A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater

Shiting Ren , Mengchen Li , Jianyu Sun , Yanhong Bian , Kuichang Zuo , Xiaoyuan Zhang , Peng Liang , Xia Huang

Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 17

PDF (306KB)
Front. Environ. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 17 DOI: 10.1007/s11783-017-0983-x
SHORT COMMUNICATION
SHORT COMMUNICATION

A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater

Author information +
History +
PDF (306KB)

Abstract

An electrochemical reactor with connected anode and cathode was designed.

Phosphate and ammonia were concentrated 4~5 times continuously and selectively.

Concentration differences between chambers were utilized to control the separation.

Long-term operation with struvite formation was proved to be repeatable.

To separate and concentrate NH4+ and PO43 from the synthetic wastewater to the concentrated solution through a novel electrochemical reactor with circulated anode and cathode using the difference of the concentration between electrode chamber and middle chamber.

In recent years, the research on electrochemical processes have been focused on phosphate and ammonium removal and recovery. Among the wide range of possibilities with regards to electrochemical processes, capacitive deionization (CDI) saves the most energy while at the same time does not have continuity and selectivity. In this study, a new electrochemical reactor with electrolyte cyclic flowing in the electrode chambers was constructed to separate and concentrate phosphate and ammonium continuously and selectively from wastewater, based on the principle of CDI. At the concentration ratio of NaCl solution between the electrode chambers and the middle chamber (r) of 25 to 1, phosphate and ammonium in concentration level of domestic wastewater can be removed and recovered continuously and selectively as struvite. Long-term operation also indicated the ability to continuously repeat the reaction and verified sustained stability. Further, the selective recovery at the certain r could also be available to similar technologies for recovering other kinds of substances.

Graphical abstract

Keywords

Nutrients recovery / Electrochemical reactor / Electrolyte cyclic flowing / Concentration ratio / Struvite

Cite this article

Download citation ▾
Shiting Ren, Mengchen Li, Jianyu Sun, Yanhong Bian, Kuichang Zuo, Xiaoyuan Zhang, Peng Liang, Xia Huang. A Novel Electrochemical Reactor for Nitrogen and Phosphorus Recovery from Domestic Wastewater. Front. Environ. Sci. Eng., 2017, 11(4): 17 DOI:10.1007/s11783-017-0983-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Stamberg J BBishop D F. Removal of nitrogen and phosphorus from waste waters: US, US 3617540 A. 1971

[2]

Elser J JMarzolf E RGoldman C R. Phosphorus and nitrogen limitation of phytoplankton growth in the freshwaters of North America: A review and critique of experimental enrichments. Canadian Journal of Fisheries and Aquatic Sciences199047(7): 1468–1477

[3]

Hao XWang Cvan Loosdrecht M CHu Y. Looking beyond struvite for P-recovery. Environmental Science & Technology201347(10): 4965–4966

[4]

Cisse LMrabet T. World phosphate production: Overview and prospects. Phosphorus Research Bulletin200415: 21–25

[5]

Vuuren D P VBouwman A FBeusen A H W. Phosphorus demand for the 1970–2100 period: A scenario analysis of resource depletion. Global Environmental Change201020(3): 428–439

[6]

Cordell DRosemarin ASchröder J JSmit A L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere201184(6): 747–758

[7]

Morse G KBrett S WGuy J ALester J. Review: Phosphorus removal and recovery technologies. Science of the Total Environment1998212(1): 69–81

[8]

Lind B BBan ZBydén S. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite. Bioresource Technology200073(2): 169–174

[9]

Corre K S LValsamijones EHobbs P. Phosphorus recovery from wastewater by struvite crystallization: a review. Critical Reviews in Environmental Science and Technology200939(6): 433–477

[10]

Batstone D J. Technologies to recover nutrients from waste streams: A critical review. Critical Reviews in Environmental Science and Technology201545(4): 385–427

[11]

Batstone D JHülsen TMehta C MKeller J. Platforms for energy and nutrient recovery from domestic wastewater: A review. Chemosphere2015140: 2–11

[12]

Regy SMangin DKlein J PLieto J. Phosphate recovery by struvite precipitation in a stirred reactor. Rep., Laboratoire d’Automatique et de Génie des Procédés (LAGEP), Centre Européen d’Etudes des Polyphosphates, Brussels, Belgium2001

[13]

Battistoni PBoccadoro RFatone FPavan P. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR). Environmental Technology200526(9): 975–982

[14]

Stratful IScrimshaw M DLester J N. Removal of struvite to prevent problems associated with its accumulation in wastewater treatment works. Water Environment Research: A Research Publication of the Water Environment Federation200476(5):437–443

[15]

Ueno YFujii M. Three years experience of operating and selling recovered struvite from full-scale plant. Environmental Technology200122(11): 1373–1381

[16]

Huang HZhang PZhang ZLiu JXiao JGao F. Simultaneous removal of ammonia nitrogen and recovery of phosphate from swine wastewater by struvite electrochemical precipitation and recycling technology. Journal of Cleaner Production2016127: 302–310

[17]

Zhang YDesmidt EVan Looveren APinoy LMeesschaert BVan der Bruggen B. Phosphate separation and recovery from wastewater by novel electrodialysis. Environmental Science and Technology201347(11): 5888–5895

[18]

Rittmann B EMayer BWesterhoff PEdwards M. Capturing the lost phosphorus. Chemosphere201184(6): 846–853

[19]

Wimalasiri YMossad MZou L. Thermodynamics and kinetics of adsorption of ammonium ions by graphene laminate electrodes in capacitive deionization. Desalination2015357: 178–188

[20]

Huang Y HChen T CHsu S FHuang Y HChuang S H. Capacitive deionization (CDI) for removal of phosphate from aqueous solution. Desalination and Water Treatment201452(4–6): 759–765

[21]

Porada SZhao RWal A V D. Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science201358(8): 1388–1442

[22]

Luo HXu PRen Z. Long-term performance and characterization of microbial desalination cells in treating domestic wastewater. Bioresource Technology2012120(120): 187–193

[23]

Długołęcki Pvan der Wal A. Energy recovery in membrane capacitive deionization. Environmental Science and Technology201347(9): 4904–4910

[24]

Nativ PBadash YGendel Y. New insights into the mechanism of flow-electrode capacitive deionization. Electrochemistry Communications201776: 24–28

[25]

Alatraktchi A ZZhang YAngelidaki I. Nanomodification of the electrodes in microbial fuel cell: Impact of nanoparticle density on electricity production and microbial community. Applied Energy2014116(3): 216–222

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (306KB)

Supplementary files

FSE-17079-OF-RST_suppl_1

2665

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/