Aug 2012, Volume 6 Issue 4
    

  • Select all
  • RESEARCH ARTICLE
    Wenzhen LI, Yu DING, Qian SUI, Shuguang LU, Zhaofu QIU, Kuangfei LIN

    The aim of this study was to identify the intermediates in clofibric acid degradation under various advanced oxidation processes, namely ultraviolet (UV), UV/H2O2, vacuum ultraviolet (VUV), VUV/H2O2, and solar/TiO2 processes, as well as to assess the toxicity of these intermediates. Eleven intermediates have been detected by gas chromatography-mass spectrometer, most of which were reported for the first time to our best knowledge. Combining the evolution of the dissolved organic carbon, Cl- and specific ultraviolet absorption at 254 nm, it could be deduced that cleavage of aromatic ring followed by dechlorination was the mechanism in solar/TiO2 process, while dechlorination happened first and accumulation of aromatic intermediates occurred in the other processes. Different transformation pathways were proposed for UV-, VUV-assisted and solar/TiO2 processes, respectively. The acute toxicity was evaluated by means of Photobacterium phosphoreum T3 spp. bioassay. It was believed that aromatic intermediates increased the toxicity and the ring-opening pathway in solar/TiO2 process could relieve the toxicity.

  • RESEARCH ARTICLE
    Chunhua XU, Dandan CHENG, Baoyu GAO, Zhilei YIN, Qinyan YUE, Xian ZHAO

    Batch adsorption experiments were conducted to explore the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand. We investigated the key factors which affected the adsorption process such as adsorbent dosage, initial pH, initial Cr(VI) ion concentration, contact time and temperature. The uptake of Cr(VI) was very rapid and 44.3%, 51.6%, 58.9% of the adsorption happened during the first 180 minutes at 293K, 303K and 313K, respectively. The pseudo-second-order rate equation successfully described the adsorption kinetics. To study the adsorption isotherm, two equilibrium models, the Langmuir and Freundlich isotherms, were adopted. At 293K, 303K and 313K, the adsorption capacities obtained from the Langmuir isotherm were 0.060, 0.070 and 0.076 mg Cr(VI) per gram of the adsorbent, respectively. Thermodynamic parameters such as the change of energy, enthalpy and entropy were calculated using the equilibrium constants. The negative value of ΔG0 and the positive value of ΔH0 showed that the adsorption of Cr(VI) in aqueous solutions by β-FeOOH-coated sand was spontaneous, endothermic and occurred by physisorption.

  • RESEARCH ARTICLE
    Xiaoyan SHI, Kebin HE, Weiwei SONG, Xingtong WANG, Jihua TAN

    The effects of a diesel oxidation catalytic (DOC) converter on diesel engine emissions were investigated on a diesel bench at various loads for two steady-state speeds using diesel fuel and B20. The DOC was very effective in hydrocarbon (HC) and CO oxidation. Approximately 90%–95% reduction in CO and 36%–70% reduction in HC were realized using the DOC. Special attention was focused on the effects of the DOC on elemental carbon (EC) and organic carbon (OC) fractions in fine particles (PM2.5) emitted from the diesel engine. The carbonaceous compositions of PM2.5 were analyzed by the method of thermal/optical reflectance (TOR). The results showed that total carbon (TC), OC and EC emissions for PM2.5 from diesel fuel were generally reduced by the DOC. For diesel fuel, TC emissions decreased 22%–32% after the DOC depending on operating modes. The decrease in TC was attributed to 35%–97% decrease in OC and 3%–65% decrease in EC emissions. At low load, a significant increase in the OC/EC ratio of PM2.5 was observed after the DOC. The effect of the DOC on the carbonaceous compositions in PM2.5 from B20 showed different trends compared to diesel fuel. At low load, a slight increase in EC emissions and a significant decrease in OC/EC ratio of PM2.5 after DOC were observed for B20.

  • RESEARCH ARTICLE
    Wendong WANG, Hua LI, Zhenzhen DING, Xiaochang WANG, Rui LIU

    This study aimed to investigate the effects of humic acid (HA) on residual Al control in drinking water facilities that used orthophosphate addition. The results showed that adding orthophosphate was an effective method for residual Al control for the raw water without HA. When orthophosphate was added at 1.0 min before the addition of poly aluminum chloride (PACl), the concentrations of soluble aluminum (Sol-Al) and total aluminum (Tot-Al) residue were 0.08 and 0.086 mg·L-1, respectively; both were reduced by 46% compared with the control experiment. The presence of HA would notably increase the residual Al concentration. For the raw water with 5 mg·L-1 of HA, the concentrations of Sol-Al and Tot-Al increased from 0.136 and 0.174 mg·L-1 to 0.172 and 0.272 mg·L-1, respectively. For water with a HA concentration above 5 mg·L-1, orthophosphate was ineffective in the control of residual Al, though there were still parts of orthophosphate were removed in coagulation. The amounts of Al removal were positively correlated with the solids freshly formed in coagulation. Similar to the raw water without HA, the best Al control was obtained with orthophosphate salt added at 1.0 min before PACl. HA concentrations in the raw water, solution pH, and the orthophosphate dosage suitable for residual Al control by orthophosphate precipitation were also investigated.

  • RESEARCH ARTICLE
    Honghu ZENG, Lanjing LU, Meina LIANG, Jie LIU, Yanghong LI

    To evaluate possible use of microwave-enhanced H2O2-based (MW/H2O2) process to degrade trace nitrobenzene (NB) in water, a series of batch experiments were conducted. The results showed that 2450MHz microwave irradiation significantly enhanced oxidative decomposition of nitrobenzene (NB) in a H2O2 system. About 90% NB was degraded by the MW/ H2O2 process in 30 min. Moreover, the MW/ H2O2 process could enhanced the oxidative degradation of NB even at relatively low temperature (50°C). When the initial concentration of NB was 300μg/L, the optimum ratio of H2O2 to NB and MW power were 70 and 300 W respectively. The presence of humic acid significantly increased H2O2 dosage. The ultraviolet absorbance at 254 nm (UV254) indicated degradation of NB was stepwise and some intermediates were produced. The gas chromatography-mass spectrometric (GC-MS) analysis showed that main intermediates were nitrophenolic and carbonyl compounds.

  • RESEARCH ARTICLE
    Fengjie ZHANG, Xiaoxia OU, Shuo CHEN, Chunqiu RAN, Xie QUAN

    The competitive adsorption and desorption of Pb(II) and Cu(II) ions in the soil of three sites in North China were investigated using single and binary metal solutions with 0.01 mol·L-1 CaCl2 as background electrolyte. The desorption isotherms of Pb(II) and Cu(II) were similar to the adsorption isotherms, which can be fitted well by Freundlich equation (R2>0.96). The soil in the three sites had greater sorption capacities for Pb(II) than Cu(II), which was affected strongly by the soil characteristics. In the binary metal solution containing 1∶1 molar ratio of Pb(II) and Cu(II), the total amount of Pb(II) and Cu(II) adsorption was affected by the simultaneous presence of the two metal ions, indicating the existence of adsorption competition between the two metal ions. Fourier transform infrared (FT-IR) spectroscopy was used to investigate the interaction between soil and metal ions, and the results revealed that the carboxyl and hydroxyl groups in the soil were the main binding sites of metal ions.

  • RESEARCH ARTICLE
    Xiangliang PAN, Jing LIU, Wenjuan SONG, Daoyong ZHANG

    Biosorption of extracellular polymeric substances (EPS) from Synechocystis sp. (cyanobacterium) with Cu(II) was investigated using fluorescence spectroscopy. Three fluorescence peaks were found in the excitation-emission matrix (EEM) fluorescence spectra of EPS. Fluorescence of peak A (Ex/Em= 275/452 nm) and peak C (Ex/Em= 350/452 nm) were originated from humic-like substances and fluorescence of peak B (Ex/Em= 275/338 nm) was attributed to protein-like substances. Fluorescence of peaks A, B, and C could be quenched by Cu(II). The effective quenching constants (lg Ka) were 2.8–5.84 for peak A, 6.4–9.24 for peak B, and 3.48–6.68 for peak C, respectively. The values of lg Ka showed a decreasing trend with increasing temperature, indicating that the quenching processes were static in nature. The binding constants (lg Kb) followed the order of peak A>peak B>peak C, implying that the humic-like substances in EPS have greater Cu(II) binding capacity than the protein-like substances. The binding site number, n, in EPS-Cu(II) complexes for peaks A, B, and C was less than 1. This suggests the negative cooperativity between multiple binding sites and the presence of more than one Cu binding site.

  • RESEARCH ARTICLE
    Pei MA, Dan ZHANG

    To investigate the potential use of Lentinus edodes (L. edodes) residue for Cd2+ adsorption, poly alcohol Na alginate (PVA) was applied to immobilize it. The parameters including contact time, pH, adsorbent dosages, and coexisting metal ions were studied. The suitable pH for immobilized L. edodes was 4–7 wider than that for raw L. edodes (pH 6–7). In the presence of Pb2+ concentration varying from 0 to 30 mg·L-1, the Cd2+ adsorption ratios declined by 6.71% and 47.45% for immobilized and raw L. edodes, respectively. While, with the coexisting ion Cu2+ concentration varied from 0 to 30 mg·L-1, the Cd2+ adsorption ratios declined by 12.97% and 50.56% for immobilized and raw L. edodes, respectively. The Cd2+ adsorption isotherms in single–metal and dual-metal solutions were analyzed by using Langmuir, Freundlich, and Dubinin–Radushkevich models. The Cd2+ adsorption capacities (qm) in single-metal solution were 6.448 mg·L-1 and 2.832 mg·L-1 for immobilized and raw L. edodes, respectively. The qm of immobilized L. edodes were 1.850 mg Cd·g-1 in Cd2+ + Pb2+ solution and 3.961 mg Cd·g-1 in Cd2+ + Cu2+ solution, respectively. The Cd2+ adsorption processes subjected to both adsorbents follow pseudo-second-order model. Mechanism study showed the functional group of L. edodes was –OH, –NH, –CO, and PVA played an important role in metal adsorbing. Mining wastewater treatment test showed that PVA–SA-immobilized L. edodes was effective in mixed pollutant treatment even for wastewater containing metal ions in very low concentration.

  • REVIEW ARTICLE
    Chunhua ZHANG, Ying GE, Huan YAO, Xiao CHEN, Minkun HU

    Redox conditions in paddy soils may vary as they are submerged and drained during rice growth. This change may bring about reductive dissolution of iron (Fe) oxides and subsequent formation of secondary Fe-bearing minerals in rice paddies. The mobility and bioavailability of metal contaminants such as cadmium (Cd) in paddy soils are closely related to the chemical behaviors of Fe. Therefore, in this paper, advances in the study of paddy Fe redox transformations and their effects on Cd availability to rice are briefly reviewed. Current concepts presented in this review include the forms of Fe in paddy soils, the reactions involved in Fe oxidation-reduction, chemical factors affecting Fe redox processes, Cd availability to rice and the impacts of Fe transformation on Cd uptake and translocation in rice. Prospects for future research in this area are also discussed.

  • RESEARCH ARTICLE
    Hongyan SHEN, Jixi GAO, Jinsheng WANG

    This study was conducted to evaluate the toxicological response of p-nitrotoluene and p-nitroaniline to the key fish species, Cyprinus carpio. A freshwater fish bioassay based on the 96 h LC50 was used to estimate the single and joint toxicity of the two chemicals. The toxicity of p-nitrotoluene was greater than that of p-nitroaniline based on 96 h LC50 values of 40.74 mg·L-1 and 48.99 mg·L-1, respectively. Both compounds had moderate toxicity toward Cyprinus carpio, and this toxicity increased with the exposure duration and concentration. Binary mixtures of the compounds were more toxic than the individual compounds at 96 h, and they acted upon partial addition. When the exposure time was longer, the toxicity increased for mixtures of compounds with the same concentration or toxicity. The results of this study suggest that exposure to a combination of these chemicals would result in a higher environmental risk in aquatic systems than exposure to either compound alone. Further research is needed to investigate the combined effects and sublethal toxicity of p-nitrotoluene and p-nitroaniline, since they are both still used in China.

  • RESEARCH ARTICLE
    Xinbei WANG, Yong GENG

    The fast growing of urban areas in developing countries has brought serious problems on municipal solid waste (MSW) management. It will be rational to adopt an integrated approach to deal with such a challenge so that the overall eco-efficiency of MSW management could be improved. To better examine how attributes of integrated MSW management are being interpreted and put into practice, and to explore what changes should be made to improve the application of integrated MSW management, we employ a case study method so that lessons learned could be used to inform initiatives in other cities and the potential solution may offer feasible strategies. The case study city is Dalian, a typical seaport city with fast growing rate in economy. The outcomes of this case study show us that fragmented management structure, ineffective and inefficient enforcement of relevant regulations, backward technologies, limited financial resources and lack of public participation are main barriers for the implementation of integrated MSW management. Consequently, in order to overcome these barriers, we propose an integrated management framework on MSW management, aiming to maximize the overall eco-efficiency of MSW management.

  • RESEARCH ARTICLE
    Hongkuan ZANG, Yi XU, Wei LI, Guohe HUANG, Dan LIU

    In this study, an interval fuzzy mixed-integer energy planning model (IFMI-EPM) is developed under considering the carbon tax policy. The developed IFMI-EPM incorporates techniques of interval-parameter programming, fuzzy planning and mixed-integer programming within a general energy planning model. The IFMI-EPM can not only be used for quantitatively analyzing a variety of policy scenarios that are associated with different levels of carbon tax policy, but also tackle uncertainties expressed as discrete intervals and fuzzy sets in energy and environment systems. Considering low, medium and high carbon tax rates, the model is applied to an ideal energy and environment system. The results indicate that reasonable solutions have been generated. They can be used for generating decision alternatives and thus help decision makers identify desired carbon tax policy.

  • RESEARCH ARTICLE
    Aijie WANG, Haoyi CHENG, Nanqi REN, Dan CUI, Na LIN, Weimin WU

    A sediment microbial fuel cell (SMFC) with three dimensional floating biocathode (FBC) was developed for the electricity generation and biodegradation of sediment organic matter in order to avoid negative effect of dissolved oxygen (DO) depletion in aqueous environments on cathode performance and search cost-effective cathode materials. The biocathode was made from graphite granules with microbial attachment to replace platinum (Pt)-coated carbon paper cathode in a laboratory-scale SMFC (3 L in volume) filled with river sediment (organic content 49±4 g·kg-1 dry weight). After start-up of 10 days, the maximum power density of 1.00W·m-3 (based on anode volume) was achieved. The biocathode was better than carbon paper cathode catalyzed by Pt. The attached biofilm on cathode enhanced power generation significantly. The FBC enhanced SMFC performance further in the presence aeration. The SMFC was continuously operated for an over 120-day period. Power generation peaked within 24 days, declined gradually and stabilized at a level of 1/6 peak power output. At the end, the sediment organic matter content near the anode was removed by 29% and the total electricity generated was equal to 0.251 g of chemical oxygen demand (COD) removed.

  • RESEARCH ARTICLE
    Yongpeng Lü, Kai YANG, Yue CHE, Zhaoyi SHANG, Jun TAI, Yun JIAN

    Sustainable waste management in the industrial ecology perspective brings enormous challenges to the existing methodology of waste analysis at the industrial park (IP) scale. In this study, a four-step method was proposed for industrial solid waste (ISW) flow analysis of eco-industrial parks (EIPs) and applied to two IPs in eastern China. According to a park-wide census of 619 industrial enterprises and 105 questionnaires by a survey from 2006 to 2008, the results indicated that: 1) at the enterprise scale, more than 60% of enterprises were small-ISW-generation enterprises which encountered great difficulties on effective waste management; 2) at the IP scale, though the two IPs have set up their own environmental management systems and passed the ISO 14001 certification, the efficiencies of the ISW management systems have yet to be improved in the industrial ecology perspective; and 3) at the regional scale, more than 97% of ISW flowed within the provincial region, indicating that the provincial governments prevented the wastes from flowing into their own “back yard”. Effective waste management should be placed in a broader perspective. Approaches to sustainable waste management may include wastes exchange, efficient waste and information flow, virtual EIP, waste minimization clubs and regionalization of waste management.

  • RESEARCH ARTICLE
    Can WANG, Jinying XI, Hongying HU, Insun KANG

    A conceptual mathematical model was used to evaluate the design parameters of a combined ultraviolet (UV)-biofilter system, and perform a cost analysis. Results showed that the UV light source strength and the gas residence times in the UV system (UVRT) and biofilter (EBRT) had positive effects on the overall chlorobenzene removal efficiency of the system. High ratio of UVRT to EBRT improved the removal efficiency, suggesting that the UV system has a greater effect on the overall performance of the system compared with the biofilter. Analysis of the capital and operating costs showed that the capital costs of the standalone biofilter system were much higher than those of the standalone UV system. However, the biofilter operating costs were lower than those of the UV system. The operating costs of the combined UV-biofilter system increased with increasing UVRT/EBRT ratio, whereas its capital costs decreased.