REVIEW ARTICLE

Frontier science and challenges on offshore carbon storage

  • Haochu Ku 1 ,
  • Yihe Miao 1,2 ,
  • Yaozu Wang 1,2 ,
  • Xi Chen 1,7 ,
  • Xuancan Zhu , 3 ,
  • Hailong Lu 4 ,
  • Jia Li 5,6 ,
  • Lijun Yu , 1
Expand
  • 1. College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
  • 3. Research Center of Solar Power & Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 4. Beijing International Center for Gas Hydrate, School of Earth and Space Sciences, Peking University, Beijing 100871, China
  • 5. The Hong Kong University of Science and Technology (Guangzhou), Nansha 511458, China
  • 6. Jiangmen Laboratory for Carbon and Climate Science and Technology, Jiangmen 529100, China
  • 7. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Received date: 04 Jul 2022

Revised date: 13 Oct 2022

Accepted date: 23 Nov 2022

Copyright

2023 Higher Education Press

Highlights

● The main direct seal up carbon options and challenges are reviewed.

● Ocean-based CO2 replacement for CH4/oil exploitation is presented.

● Scale-advantage of offshore CCS hub is discussed.

Abstract

Carbon capture and storage (CCS) technology is an imperative, strategic, and constitutive method to considerably reduce anthropogenic CO2 emissions and alleviate climate change issues. The ocean is the largest active carbon bank and an essential energy source on the Earth’s surface. Compared to oceanic nature-based carbon dioxide removal (CDR), carbon capture from point sources with ocean storage is more appropriate for solving short-term climate change problems. This review focuses on the recent state-of-the-art developments in offshore carbon storage. It first discusses the current status and development prospects of CCS, associated with the challenges and uncertainties of oceanic nature-based CDR. The second section outlines the mechanisms, sites, advantages, and ecologic hazards of direct offshore CO2 injection. The third section emphasizes the mechanisms, schemes, influencing factors, and recovery efficiency of ocean-based CO2-CH4 replacement and CO2-enhanced oil recovery are reviewed. In addition, this review discusses the economic aspects of offshore CCS and the preponderance of offshore CCS hubs. Finally, the upsides, limitations, and prospects for further investigation of offshore CO2 storage are presented.

Cite this article

Haochu Ku , Yihe Miao , Yaozu Wang , Xi Chen , Xuancan Zhu , Hailong Lu , Jia Li , Lijun Yu . Frontier science and challenges on offshore carbon storage[J]. Frontiers of Environmental Science & Engineering, 2023 , 17(7) : 80 . DOI: 10.1007/s11783-023-1680-6

Acknowledgements

We would like to express our gratitude for the financial support from the Science and Technology Commission of Shanghai Municipality (No. 21DZ1206200) and the Shanghai Agriculture Science and Technology Program (No. 2022-02-08-00-12-F01176). Zhu and Li would also like to thank the financial support from the National Natural Science Foundation of China (Nos. 52006135 and 72140008), respectively.
1
Abdurrahman M, Hidayat F, Husna U Z, Arsad A. (2021). Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield. Materials Today: Proceedings, 39: 970–974

DOI

2
Adams E E, Caldeira K. (2008). Ocean storage of CO2. Elements (Quebec), 4(5): 319–324

DOI

3
Alcalde J, Heinemann N, James A, Bond C E, Ghanbari S, Mackay E J, Haszeldine R S, Faulkner D R, Worden R H, Allen M J. (2021). A criteria-driven approach to the CO2 storage site selection of East Mey for the acorn project in the North Sea. Marine and Petroleum Geology, 133: 105309

DOI

4
Alcalde J, Heinemann N, Mabon L, Worden R H, De Coninck H, Robertson H, Maver M, Ghanbari S, Swennenhuis F, Mann I. . (2019). Acorn: developing full-chain industrial carbon capture and storage in a resource- and infrastructure-rich hydrocarbon province. Journal of Cleaner Production, 233: 963–971

DOI

5
Austvik T, Løken K P. (1992). Deposition of CO2 on the seabed in the form of hydrates. Energy Conversion and Management, 33(5–8): 659–666

DOI

6
Bhatia S K, Bhatia R K, Jeon J M, Kumar G, Yang Y H. (2019). Carbon dioxide capture and bioenergy production using biological system: a review. Renewable & Sustainable Energy Reviews, 110: 143–158

DOI

7
Bigalke N K, Rehder G, Gust G. (2008). Experimental investigation of the rising behavior of CO2 droplets in seawater under hydrate-forming conditions. Environmental Science & Technology, 42(14): 5241–5246

DOI

8
Boswell R, Myshakin E, Moridis G, Konno Y, Collett T S, Reagan M, Ajayi T, Seol Y. (2019). India national gas hydrate program expedition 02 summary of scientific results: numerical simulation of reservoir response to depressurization. Marine and Petroleum Geology, 108: 154–166

DOI

9
DoctorRPalmer AColemanDDavisonJHendriksC KaarstadOOzaki MAustellM (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 186–187

10
Brewer P G, Friederich G, Peltzer E T, Orr F M Jr.. (1999). Direct experiments on the ocean disposal of fossil fuel CO2. Science, 284(5416): 943–945

DOI

11
Brewer P G, Peltzer E T, Friederich G, Rehder G. (2002). Experimental determination of the fate of rising CO2 droplets in seawater. Environmental Science & Technology, 36(24): 5441–5446

12
Buesseler K O, Lamborg C H, Boyd P W, Lam P J, Trull T W, Bidigare R R, Bishop J K B, Casciotti K L, Dehairs F, Elskens M. . (2007). Revisiting carbon flux through the ocean’s twilight zone. Science, 316(5824): 567–570

DOI

13
Camps A P. (2008). Hydrate formation in near surface ocean sediments. Ph.D. Ann Arbor: University of Leicester (United Kingdom), 294

14
Castellani B, Gambelli A M, Nicolini A, Rossi F. (2019). Energy and environmental analysis of membrane-based CH4-CO2 replacement processes in natural gas hydrates. Energies, 12(5): 850

DOI

15
Cavanagh A, Ringrose P. (2014). Improving oil recovery and enabling CCS: a comparison of offshore gas-recycling in Europe to CCUS in North America. Energy Procedia, 63: 7677–7684

DOI

16
Chadwick R A, Williams G A, Falcon-Suarez I. (2019). Forensic mapping of seismic velocity heterogeneity in a CO2 layer at the Sleipner CO2 storage operation, North Sea, using time-lapse seismic. International Journal of Greenhouse Gas Control, 90: 102793

DOI

17
Chen Y, Gao Y, Zhao Y, Chen L, Dong C, Sun B. (2018). Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate. Applied Energy, 228: 309–316

DOI

18
CollettT S (2019). Gas Hydrate Production Knowledge Gained, Offsher Technology Conference, Houston, D031S035R002

19
Connell L, Down D, Lu M, Hay D, Heryanto D. (2015). An investigation into the integrity of wellbore cement in CO2 storage wells: Core flooding experiments and simulations. International Journal of Greenhouse Gas Control, 37: 424–440

DOI

20
Dai Z, Middleton R, Viswanathan H, Fessenden-Rahn J, Bauman J, Pawar R, Lee S Y, Mcpherson B. (2014). An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environmental Science & Technology Letters, 1(1): 49–54

DOI

21
Dai Z, Xu L, Xiao T, Mcpherson B, Zhang X, Zheng L, Dong S, Yang Z, Soltanian M R, Yang C. . (2020). Reactive chemical transport simulations of geologic carbon sequestration: methods and applications. Earth-Science Reviews, 208: 103265

DOI

22
Dai Z, Zhang Y, Bielicki J, Amooie M A, Zhang M, Yang C, Zou Y, Ampomah W, Xiao T, Jia W. . (2018). Heterogeneity-assisted carbon dioxide storage in marine sediments. Applied Energy, 225: 876–883

DOI

23
Deusner C, Bigalke N, Kossel E, Haeckel M. (2012). Methane production from gas hydrate deposits through injection of supercritical CO2. Energies, 5(7): 2112–2140

DOI

24
Ding M, Yue X A, Zhao H, Zhang W. (2013). Extraction and its effects on crude oil properties during CO2 flooding. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(23): 2233–2241

DOI

25
Eide L I, Batum M, Dixon T, Elamin Z, Graue A, Hagen S, Hovorka S, Nazarian B, Nøkleby P H, Olsen G I. . (2019). Enabling large-scale carbon capture, utilization, and storage (CCUS) using offshore carbon dioxide (CO2) infrastructure developments: a review. Energies, 12(10): 1945

DOI

26
Eide Ø, Fernø M A, Karpyn Z, Haugen Å, Graue A. (2013). CO2 injections for enhanced oil recovery visualized with an industrial CT-scanner. In: Proceedings of IOR 2013-17th European Symposium on Improved Oil Recovery, Saint Petersburg. European Association of Geoscientists & Engineers, 480–487

27
Esene C, Zendehboudi S, Aborig A, Shiri H. (2019). A modeling strategy to investigate carbonated water injection for EOR and CO2 sequestration. Fuel, 252: 710–721

DOI

28
Fan S, Wang X, Wang Y, Lang X. (2017). Recovering methane from quartz sand-bearing hydrate with gaseous CO2. Journal of Energy Chemistry, 26(4): 655–659

DOI

29
Fink J. (2021). Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids (3rd ed.). Houston: Gulf Professional Publishing, 643–731

DOI

30
Fraga D M, Skagestad R, Eldrup N H, Korre A, Haugen H A, Nie Z, Durucan S. (2021). Design of a multi-user CO2 intermediate storage facility in the Grenland region of Norway. International Journal of Greenhouse Gas Control, 112: 103514

DOI

31
Gamal Rezk M, Foroozesh J. (2022). Uncertainty effect of CO2 molecular diffusion on oil recovery and gas storage in underground formations. Fuel, 324: 124770

DOI

32
Gambelli A M, Rossi F. (2019). Natural gas hydrates: comparison between two different applications of thermal stimulation for performing CO2 replacement. Energy, 172: 423–434

DOI

33
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe C Y, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger A C, Amal R, He H, Park S E. (2020). Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 49(23): 8584–8686

DOI

34
Harkin T, Filby I, Sick H, Manderson D, Ashton R. (2017). Development of a CO2 specification for a CCS hub network. Energy Procedia, 114: 6708–6720

DOI

35
Hawthorne S B, Gorecki C D, Sorensen J A, Steadman E N, Harju J A, Melzer S(2013). Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO2. In proceedings of the SPE Unconventional Resources Conference Canada, Calgary. Society of Petroleum Engineers, SPE 167200

36
Hirai S, Okazaki K, Tabe Y, Hijikata K, Mori Y. (1997). Dissolution rate of liquid CO2 in pressurized water flows and the effect of clathrate films. Energy, 22(2): 285–293

DOI

37
HoffmanN (2018). The CarbonNet Project’s Pelican Storage Site in the Gippsland Basin. In: Proceedings of 14th International Conference on Greenhouse Gas Control Technologies, Melbourne. Social Science Research Network, GHGT-14, 142–155

38
Hoffman N, Alessio L. (2017). Probabilistic approach to CO2 plume mapping for prospective storage sites: the CarbonNet experience. Energy Procedia, 114: 4444–4476

DOI

39
Hoffman N, Hardman-Mountford N, Jenkins C, Rayner P J, Gibson G, Sandiford M. (2017). GipNet – baseline environmental data gathering and measurement technology validation for nearshore marine carbon storage. Energy Procedia, 114: 3729–3753

DOI

40
Hofmann M, Schellnhuber H J. (2010). Ocean acidification: a millennial challenge. Energy & Environmental Science, 3(12): 1883–1896

41
House Kurt Z Schrag Daniel P, Harvey Charles F, Lackner Klaus S. (2006). Permanent carbon dioxide storage in deep-sea sediments. Proceedings of the National Academy of Sciences, 103(33): 12291–12295

DOI

42
HUME . (2018). Maritime Executive. Ocean storage of CO2. Available online at website of maritime-executive.com (accessed July 29, 2018)

43
Filby I, Harkin T. (2018). CarbonNet–the relative costs for providing a CCS transport and storage service. In: Proceedings of 14th Greenhouse Gas Control Technologies Conference, Melbourne. Social Science Research Network, 181–183

DOI

44
IEA (2016). 20 Years of Carbon Capture and Storage: Accelerating Future Deployment. Paris: International Energy Agency (IEA)

45
IEA (2020a). CCUS in Clean Energy Transitions. Paris: International Energy Agency (IEA)

46
IEA (2020b). Energy Technology Perspectives 2020. Special Report on Carbon Capture Utilization and Storage. Paris: International Energy Agency (IEA)

47
IEA (2021). Net Zero by 2050-A Roadmap for the Global Energy Sector. International Energy Agency (IEA)

48
Jia B, Tsau J S, Barati R. (2019). A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 236: 404–427

DOI

49
Kang H, Koh D Y, Lee H. (2014). Nondestructive natural gas hydrate recovery driven by air and carbon dioxide. Scientific Reports, 4(1): 6616

DOI

50
Kapetaki Z, Scowcroft J. (2017). Overview of carbon capture and storage (CCS) demonstration project business models: risks and enablers on the two sides of the Atlantic. Energy Procedia, 114: 6623–6630

DOI

51
KawahariY, Hatakeyama A (2016). Carbon Sequestration Leadership Forum (CSLF). Offshore CO2-EOR pilot project in Vietnam. Tokyo: JX Nippon Oil & Gas Exploitation Corporation

52
Khojastehmehr M, Madani M, Daryasafar A. (2019). Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm. Energy Reports, 5: 529–544

DOI

53
Koh D Y, Ahn Y H, Kang H, Park S, Lee J Y, Kim S J, Lee J, Lee H. (2015). One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas. AIChE Journal. American Institute of Chemical Engineers, 61(3): 1004–1014

DOI

54
Koh D Y, Kang H, Lee J W, Park Y, Kim S J, Lee J, Lee J Y, Lee H. (2016). Energy-efficient natural gas hydrate production using gas exchange. Applied Energy, 162: 114–130

DOI

55
Lee S, Lee Y, Lee J, Lee H, Seo Y. (2013). Experimental verification of methane–carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter. Environmental Science & Technology, 47(22): 13184–13190

DOI

56
Lee Y, Kim Y, Seo Y. (2015). Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates. Environmental Science & Technology, 49(14): 8899–8906

DOI

57
Li J F, Ye J L, Qin X W, Qiu H J, Wu N Y, Lu H L, Xie W W, Lu J A, Peng F, Xu Z Q. . (2018). The first offshore natural gas hydrate production test in South China Sea. China Geology, 1(1): 5–16

DOI

58
Li X S, Xu C G, Zhang Y, Ruan X K, Li G, Wang Y. (2016). Investigation into gas production from natural gas hydrate: a review. Applied Energy, 172: 286–322

DOI

59
Liang S, Liang D, Wu N, Yi L, Hu G. (2016). Molecular mechanisms of gas diffusion in CO2 hydrates. Journal of Physical Chemistry C, 120(30): 16298–16304

DOI

60
Lu X, Tong D, He K. (2023). China’s carbon neutrality: an extensive and profound systemic reform. Frontiers of Environmental Science & Engineering, 17(2): 14

DOI

61
Lv J, Cheng Z, Duan J, Wang S, Xue K, Liu Y, Mu H. (2021). Enhanced CH4 recovery from hydrate-bearing sand packs via CO2 replacement assisted thermal stimulation method. Journal of Natural Gas Science and Engineering, 96: 104326

DOI

62
Mac Dowell N, Fennell P S, Shah N, Maitland G C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7(4): 243–249

DOI

63
Mahdavi S, James L A. (2020). High pressure and high-temperature study of CO2 saturated-water injection for improving oil displacement; mechanistic and application study. Fuel, 262: 116442

DOI

64
Martínez-García A, Sigman D M, Ren H, Anderson R F, Straub M, Hodell D A, Jaccard S L, Eglinton T I, Haug G H. (2014). Iron fertilization of the subantarctic ocean during the last ice age. Science, 343(6177): 1347–1350

DOI

65
Masuda Y, Yamanaka Y, Sasai Y, Magi M, Ohsumi T. (2009). Site selection in CO2 ocean sequestration: dependence of CO2 injection rate on eddy activity distribution. International Journal of Greenhouse Gas Control, 3(1): 67–76

DOI

66
McKinley G A, Pilcher D J, Fay A R, Lindsay K, Long M C, Lovenduski N S. (2016). Timescales for detection of trends in the ocean carbon sink. Nature, 530(7591): 469–472

DOI

67
Neele F, De Kler R, Nienoord M, Brownsort P, Koornneef J, Belfroid S, Peters L, Van Wijhe A, Loeve D. (2017). CO2 transport by ship: The way forward in Europe. Energy Procedia, 114: 6824–6834

DOI

68
NilssonP A, Apeland S, DaleH M, DecarreS (2011). The costs of CO2 transport: post-demonstration CCS in the EU. Brussels: Global CCS Institute

69
Orchard K, Hay M, Ombudstvedt I, Skagestad R. (2021). The status and challenges of CO2 shipping infrastructures. In: Proceedings of 15th International Conference on Greenhouse Gas Control Technologies. Social Science Research Network, 98–107

DOI

70
Ota M, Saito T, Aida T, Watanabe M, Sato Y, Smith Jr R L, Inomata H. (2007). Macro and microscopic CH4–CO2 replacement in CH4 hydrate under pressurized CO2. AIChE Journal. American Institute of Chemical Engineers, 53(10): 2715–2721

DOI

71
Ouyang Q, Fan S, Wang Y, Lang X, Wang S, Zhang Y, Yu C. (2020). Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates. Energy & Fuels, 34(10): 12476–12485

DOI

72
Pandey J S, Solms N V. (2019). Hydrate stability and methane recovery from gas hydrate through CH4–CO2 replacement in different mass transfer scenarios. Energies, 12(12): 2309

DOI

73
Park Y, Kim D Y, Lee J W, Huh D G, Park K P, Lee J, Lee H. (2006). Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proceedings of the National Academy of Sciences of the United States of America, 103(34): 12690–12694

DOI

74
Patchigolla K, Oakey J E. (2013). Design overview of high pressure dense phase CO2 pipeline transport in flow mode. Energy Procedia, 37: 3123–3130

DOI

75
Qi Y, Ota M, Zhang H. (2011). Molecular dynamics simulation of replacement of CH4 in hydrate with CO2. Energy Conversion and Management, 52(7): 2682–2687

DOI

76
Renforth P, Henderson G. (2017). Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 55(3): 636–674

DOI

77
Roussanaly S, Skaugen G, Aasen A, Jakobsen J, Vesely L. (2017). Techno-economic evaluation of CO2 transport from a lignite-fired IGCC plant in the Czech Republic. International Journal of Greenhouse Gas Control, 65: 235–250

DOI

78
Satter A, Iqbal G M. (2016). Reservoir Engineering. Boston: Gulf Professional Publishing, 313–337

79
Shagapov V S, Khasanov M K, Musakaev N G, Duong N H. (2017). Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide. International Journal of Heat and Mass Transfer, 107: 347–357

DOI

80
Shi M, Woodley J M, Von Solms N. (2020). An experimental study on improved production performance by depressurization combined with CO2-enriched air injection. Energy & Fuels, 34(6): 7329–7339

DOI

81
Siažik J, Malcho M, Lenhard R. (2017). Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates. EPJ Web Conf., 143

82
Skauge A, Stensen J. (2003). Review of WAG field experience. In: Proceedings of the Oil Recovery–2003, 1st International Conference and Exhibition, Modern Challenges in Oil Recovery, Moscow, Russia, 19–23

83
Smith E, Morris J, Kheshgi H, Teletzke G, Herzog H, Paltsev S. (2021). The cost of CO2 transport and storage in global integrated assessment modeling. International Journal of Greenhouse Gas Control, 109: 103367

DOI

84
Sohrabi M, Kechut N I, Riazi M, Jamiolahmady M, Ireland S, Robertson G. (2012). Coreflooding studies to investigate the potential of carbonated water injection as an injection strategy for improved oil recovery and CO2 storage. Transport in Porous Media, 91(1): 101–121

DOI

85
Sohrabi M, Tehrani D H, Danesh A, Henderson G D. (2004). Visualization of oil recovery by water-alternating-gas injection using high-pressure micromodels. SPE Journal, 9(3): 290–301

DOI

86
Song Y, Wang S, Cheng Z, Huang M, Zhang Y, Zheng J, Jiang L, Liu Y. (2021). Dependence of the hydrate-based CO2 storage process on the hydrate reservoir environment in high-efficiency storage methods. Chemical Engineering Journal, 415: 128937

DOI

87
Song Y C, Zhou H, Ma S H, Liu W G, Yang M J. (2018). CO2 sequestration in depleted methane hydrate deposits with excess water. International Journal of Energy Research, 42(7): 2536–2547

DOI

88
Sun L, Wang T, Dong B, Li M, Yang L, Dong H, Zhang L, Zhao J, Song Y. (2021a). Pressure oscillation controlled CH4/CO2 replacement in methane hydrates: CH4 recovery, CO2 storage, and their characteristics. Chemical Engineering Journal, 425: 129709

DOI

89
Sun S, Hao Y, Zhao J. (2018a). Analysis of gas source for the replacement of CH4 with CO2 in gas hydrate production from the perspective of dissociation enthalpy. Journal of Chemical & Engineering Data, 63(3): 684–690

DOI

90
Sun X, Alcalde J, Bakhtbidar M, Elío J, Vilarrasa V, Canal J, Ballesteros J, Heinemann N, Haszeldine S, Cavanagh A. . (2021b). Hubs and clusters approach to unlock the development of carbon capture and storage: case study in Spain. Applied Energy, 300: 117418

DOI

91
Sun Y F, Wang Y F, Zhong J R, Li W Z, Li R, Cao B J, Kan J Y, Sun C Y, Chen G J. (2019). Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode. Applied Energy, 240: 215–225

DOI

92
Sun Y F, Zhong J R, Li R, Zhu T, Cao X Y, Chen G J, Wang X H, Yang L Y, Sun C Y. (2018b). Natural gas hydrate exploitation by CO2/H2 continuous injection-production mode. Applied Energy, 226: 10–21

DOI

93
Thorne R J, Sundseth K, Bouman E, Czarnowska L, Mathisen A, Skagestad R, Stanek W, Pacyna J M, Pacyna E G. (2020). Technical and environmental viability of a European CO2 EOR system. International Journal of Greenhouse Gas Control, 92: 102857

DOI

94
Tsouris C, Szymcek P, Taboada-Serrano P, Mccallum S D, Brewer P, Peltzer E, Walz P, Adams E, Chow A, Johnson W K. . (2007). Scaled-up ocean injection of CO2-Hydrate composite particles. Energy & Fuels, 21(6): 3300–3309

DOI

95
Tupsakhare S S, Castaldi M J. (2019). Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion. Applied Energy, 236: 825–836

DOI

96
TuranG, Zapantis A, KearnsD, TammeE, StaibC, ZhangT, Burrows J, GillespieA, HavercroftI, Rassool D, et al. (2021). The global status of CCS: 2021. Global CCS Institute

97
UchiyamaT, Fujita Y, UedaY, NishizakiA, OkabeH, TakagiS, Mitsuishi H, KawaharaY, HuyL, TrungP N, TrungN H, et al. (2012). Evaluation of a Vietnam offshore CO2 huff “n” puff test. In: Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, USA, SEP-154128-MS

98
Voronov V P, Gorodetskii E E, Podnek V E, Grigoriev B A. (2016). Properties of equilibrium carbon dioxide hydrate in porous medium. Chemical Physics, 476: 61–68

DOI

99
Wang P, Teng Y, Zhao Y, Zhu J. (2021). Experimental studies on gas hydrate-based CO2 storage: state-of-the-art and future research directions. Energy Technology, 9(7): 210004

100
Wang X H, Sun Y F, Wang Y F, Li N, Sun C Y, Chen G J, Liu B, Yang L Y. (2017). Gas production from hydrates by CH4-CO2/H2 replacement. Applied Energy, 188: 305–314

DOI

101
Warzinski R P, Lynn R J, Holder G D. (2000). Gas Hydrates: Challenges for the Future. 1st ed. New York: New York Academy of Sciences, 226–234

102
Wei W N, Li B, Gan Q, Li Y L. (2022). Research progress of natural gas hydrate exploitation with CO2 replacement: a review. Fuel, 312: 122873

DOI

103
Weihs G A F, Kumar K, Wiley D E. (2014). Understanding the economic feasibility of ship transport of CO2 within the CCS chain. Energy Procedia, 63: 2630–2637

DOI

104
White M, McGrail P. (2009). Designing a pilot-scale experiment for the production of natural gas hydrates and sequestration of CO2 in class 1 hydrate accumulations. Energy Procedia, 1(1): 3099–3106

DOI

105
Williams B. (2022). Greenhouse Gases. Ocean sequestration. 2022. Available online at website of climate-policy-watcher.org (accessed November 14, 2022)

106
Xie Y, Zhu Y J, Zheng T, Yuan Q, Sun C Y, Yang L Y, Chen G J. (2021). Replacement in CH4-CO2 hydrate below freezing point based on abnormal self-preservation differences of CH4 hydrate. Chemical Engineering Journal, 403: 126283

DOI

107
Xu C G, Cai J, Yu Y S, Chen Z Y, Li X S. (2018a). Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates. Fuel, 216: 255–265

DOI

108
Xu C G, Cai J, Yu Y S, Yan K F, Li X S. (2018b). Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement. Applied Energy, 217: 527–536

DOI

109
Xu Y, Ishizaka J, Aoki S. (1999). Simulations of the distribution of sequestered CO2 in the North Pacific using a regional general circulation model. Energy Conversion and Management, 40(7): 683–691

DOI

110
Yamamoto K, Terao Y, Fujii T, Ikawa T, Seki M, Matsuzawa M, Kanno T. (2014). Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough. In: Proceedings of the Offshore Technology Conference, Houston. Offshore Technology Conference, OTC–25243-MS

DOI

111
Yamamoto K, Wang X X, Tamaki M, Suzuki K. (2019). The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir. RSC Advances, 9(45): 25987–26013

DOI

112
Yan Y, Li C, Dong Z, Fang T, Sun B, Zhang J. (2017). Enhanced oil recovery mechanism of CO2 water-alternating-gas injection in silica nanochannel. Fuel, 190: 253–259

DOI

113
Yang H, Huang X, Hu J, Thompson J R, Flower R J. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111

DOI

114
Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. (2008). Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 20(1): 14–27

DOI

115
Ye J L, Qin X W, Xie W W, Lu H L, Ma B J, Qiu H J, Liang J Q, Lu J A, Kuang Z G, Lu C. . (2020). The second natural gas hydrate production test in the South China Sea. China Geology, 3(2): 197–209

DOI

116
Yuan Q, Sun C Y, Yang X, Ma P C, Ma Z W, Liu B, Ma Q L, Yang L Y, Chen G J. (2012). Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy, 40(1): 47–58

DOI

117
Yuan Q, Wang X H, Dandekar A, Sun C Y, Li Q P, Ma Z W, Liu B, Chen G J. (2014). Replacement of methane from hydrates in porous sediments with CO2-in-water emulsions. Industrial & Engineering Chemistry Research, 53(31): 12476–12484

DOI

118
Zeng Y, Li K. (2020). Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines. Corrosion Science, 165: 108404

DOI

119
Zhang X, Li Y, Yao Z, Li J, Wu Q, Wang Y. (2018). Experimental study on the effect of pressure on the replacement process of CO2–CH4 hydrate below the freezing point. Energy & Fuels, 32(1): 646–650

DOI

120
Zhao J, Zhang L, Chen X, Fu Z, Liu Y, Song Y. (2015). Experimental study of conditions for methane hydrate productivity by the CO2 swap method. Energy & Fuels, 29(11): 6887–6895

DOI

121
Zhou D, Li P, Liang X, Liu M, Wang L. (2018). A long-term strategic plan of offshore CO2 transport and storage in northern South China Sea for a low-carbon development in Guangdong province, China. International Journal of Greenhouse Gas Control, 70: 76–87

DOI

122
Zhou D, Zhao Z, Liao J, Sun Z. (2011). A preliminary assessment on CO2 storage capacity in the Pearl River Mouth Basin offshore Guangdong, China. International Journal of Greenhouse Gas Control, 5(2): 308–317

DOI

123
Zhou X, Fan S, Liang D, Du J. (2008). Determination of appropriate condition on replacing methane from hydrate with carbon dioxide. Energy Conversion and Management, 49(8): 2124–2129

DOI

124
Zhu H, Xu T, Yuan Y, Xia Y, Xin X. (2020). Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration. Applied Energy, 275: 115384

DOI

Outlines

/