RESEARCH ARTICLE

Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones (Cannabis sativa L.)

  • Canhui Deng ,
  • Qing Tang ,
  • Zemao Yang ,
  • Zhigang Dai ,
  • Chaohua Cheng ,
  • Ying Xu ,
  • Xiaojun Chen ,
  • Xiaoyu Zhang ,
  • Jianguang Su
Expand
  • Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410082, China

Received date: 04 Nov 2021

Revised date: 18 Jan 2022

Accepted date: 09 Feb 2022

Published date: 15 Oct 2022

Copyright

2022 Higher Education Press

Highlights

● Fe3O4 NPs increased the biomass and chlorophyll content of hemp clones.

● Fe3O4 NPs penetrated and were internalized by root cells.

● Fe3O4 NPs induced the alteration of metabolite profiles in hemp leaves.

● The psychoactive compound THC in hemp leaves was significantly down-regulated.

Abstract

We investigated the effect of iron oxide nanoparticles (Fe3O4 NPs, ~17 nm in size) on the phenotype and metabolite changes in hemp (Cannabis sativa L.), an annual crop distributed worldwide. Hemp clones were grown in hydroponic cultures with Fe3O4 NPs (50, 100, 200, or 500 mg/L) for four weeks. TEM and ICP-MS were used to determine Fe3O4 NPs uptake and translocation. LC-MS-based metabolomics was employed to explore the deep insight into the effect of Fe3O4 NPs on hemp plants. The results revealed that plant growth enhanced gradually with increasing concentrations of given NPs up to 200 mg/L, which improved the fresh weight and dry weight by 36.13% and 74.68%, respectively, compared to the control. Even at a high dose (500 mg/L), Fe3O4 NPs promoted plant growth, including increased biomass and tissue length. NPs significantly increased the iron and chlorophyll content in plant tissues Increased catalase activity and reduced hydrogen peroxide content in hemp leaves suggested that the Fe3O4 NPs activated the defense system. TEM showed that NPs were abundantly attached to the cell wall and dispersed throughout the root cells. Metabolomics revealed that Fe3O4 NPs induced metabolic reprogramming in hemp leaves, including the up-regulation of carbohydrates and organic acids, and down-regulation of antioxidants, especially tetrahydrocannabinol (THC). The significantly up-regulated metabolites, including peonidin and 2-hydroxycinnamic acid, could be involved in photosynthesis in hemp plants. These results demonstrate the potential of Fe3O4 NPs for promoting hemp growth and decreasing the THC content at low doses.

Cite this article

Canhui Deng , Qing Tang , Zemao Yang , Zhigang Dai , Chaohua Cheng , Ying Xu , Xiaojun Chen , Xiaoyu Zhang , Jianguang Su . Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones (Cannabis sativa L.)[J]. Frontiers of Environmental Science & Engineering, 2022 , 16(10) : 134 . DOI: 10.1007/s11783-022-1569-9

Acknowledgements

This research was supported by the Natural Science Foundation of Hunan Province of China (No. 2020JJ5643), and the National Natural Science Foundation of China (No. 31770341).
1
Agrawal B , Lakshmanan V , Kaushik S , Bais H P . (2012). Natural variation among Arabidopsis accessions reveals malic acid as a key mediator of Nickel (Ni) tolerance. Planta, 236( 2): 477– 489

DOI

2
Al-Amri N , Tombuloglu H , Slimani Y , Akhtar S , Barghouthi M , Almessiere M , Alshammari T , Baykal A , Sabit H , Ercan I , Ozcelik S . (2020). Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicology and Environmental Safety, 194 : 110377

DOI

3
Atak Q, Celik O, Olgun A, Alikamanoglu S, Rzakoulieva A ( 2007). Effect of magnetic field on peroxidase activities of soybean tissue culture.Biotechnology, Biotechnological Equipment, 21( 2): 166− 171

4
Bar-Sela G , Vorobeichik M , Drawsheh S , Omer A , Goldberg V , Muller E . (2013). The medical necessity for medicinal cannabis: prospective, observational study evaluating the treatment in cancer patients on supportive or palliative care. Evidence-based complementary and alternative medicine: eCAM, 2013 : 1– 8

DOI

5
Barhoumi L , Oukarroum A , TaherL B , SmiriL S , Abdelmelek H , Dewez D . (2015). Effects of superparamagnetic iron oxide nanoparticles on photosynthesis and growth of the aquatic plant Lemna gibba. Archives of Environmental Contamination and Toxicology, 68( 3): 510– 520

DOI

6
Borges R S, Batista J Jr, Viana R B, Baetas A C, Orestes E, Andrade M A, Honório K M, da Silva A B F ( 2013). Understanding the molecular aspects of tetrahydrocannabinol and cannabidiol as antioxidants. Molecules (Basel, Switzerland), 18( 10): 12663− 12674

PMID

7
Cai L , Cai L , Jia H , Liu C , Wang D , Sun X . (2020). Foliar exposure of Fe3O4 nanoparticles on Nicotiana benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. Journal of Hazardous Materials, 393 : 122415

DOI

8
Carvalho I S , Cavaco T , Carvalho L M , Duque P . (2010). Effect of photoperiod on flavonoid pathway activity in sweet potato (Ipomoea batatas (L.) Lam.). leaves. Food Chemistry, 118( 2): 384– 390

DOI

9
Chichiriccò G, Poma A ( 2015). Penetration and toxicity of nanomaterials in higher plants. Nanomaterials (Basel, Switzerland), 5( 2): 851− 873

PMID

10
Deng J H , Zhang X R , Zeng G M , Gong J L , Niu Q Y , Liang J . (2013). Simultaneous removal of Cd(II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal, 226 : 189– 200

DOI

11
Feyissa B A , Arshad M , Gruber M Y , Kohalmi S E , Hannoufa A . (2019). The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa. BMC Plant Biology, 19( 1): 434– 453

DOI

12
Ghafariyan M H , Malakouti M J , Dadpour M R , Stroeve P , Mahmoudi M . (2013). Effects of magnetite nanoparticles on soybean chlorophy Ⅱ. Environmental Science & Technology, 47( 18): 10645– 10652

DOI

13
Hu J , Wu X Y , Wu F , Chen W X , Zhang X Y , White J C , Li J L , Wan Y , Liu J F , Wang X L . (2020). TiO2 nanoparticle exposure on lettuce (Lactuca sativa L.):. Dose-dependent deterioration of nutritional quality. Environmental Science-Nano, 7( 2): 501– 513

DOI

14
Júnior A L G , Islam M T , Nicolau L A D , de Souza L K M , Araújo T D S , Lopes de Oliveira G A , de Melo Nogueira K , da Silva Lopes L , Medeiros J R , Mubarak M S , Melo-Cavalcante A A C . (2020). Anti-Inflammatory, antinociceptive, and antioxidant properties of anacardic acid in experimental models. ACS Omega, 5( 31): 19506– 19515

DOI

15
Kim J H , Lee Y , Kim E J , Gu S , Sohn E J , Seo Y S , An H J , ChangY S . (2014). Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening. Environmental Science & Technology, 48( 6): 3477– 3485

DOI

16
Labille J , Catalano R , Slomberg D , Motellier S , Pinsino A , Hennebert P , Santaella C , Bartolomei V . (2020). Assessing sunscreen lifecycle to minimize environmental risk posed by nanoparticulate uv-filters: A review for safer-by design products. Frontiers in Environmental Science, 8 : 1– 25

DOI

17
Li J , Hu J , Ma C , Wang Y , Wu C , Huang J , Xing B . (2016a). Uptake, translocation and physiological effects of magnetic iron oxide (gamma-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere, 159 : 326– 334

DOI

18
Li J , Hu J , Xiao L , Wang Y , Wang X . (2018). Interaction mechanisms between α-Fe2O3, γ-Fe2O3 and Fe3O4 nanoparticles and Citrus maxima seedlings. Science of the Total Environment, 625 : 677– 685

DOI

19
Li P Y , Wang A D , Du W C , Mao L , Wei Z B , Wang S F , Yuan H Y , Ji R , Zhao L J . (2020). Insight into the interaction between Fe-based nanomaterials and maize (Zea mays) plants at metabolic level. Science of the Total Environment, 738 : 139795– 139804

DOI

20
Liu Y H , Offler C E , Ruan Y L . (2014). A simple, rapid, and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing. Frontiers in Plant Science, 5 : 1– 6

DOI

21
Li Y , Niu J , Shang E , Crittenden J C . (2016b). Influence of dissolved organic matter on photogenerated reactive oxygen species and metal-oxide nanoparticle toxicity. Water Research, 98 : 9– 18

DOI

22
Lo Piccolo E , Landi M , Massai R , Remorini D , Guidi L . (2020). Girled-induced anthocyanin accumulation in red-leafed Prunus cerasifera: Effect on photosynthesis, photoprotection and sugar metabolism. Plant Science:An International Journal of Experimental Plant Biology, 294 : 110456

DOI

23
Lu A , Li Y , Ding H , Xu X , Li Y , Ren G , Liang J , Liu Y , Hong H , Chen N , Chu S , Liu F , Li Y , Wang H , Ding C , Wang C , Lai Y , Liu J , Dick J , Liu K , Hochella M F Jr . (2019). Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. Proceedings of the National Academy of Sciences of the United States of America, 116( 20): 9741– 9746

DOI

24
Morales M I , Rico C M , Hernandez-Viezcas J A , Nunez J E , Barrios A C , Tafoya A , Flores-Marges J P , Peralta-Videa J R , Gardea-Torresdey J L . (2013). Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L). plants grown in organic soil. Journal of Agricultural and Food Chemistry, 61( 26): 6224– 6230

DOI

25
Pariona N , Martínez A I , Hernandez-Flores H , Clark-Tapia R . (2017). Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Science of the Total Environment, 575 : 869– 875

DOI

26
Parisi C, Vigani M, Rodriguez-Cerezo E ( 2015). Agricultural nanotechnologies: What are the current possibilities? Nano Today, 10( 2): 124− 127

27
Rico C M , Majumdar S , Duarte-Gardea M , Peralta-Videa J R , Gardea-Torresdey J L . (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59( 8): 3485– 3498

DOI

28
Schluttenhofer C , Yuan L . (2017). Challenges towards revitalizing hemp: A multifaceted crop. Trends in Plant Science, 22( 11): 917– 929

DOI

29
Senge M O , Ryan A A , Letchford K A , MacGowan S A , Mielke T . (2014). Chlorophylls, symmetry, chirality, and photosynthesis. Symmetry, 6( 3): 781– 843

DOI

30
Tombuloglu H , Anıl I , Akhtar S , Turumtay H , Sabit H , Slimani Y , Almessiere M , Baykal A . (2020). Iron oxide nanoparticles translocate in pumpkin and alter the phloem sap metabolites related to oil metabolism. Scientia Horticulturae, 265 : 109223

DOI

31
Tombuloglu H , Slimani Y , Tombuloglu G , Almessiere M , Baykal A . (2019a). Uptake and translocation of magnetite (Fe3O4) nanoparticles and its impact on photosynthetic genes in barley (Hordeum vulgare L). Chemosphere, 226 : 110– 122

DOI

32
Tombuloglu H, Slimani Y, Tombuloglu G, Almessiere M, Baykal A, Ercan I, Sozeri H( 2019b). Tracking of NiFe2O4 nanoparticles in barley ( Hordeum vulgare L.) and their impact on plant growth, biomass, pigmentation, catalase activity, and mineral uptake . Environmental Nanotechnology, Monitoring & Management, 11: 100223

33
Wang H , Kou X , Pei Z , Xiao J Q , Shan X , Xing B . (2011). Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L. ) and pumpkin (Cucurbita mixta) plants. Nanotoxicology, 5( 1): 30– 42

DOI

34
Xu J , Sun J , Du L , Liu X . (2012). Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytologist, 196( 1): 110– 124

DOI

35
Xu Y , Qin Y , Palchoudhury S , Bao Y . (2011). Water-soluble iron oxide nanoparticles with high stability and selective surface functionality. Langmuir, 27( 14): 8990– 8997

DOI

Outlines

/