SHORT COMMUNICATION

A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater

  • Shiting Ren ,
  • Mengchen Li ,
  • Jianyu Sun ,
  • Yanhong Bian ,
  • Kuichang Zuo ,
  • Xiaoyuan Zhang ,
  • Peng Liang ,
  • Xia Huang
Expand
  • State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China

Received date: 14 Nov 2016

Revised date: 31 Mar 2017

Accepted date: 15 Jun 2017

Published date: 25 Aug 2017

Copyright

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg

Highlights

An electrochemical reactor with connected anode and cathode was designed.

Phosphate and ammonia were concentrated 4~5 times continuously and selectively.

Concentration differences between chambers were utilized to control the separation.

Long-term operation with struvite formation was proved to be repeatable.

Abstract

To separate and concentrate NH4+ and PO43 from the synthetic wastewater to the concentrated solution through a novel electrochemical reactor with circulated anode and cathode using the difference of the concentration between electrode chamber and middle chamber.

In recent years, the research on electrochemical processes have been focused on phosphate and ammonium removal and recovery. Among the wide range of possibilities with regards to electrochemical processes, capacitive deionization (CDI) saves the most energy while at the same time does not have continuity and selectivity. In this study, a new electrochemical reactor with electrolyte cyclic flowing in the electrode chambers was constructed to separate and concentrate phosphate and ammonium continuously and selectively from wastewater, based on the principle of CDI. At the concentration ratio of NaCl solution between the electrode chambers and the middle chamber (r) of 25 to 1, phosphate and ammonium in concentration level of domestic wastewater can be removed and recovered continuously and selectively as struvite. Long-term operation also indicated the ability to continuously repeat the reaction and verified sustained stability. Further, the selective recovery at the certain r could also be available to similar technologies for recovering other kinds of substances.

Cite this article

Shiting Ren , Mengchen Li , Jianyu Sun , Yanhong Bian , Kuichang Zuo , Xiaoyuan Zhang , Peng Liang , Xia Huang . A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater[J]. Frontiers of Environmental Science & Engineering, 2017 , 11(4) : 17 . DOI: 10.1007/s11783-017-0983-x

Acknowledgements

This research was supported by the Key Program of the National Natural Science Foundation of China (Grant Nos. 51238004 & 21521064).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11783-017-0983-x and is accessible for authorized users.
1
Stamberg J B, Bishop D F. Removal of nitrogen and phosphorus from waste waters: US, US 3617540 A. 1971

2
Elser J J, Marzolf E R, Goldman C R. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences, 1990, 47(7): 1468–1477

DOI

3
Hao X, Wang C, van Loosdrecht M C, Hu Y. Looking beyond struvite for P-recovery. Environmental Science & Technology, 2013, 47(10): 4965–4966

DOI PMID

4
Cisse L, Mrabet T. World phosphate production: Overview and prospects. Phosphorus Research Bulletin, 2004, 15: 21–25

DOI

5
Vuuren D P V, Bouwman A F, Beusen A H W. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change, 2010, 20(3): 428–439

DOI

6
Cordell D, Rosemarin A, Schröder J J, Smit A L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere, 2011, 84(6): 747–758

DOI PMID

7
Morse G K, Brett S W, Guy J A, Lester J. Review: Phosphorus removal and recovery technologies. Science of the Total Environment, 1998, 212(1): 69–81

DOI PMID

8
Lind B B, Ban Z, Bydén S. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology, 2000, 73(2): 169–174

DOI

9
Corre K S L, Valsamijones E, Hobbs P. Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews in Environmental Science and Technology, 2009, 39(6): 433–477

DOI

10
Batstone D J. Technologies to recover nutrients from waste streams: A critical review. Critical Reviews in Environmental Science and Technology, 2015, 45(4): 385–427

DOI

11
Batstone D J, Hülsen T, Mehta C M, Keller J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere, 2015, 140: 2–11

DOI PMID

12
Regy S, Mangin D, Klein J P, Lieto J. Phosphate recovery by struvite precipitation in a stirred reactor. Rep., Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Centre Européen d’Etudes des Polyphosphates, Brussels, Belgium, 2001

13
Battistoni P, Boccadoro R, Fatone F, Pavan P. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environmental Technology, 2005, 26(9): 975–982

DOI PMID

14
Stratful I, Scrimshaw M D, Lester J N. Removal of struvite to prevent problems associated with its accumulation in wastewater treatment works. Water Environment Research: A Research Publication of the Water Environment Federation, 2004, 76(5):437–443

15
Ueno Y, Fujii M. Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology, 2001, 22(11): 1373–1381

DOI PMID

16
Huang H, Zhang P, Zhang Z, Liu J, Xiao J, Gao F. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. Journal of Cleaner Production, 2016, 127: 302–310

DOI

17
Zhang Y, Desmidt E, Van Looveren A, Pinoy L, Meesschaert B, Van der Bruggen B. Phosphate separation and recovery from wastewater by novel electrodialysis. Environmental Science and Technology, 2013, 47(11): 5888–5895

DOI PMID

18
Rittmann B E, Mayer B, Westerhoff P, Edwards M. Capturing the lost phosphorus. Chemosphere, 2011, 84(6): 846–853

DOI PMID

19
Wimalasiri Y, Mossad M, Zou L. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination, 2015, 357: 178–188

DOI

20
Huang Y H, Chen T C, Hsu S F, Huang Y H, Chuang S H. Capacitive deionization (CDI) for removal of phosphate from aqueous solution. Desalination and Water Treatment, 2014, 52(4–6): 759–765

DOI

21
Porada S, Zhao R, Wal A V D. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 2013, 58(8): 1388–1442

DOI

22
Luo H, Xu P, Ren Z. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater. Bioresource Technology, 2012, 120(120): 187–193

DOI PMID

23
Długołęcki P, van der Wal A. Energy recovery in membrane capacitive deionization. Environmental Science and Technology, 2013, 47(9): 4904–4910

DOI PMID

24
Nativ P, Badash Y, Gendel Y. New insights into the mechanism of flow-electrode capacitive deionization. Electrochemistry Communications, 2017, 76: 24–28

DOI

25
Alatraktchi A Z, Zhang Y, Angelidaki I. Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community. Applied Energy, 2014, 116(3): 216–222

DOI

Outlines

/