Frontier science and challenges on offshore carbon storage
Haochu Ku, Yihe Miao, Yaozu Wang, Xi Chen, Xuancan Zhu, Hailong Lu, Jia Li, Lijun Yu
Frontier science and challenges on offshore carbon storage
● The main direct seal up carbon options and challenges are reviewed.
● Ocean-based CO2 replacement for CH4/oil exploitation is presented.
● Scale-advantage of offshore CCS hub is discussed.
Carbon capture and storage (CCS) technology is an imperative, strategic, and constitutive method to considerably reduce anthropogenic CO2 emissions and alleviate climate change issues. The ocean is the largest active carbon bank and an essential energy source on the Earth’s surface. Compared to oceanic nature-based carbon dioxide removal (CDR), carbon capture from point sources with ocean storage is more appropriate for solving short-term climate change problems. This review focuses on the recent state-of-the-art developments in offshore carbon storage. It first discusses the current status and development prospects of CCS, associated with the challenges and uncertainties of oceanic nature-based CDR. The second section outlines the mechanisms, sites, advantages, and ecologic hazards of direct offshore CO2 injection. The third section emphasizes the mechanisms, schemes, influencing factors, and recovery efficiency of ocean-based CO2-CH4 replacement and CO2-enhanced oil recovery are reviewed. In addition, this review discusses the economic aspects of offshore CCS and the preponderance of offshore CCS hubs. Finally, the upsides, limitations, and prospects for further investigation of offshore CO2 storage are presented.
Offshore carbon storage / Direct CO2 injection / CO2-CH4 replacement / CO2-EOR / CCS hubs / CO2 transport
[1] |
Abdurrahman M, Hidayat F, Husna U Z, Arsad A. (2021). Determination of optimum CO2 water alternating gas (CO2-WAG) ratio in Sumatera Light Oilfield. Materials Today: Proceedings, 39: 970–974
CrossRef
Google scholar
|
[2] |
Adams E E, Caldeira K. (2008). Ocean storage of CO2. Elements (Quebec), 4(5): 319–324
CrossRef
Google scholar
|
[3] |
Alcalde J, Heinemann N, James A, Bond C E, Ghanbari S, Mackay E J, Haszeldine R S, Faulkner D R, Worden R H, Allen M J. (2021). A criteria-driven approach to the CO2 storage site selection of East Mey for the acorn project in the North Sea. Marine and Petroleum Geology, 133: 105309
CrossRef
Google scholar
|
[4] |
Alcalde J, Heinemann N, Mabon L, Worden R H, De Coninck H, Robertson H, Maver M, Ghanbari S, Swennenhuis F, Mann I.
CrossRef
Google scholar
|
[5] |
Austvik T, Løken K P. (1992). Deposition of CO2 on the seabed in the form of hydrates. Energy Conversion and Management, 33(5–8): 659–666
CrossRef
Google scholar
|
[6] |
Bhatia S K, Bhatia R K, Jeon J M, Kumar G, Yang Y H. (2019). Carbon dioxide capture and bioenergy production using biological system: a review. Renewable & Sustainable Energy Reviews, 110: 143–158
CrossRef
Google scholar
|
[7] |
Bigalke N K, Rehder G, Gust G. (2008). Experimental investigation of the rising behavior of CO2 droplets in seawater under hydrate-forming conditions. Environmental Science & Technology, 42(14): 5241–5246
CrossRef
Google scholar
|
[8] |
Boswell R, Myshakin E, Moridis G, Konno Y, Collett T S, Reagan M, Ajayi T, Seol Y. (2019). India national gas hydrate program expedition 02 summary of scientific results: numerical simulation of reservoir response to depressurization. Marine and Petroleum Geology, 108: 154–166
CrossRef
Google scholar
|
[9] |
DoctorRPalmer AColemanDDavisonJHendriksC KaarstadOOzaki MAustellM (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge: Cambridge University Press, 186–187
|
[10] |
Brewer P G, Friederich G, Peltzer E T, Orr F M Jr.. (1999). Direct experiments on the ocean disposal of fossil fuel CO2. Science, 284(5416): 943–945
CrossRef
Google scholar
|
[11] |
Brewer P G, Peltzer E T, Friederich G, Rehder G. (2002). Experimental determination of the fate of rising CO2 droplets in seawater. Environmental Science & Technology, 36(24): 5441–5446
|
[12] |
Buesseler K O, Lamborg C H, Boyd P W, Lam P J, Trull T W, Bidigare R R, Bishop J K B, Casciotti K L, Dehairs F, Elskens M.
CrossRef
Google scholar
|
[13] |
Camps A P. (2008). Hydrate formation in near surface ocean sediments. Ph.D. Ann Arbor: University of Leicester (United Kingdom),
|
[14] |
Castellani B, Gambelli A M, Nicolini A, Rossi F. (2019). Energy and environmental analysis of membrane-based CH4-CO2 replacement processes in natural gas hydrates. Energies, 12(5): 850
CrossRef
Google scholar
|
[15] |
Cavanagh A, Ringrose P. (2014). Improving oil recovery and enabling CCS: a comparison of offshore gas-recycling in Europe to CCUS in North America. Energy Procedia, 63: 7677–7684
CrossRef
Google scholar
|
[16] |
Chadwick R A, Williams G A, Falcon-Suarez I. (2019). Forensic mapping of seismic velocity heterogeneity in a CO2 layer at the Sleipner CO2 storage operation, North Sea, using time-lapse seismic. International Journal of Greenhouse Gas Control, 90: 102793
CrossRef
Google scholar
|
[17] |
Chen Y, Gao Y, Zhao Y, Chen L, Dong C, Sun B. (2018). Experimental investigation of different factors influencing the replacement efficiency of CO2 for methane hydrate. Applied Energy, 228: 309–316
CrossRef
Google scholar
|
[18] |
CollettT S (2019). Gas Hydrate Production Knowledge Gained, Offsher Technology Conference, Houston, D031S035R002
|
[19] |
Connell L, Down D, Lu M, Hay D, Heryanto D. (2015). An investigation into the integrity of wellbore cement in CO2 storage wells: Core flooding experiments and simulations. International Journal of Greenhouse Gas Control, 37: 424–440
CrossRef
Google scholar
|
[20] |
Dai Z, Middleton R, Viswanathan H, Fessenden-Rahn J, Bauman J, Pawar R, Lee S Y, Mcpherson B. (2014). An integrated framework for optimizing CO2 sequestration and enhanced oil recovery. Environmental Science & Technology Letters, 1(1): 49–54
CrossRef
Google scholar
|
[21] |
Dai Z, Xu L, Xiao T, Mcpherson B, Zhang X, Zheng L, Dong S, Yang Z, Soltanian M R, Yang C.
CrossRef
Google scholar
|
[22] |
Dai Z, Zhang Y, Bielicki J, Amooie M A, Zhang M, Yang C, Zou Y, Ampomah W, Xiao T, Jia W.
CrossRef
Google scholar
|
[23] |
Deusner C, Bigalke N, Kossel E, Haeckel M. (2012). Methane production from gas hydrate deposits through injection of supercritical CO2. Energies, 5(7): 2112–2140
CrossRef
Google scholar
|
[24] |
Ding M, Yue X A, Zhao H, Zhang W. (2013). Extraction and its effects on crude oil properties during CO2 flooding. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 35(23): 2233–2241
CrossRef
Google scholar
|
[25] |
Eide L I, Batum M, Dixon T, Elamin Z, Graue A, Hagen S, Hovorka S, Nazarian B, Nøkleby P H, Olsen G I.
CrossRef
Google scholar
|
[26] |
Eide Ø, Fernø M A, Karpyn Z, Haugen Å, Graue A. (2013). CO2 injections for enhanced oil recovery visualized with an industrial CT-scanner. In: Proceedings of IOR 2013-17th European Symposium on Improved Oil Recovery, Saint Petersburg. European Association of Geoscientists & Engineers,
|
[27] |
Esene C, Zendehboudi S, Aborig A, Shiri H. (2019). A modeling strategy to investigate carbonated water injection for EOR and CO2 sequestration. Fuel, 252: 710–721
CrossRef
Google scholar
|
[28] |
Fan S, Wang X, Wang Y, Lang X. (2017). Recovering methane from quartz sand-bearing hydrate with gaseous CO2. Journal of Energy Chemistry, 26(4): 655–659
CrossRef
Google scholar
|
[29] |
Fink J. (2021). Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids (3rd ed.). Houston: Gulf Professional Publishing,
CrossRef
Google scholar
|
[30] |
Fraga D M, Skagestad R, Eldrup N H, Korre A, Haugen H A, Nie Z, Durucan S. (2021). Design of a multi-user CO2 intermediate storage facility in the Grenland region of Norway. International Journal of Greenhouse Gas Control, 112: 103514
CrossRef
Google scholar
|
[31] |
Gamal Rezk M, Foroozesh J. (2022). Uncertainty effect of CO2 molecular diffusion on oil recovery and gas storage in underground formations. Fuel, 324: 124770
CrossRef
Google scholar
|
[32] |
Gambelli A M, Rossi F. (2019). Natural gas hydrates: comparison between two different applications of thermal stimulation for performing CO2 replacement. Energy, 172: 423–434
CrossRef
Google scholar
|
[33] |
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe C Y, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger A C, Amal R, He H, Park S E. (2020). Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 49(23): 8584–8686
CrossRef
Google scholar
|
[34] |
Harkin T, Filby I, Sick H, Manderson D, Ashton R. (2017). Development of a CO2 specification for a CCS hub network. Energy Procedia, 114: 6708–6720
CrossRef
Google scholar
|
[35] |
Hawthorne S B, Gorecki C D, Sorensen J A, Steadman E N, Harju J A, Melzer S(2013). Hydrocarbon mobilization mechanisms from upper, middle, and lower Bakken reservoir rocks exposed to CO2. In proceedings of the SPE Unconventional Resources Conference Canada, Calgary. Society of Petroleum Engineers, SPE 167200
|
[36] |
Hirai S, Okazaki K, Tabe Y, Hijikata K, Mori Y. (1997). Dissolution rate of liquid CO2 in pressurized water flows and the effect of clathrate films. Energy, 22(2): 285–293
CrossRef
Google scholar
|
[37] |
HoffmanN (2018). The CarbonNet Project’s Pelican Storage Site in the Gippsland Basin. In: Proceedings of 14th International Conference on Greenhouse Gas Control Technologies, Melbourne. Social Science Research Network, GHGT-14, 142–155
|
[38] |
Hoffman N, Alessio L. (2017). Probabilistic approach to CO2 plume mapping for prospective storage sites: the CarbonNet experience. Energy Procedia, 114: 4444–4476
CrossRef
Google scholar
|
[39] |
Hoffman N, Hardman-Mountford N, Jenkins C, Rayner P J, Gibson G, Sandiford M. (2017). GipNet – baseline environmental data gathering and measurement technology validation for nearshore marine carbon storage. Energy Procedia, 114: 3729–3753
CrossRef
Google scholar
|
[40] |
Hofmann M, Schellnhuber H J. (2010). Ocean acidification: a millennial challenge. Energy & Environmental Science, 3(12): 1883–1896
|
[41] |
House Kurt Z Schrag Daniel P, Harvey Charles F, Lackner Klaus S. (2006). Permanent carbon dioxide storage in deep-sea sediments. Proceedings of the National Academy of Sciences, 103(33): 12291–12295
CrossRef
Google scholar
|
[42] |
HUME . (2018). Maritime Executive. Ocean storage of CO2. Available online at website of maritime-executive.com (accessed July 29,
|
[43] |
Filby I, Harkin T. (2018). CarbonNet–the relative costs for providing a CCS transport and storage service. In: Proceedings of 14th Greenhouse Gas Control Technologies Conference, Melbourne. Social Science Research Network,
CrossRef
Google scholar
|
[44] |
IEA
|
[45] |
IEA
|
[46] |
IEA
|
[47] |
IEA
|
[48] |
Jia B, Tsau J S, Barati R. (2019). A review of the current progress of CO2 injection EOR and carbon storage in shale oil reservoirs. Fuel, 236: 404–427
CrossRef
Google scholar
|
[49] |
Kang H, Koh D Y, Lee H. (2014). Nondestructive natural gas hydrate recovery driven by air and carbon dioxide. Scientific Reports, 4(1): 6616
CrossRef
Google scholar
|
[50] |
Kapetaki Z, Scowcroft J. (2017). Overview of carbon capture and storage (CCS) demonstration project business models: risks and enablers on the two sides of the Atlantic. Energy Procedia, 114: 6623–6630
CrossRef
Google scholar
|
[51] |
KawahariY, Hatakeyama A (2016). Carbon Sequestration Leadership Forum (CSLF). Offshore CO2-EOR pilot project in Vietnam. Tokyo: JX Nippon Oil & Gas Exploitation Corporation
|
[52] |
Khojastehmehr M, Madani M, Daryasafar A. (2019). Screening of enhanced oil recovery techniques for Iranian oil reservoirs using TOPSIS algorithm. Energy Reports, 5: 529–544
CrossRef
Google scholar
|
[53] |
Koh D Y, Ahn Y H, Kang H, Park S, Lee J Y, Kim S J, Lee J, Lee H. (2015). One-dimensional productivity assessment for on-field methane hydrate production using CO2/N2 mixture gas. AIChE Journal. American Institute of Chemical Engineers, 61(3): 1004–1014
CrossRef
Google scholar
|
[54] |
Koh D Y, Kang H, Lee J W, Park Y, Kim S J, Lee J, Lee J Y, Lee H. (2016). Energy-efficient natural gas hydrate production using gas exchange. Applied Energy, 162: 114–130
CrossRef
Google scholar
|
[55] |
Lee S, Lee Y, Lee J, Lee H, Seo Y. (2013). Experimental verification of methane–carbon dioxide replacement in natural gas hydrates using a differential scanning calorimeter. Environmental Science & Technology, 47(22): 13184–13190
CrossRef
Google scholar
|
[56] |
Lee Y, Kim Y, Seo Y. (2015). Enhanced CH4 recovery induced via structural transformation in the CH4/CO2 replacement that occurs in sH hydrates. Environmental Science & Technology, 49(14): 8899–8906
CrossRef
Google scholar
|
[57] |
Li J F, Ye J L, Qin X W, Qiu H J, Wu N Y, Lu H L, Xie W W, Lu J A, Peng F, Xu Z Q.
CrossRef
Google scholar
|
[58] |
Li X S, Xu C G, Zhang Y, Ruan X K, Li G, Wang Y. (2016). Investigation into gas production from natural gas hydrate: a review. Applied Energy, 172: 286–322
CrossRef
Google scholar
|
[59] |
Liang S, Liang D, Wu N, Yi L, Hu G. (2016). Molecular mechanisms of gas diffusion in CO2 hydrates. Journal of Physical Chemistry C, 120(30): 16298–16304
CrossRef
Google scholar
|
[60] |
Lu X, Tong D, He K. (2023). China’s carbon neutrality: an extensive and profound systemic reform. Frontiers of Environmental Science & Engineering, 17(2): 14
CrossRef
Google scholar
|
[61] |
Lv J, Cheng Z, Duan J, Wang S, Xue K, Liu Y, Mu H. (2021). Enhanced CH4 recovery from hydrate-bearing sand packs via CO2 replacement assisted thermal stimulation method. Journal of Natural Gas Science and Engineering, 96: 104326
CrossRef
Google scholar
|
[62] |
Mac Dowell N, Fennell P S, Shah N, Maitland G C. (2017). The role of CO2 capture and utilization in mitigating climate change. Nature Climate Change, 7(4): 243–249
CrossRef
Google scholar
|
[63] |
Mahdavi S, James L A. (2020). High pressure and high-temperature study of CO2 saturated-water injection for improving oil displacement; mechanistic and application study. Fuel, 262: 116442
CrossRef
Google scholar
|
[64] |
Martínez-García A, Sigman D M, Ren H, Anderson R F, Straub M, Hodell D A, Jaccard S L, Eglinton T I, Haug G H. (2014). Iron fertilization of the subantarctic ocean during the last ice age. Science, 343(6177): 1347–1350
CrossRef
Google scholar
|
[65] |
Masuda Y, Yamanaka Y, Sasai Y, Magi M, Ohsumi T. (2009). Site selection in CO2 ocean sequestration: dependence of CO2 injection rate on eddy activity distribution. International Journal of Greenhouse Gas Control, 3(1): 67–76
CrossRef
Google scholar
|
[66] |
McKinley G A, Pilcher D J, Fay A R, Lindsay K, Long M C, Lovenduski N S. (2016). Timescales for detection of trends in the ocean carbon sink. Nature, 530(7591): 469–472
CrossRef
Google scholar
|
[67] |
Neele F, De Kler R, Nienoord M, Brownsort P, Koornneef J, Belfroid S, Peters L, Van Wijhe A, Loeve D. (2017). CO2 transport by ship: The way forward in Europe. Energy Procedia, 114: 6824–6834
CrossRef
Google scholar
|
[68] |
NilssonP A, Apeland S, DaleH M, DecarreS (2011). The costs of CO2 transport: post-demonstration CCS in the EU. Brussels: Global CCS Institute
|
[69] |
Orchard K, Hay M, Ombudstvedt I, Skagestad R. (2021). The status and challenges of CO2 shipping infrastructures. In: Proceedings of 15th International Conference on Greenhouse Gas Control Technologies. Social Science Research Network,
CrossRef
Google scholar
|
[70] |
Ota M, Saito T, Aida T, Watanabe M, Sato Y, Smith Jr R L, Inomata H. (2007). Macro and microscopic CH4–CO2 replacement in CH4 hydrate under pressurized CO2. AIChE Journal. American Institute of Chemical Engineers, 53(10): 2715–2721
CrossRef
Google scholar
|
[71] |
Ouyang Q, Fan S, Wang Y, Lang X, Wang S, Zhang Y, Yu C. (2020). Enhanced methane production efficiency with in situ intermittent heating assisted CO2 replacement of hydrates. Energy & Fuels, 34(10): 12476–12485
CrossRef
Google scholar
|
[72] |
Pandey J S, Solms N V. (2019). Hydrate stability and methane recovery from gas hydrate through CH4–CO2 replacement in different mass transfer scenarios. Energies, 12(12): 2309
CrossRef
Google scholar
|
[73] |
Park Y, Kim D Y, Lee J W, Huh D G, Park K P, Lee J, Lee H. (2006). Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. Proceedings of the National Academy of Sciences of the United States of America, 103(34): 12690–12694
CrossRef
Google scholar
|
[74] |
Patchigolla K, Oakey J E. (2013). Design overview of high pressure dense phase CO2 pipeline transport in flow mode. Energy Procedia, 37: 3123–3130
CrossRef
Google scholar
|
[75] |
Qi Y, Ota M, Zhang H. (2011). Molecular dynamics simulation of replacement of CH4 in hydrate with CO2. Energy Conversion and Management, 52(7): 2682–2687
CrossRef
Google scholar
|
[76] |
Renforth P, Henderson G. (2017). Assessing ocean alkalinity for carbon sequestration. Reviews of Geophysics, 55(3): 636–674
CrossRef
Google scholar
|
[77] |
Roussanaly S, Skaugen G, Aasen A, Jakobsen J, Vesely L. (2017). Techno-economic evaluation of CO2 transport from a lignite-fired IGCC plant in the Czech Republic. International Journal of Greenhouse Gas Control, 65: 235–250
CrossRef
Google scholar
|
[78] |
Satter A, Iqbal G M. (2016). Reservoir Engineering. Boston: Gulf Professional Publishing,
|
[79] |
Shagapov V S, Khasanov M K, Musakaev N G, Duong N H. (2017). Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide. International Journal of Heat and Mass Transfer, 107: 347–357
CrossRef
Google scholar
|
[80] |
Shi M, Woodley J M, Von Solms N. (2020). An experimental study on improved production performance by depressurization combined with CO2-enriched air injection. Energy & Fuels, 34(6): 7329–7339
CrossRef
Google scholar
|
[81] |
Siažik J, Malcho M, Lenhard R. (2017). Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates. EPJ Web Conf.,
|
[82] |
Skauge A, Stensen J. (2003). Review of WAG field experience. In: Proceedings of the Oil Recovery–2003, 1st International Conference and Exhibition, Modern Challenges in Oil Recovery, Moscow, Russia,
|
[83] |
Smith E, Morris J, Kheshgi H, Teletzke G, Herzog H, Paltsev S. (2021). The cost of CO2 transport and storage in global integrated assessment modeling. International Journal of Greenhouse Gas Control, 109: 103367
CrossRef
Google scholar
|
[84] |
Sohrabi M, Kechut N I, Riazi M, Jamiolahmady M, Ireland S, Robertson G. (2012). Coreflooding studies to investigate the potential of carbonated water injection as an injection strategy for improved oil recovery and CO2 storage. Transport in Porous Media, 91(1): 101–121
CrossRef
Google scholar
|
[85] |
Sohrabi M, Tehrani D H, Danesh A, Henderson G D. (2004). Visualization of oil recovery by water-alternating-gas injection using high-pressure micromodels. SPE Journal, 9(3): 290–301
CrossRef
Google scholar
|
[86] |
Song Y, Wang S, Cheng Z, Huang M, Zhang Y, Zheng J, Jiang L, Liu Y. (2021). Dependence of the hydrate-based CO2 storage process on the hydrate reservoir environment in high-efficiency storage methods. Chemical Engineering Journal, 415: 128937
CrossRef
Google scholar
|
[87] |
Song Y C, Zhou H, Ma S H, Liu W G, Yang M J. (2018). CO2 sequestration in depleted methane hydrate deposits with excess water. International Journal of Energy Research, 42(7): 2536–2547
CrossRef
Google scholar
|
[88] |
Sun L, Wang T, Dong B, Li M, Yang L, Dong H, Zhang L, Zhao J, Song Y. (2021a). Pressure oscillation controlled CH4/CO2 replacement in methane hydrates: CH4 recovery, CO2 storage, and their characteristics. Chemical Engineering Journal, 425: 129709
CrossRef
Google scholar
|
[89] |
Sun S, Hao Y, Zhao J. (2018a). Analysis of gas source for the replacement of CH4 with CO2 in gas hydrate production from the perspective of dissociation enthalpy. Journal of Chemical & Engineering Data, 63(3): 684–690
CrossRef
Google scholar
|
[90] |
Sun X, Alcalde J, Bakhtbidar M, Elío J, Vilarrasa V, Canal J, Ballesteros J, Heinemann N, Haszeldine S, Cavanagh A.
CrossRef
Google scholar
|
[91] |
Sun Y F, Wang Y F, Zhong J R, Li W Z, Li R, Cao B J, Kan J Y, Sun C Y, Chen G J. (2019). Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode. Applied Energy, 240: 215–225
CrossRef
Google scholar
|
[92] |
Sun Y F, Zhong J R, Li R, Zhu T, Cao X Y, Chen G J, Wang X H, Yang L Y, Sun C Y. (2018b). Natural gas hydrate exploitation by CO2/H2 continuous injection-production mode. Applied Energy, 226: 10–21
CrossRef
Google scholar
|
[93] |
Thorne R J, Sundseth K, Bouman E, Czarnowska L, Mathisen A, Skagestad R, Stanek W, Pacyna J M, Pacyna E G. (2020). Technical and environmental viability of a European CO2 EOR system. International Journal of Greenhouse Gas Control, 92: 102857
CrossRef
Google scholar
|
[94] |
Tsouris C, Szymcek P, Taboada-Serrano P, Mccallum S D, Brewer P, Peltzer E, Walz P, Adams E, Chow A, Johnson W K.
CrossRef
Google scholar
|
[95] |
Tupsakhare S S, Castaldi M J. (2019). Efficiency enhancements in methane recovery from natural gas hydrates using injection of CO2/N2 gas mixture simulating in-situ combustion. Applied Energy, 236: 825–836
CrossRef
Google scholar
|
[96] |
TuranG, Zapantis A, KearnsD, TammeE, StaibC, ZhangT, Burrows J, GillespieA, HavercroftI, Rassool D, et al. (2021). The global status of CCS: 2021. Global CCS Institute
|
[97] |
UchiyamaT, Fujita Y, UedaY, NishizakiA, OkabeH, TakagiS, Mitsuishi H, KawaharaY, HuyL, TrungP N, TrungN H, et al. (2012). Evaluation of a Vietnam offshore CO2 huff “n” puff test. In: Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, USA, SEP-154128-MS
|
[98] |
Voronov V P, Gorodetskii E E, Podnek V E, Grigoriev B A. (2016). Properties of equilibrium carbon dioxide hydrate in porous medium. Chemical Physics, 476: 61–68
CrossRef
Google scholar
|
[99] |
Wang P, Teng Y, Zhao Y, Zhu J. (2021). Experimental studies on gas hydrate-based CO2 storage: state-of-the-art and future research directions. Energy Technology, 9(7): 210004
|
[100] |
Wang X H, Sun Y F, Wang Y F, Li N, Sun C Y, Chen G J, Liu B, Yang L Y. (2017). Gas production from hydrates by CH4-CO2/H2 replacement. Applied Energy, 188: 305–314
CrossRef
Google scholar
|
[101] |
Warzinski R P, Lynn R J, Holder G D. (2000). Gas Hydrates: Challenges for the Future. 1st ed. New York: New York Academy of Sciences,
|
[102] |
Wei W N, Li B, Gan Q, Li Y L. (2022). Research progress of natural gas hydrate exploitation with CO2 replacement: a review. Fuel, 312: 122873
CrossRef
Google scholar
|
[103] |
Weihs G A F, Kumar K, Wiley D E. (2014). Understanding the economic feasibility of ship transport of CO2 within the CCS chain. Energy Procedia, 63: 2630–2637
CrossRef
Google scholar
|
[104] |
White M, McGrail P. (2009). Designing a pilot-scale experiment for the production of natural gas hydrates and sequestration of CO2 in class 1 hydrate accumulations. Energy Procedia, 1(1): 3099–3106
CrossRef
Google scholar
|
[105] |
Williams B. (2022). Greenhouse Gases. Ocean sequestration. 2022. Available online at website of climate-policy-watcher.org (accessed November 14,
|
[106] |
Xie Y, Zhu Y J, Zheng T, Yuan Q, Sun C Y, Yang L Y, Chen G J. (2021). Replacement in CH4-CO2 hydrate below freezing point based on abnormal self-preservation differences of CH4 hydrate. Chemical Engineering Journal, 403: 126283
CrossRef
Google scholar
|
[107] |
Xu C G, Cai J, Yu Y S, Chen Z Y, Li X S. (2018a). Research on micro-mechanism and efficiency of CH4 exploitation via CH4-CO2 replacement from natural gas hydrates. Fuel, 216: 255–265
CrossRef
Google scholar
|
[108] |
Xu C G, Cai J, Yu Y S, Yan K F, Li X S. (2018b). Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement. Applied Energy, 217: 527–536
CrossRef
Google scholar
|
[109] |
Xu Y, Ishizaka J, Aoki S. (1999). Simulations of the distribution of sequestered CO2 in the North Pacific using a regional general circulation model. Energy Conversion and Management, 40(7): 683–691
CrossRef
Google scholar
|
[110] |
Yamamoto K, Terao Y, Fujii T, Ikawa T, Seki M, Matsuzawa M, Kanno T. (2014). Operational overview of the first offshore production test of methane hydrates in the Eastern Nankai Trough. In: Proceedings of the Offshore Technology Conference, Houston. Offshore Technology Conference,
CrossRef
Google scholar
|
[111] |
Yamamoto K, Wang X X, Tamaki M, Suzuki K. (2019). The second offshore production of methane hydrate in the Nankai Trough and gas production behavior from a heterogeneous methane hydrate reservoir. RSC Advances, 9(45): 25987–26013
CrossRef
Google scholar
|
[112] |
Yan Y, Li C, Dong Z, Fang T, Sun B, Zhang J. (2017). Enhanced oil recovery mechanism of CO2 water-alternating-gas injection in silica nanochannel. Fuel, 190: 253–259
CrossRef
Google scholar
|
[113] |
Yang H, Huang X, Hu J, Thompson J R, Flower R J. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
CrossRef
Google scholar
|
[114] |
Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E, Wright I. (2008). Progress in carbon dioxide separation and capture: a review. Journal of Environmental Sciences (China), 20(1): 14–27
CrossRef
Google scholar
|
[115] |
Ye J L, Qin X W, Xie W W, Lu H L, Ma B J, Qiu H J, Liang J Q, Lu J A, Kuang Z G, Lu C.
CrossRef
Google scholar
|
[116] |
Yuan Q, Sun C Y, Yang X, Ma P C, Ma Z W, Liu B, Ma Q L, Yang L Y, Chen G J. (2012). Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy, 40(1): 47–58
CrossRef
Google scholar
|
[117] |
Yuan Q, Wang X H, Dandekar A, Sun C Y, Li Q P, Ma Z W, Liu B, Chen G J. (2014). Replacement of methane from hydrates in porous sediments with CO2-in-water emulsions. Industrial & Engineering Chemistry Research, 53(31): 12476–12484
CrossRef
Google scholar
|
[118] |
Zeng Y, Li K. (2020). Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines. Corrosion Science, 165: 108404
CrossRef
Google scholar
|
[119] |
Zhang X, Li Y, Yao Z, Li J, Wu Q, Wang Y. (2018). Experimental study on the effect of pressure on the replacement process of CO2–CH4 hydrate below the freezing point. Energy & Fuels, 32(1): 646–650
CrossRef
Google scholar
|
[120] |
Zhao J, Zhang L, Chen X, Fu Z, Liu Y, Song Y. (2015). Experimental study of conditions for methane hydrate productivity by the CO2 swap method. Energy & Fuels, 29(11): 6887–6895
CrossRef
Google scholar
|
[121] |
Zhou D, Li P, Liang X, Liu M, Wang L. (2018). A long-term strategic plan of offshore CO2 transport and storage in northern South China Sea for a low-carbon development in Guangdong province, China. International Journal of Greenhouse Gas Control, 70: 76–87
CrossRef
Google scholar
|
[122] |
Zhou D, Zhao Z, Liao J, Sun Z. (2011). A preliminary assessment on CO2 storage capacity in the Pearl River Mouth Basin offshore Guangdong, China. International Journal of Greenhouse Gas Control, 5(2): 308–317
CrossRef
Google scholar
|
[123] |
Zhou X, Fan S, Liang D, Du J. (2008). Determination of appropriate condition on replacing methane from hydrate with carbon dioxide. Energy Conversion and Management, 49(8): 2124–2129
CrossRef
Google scholar
|
[124] |
Zhu H, Xu T, Yuan Y, Xia Y, Xin X. (2020). Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration. Applied Energy, 275: 115384
CrossRef
Google scholar
|
/
〈 | 〉 |