to facilitate the practical application of EAB-sensors.