Directional deep oxidation of toluene via phenolized pathway—A review concerning dominant factors involved in photocatalysis

Mingxia Lu , Jinmin Wu , Yan Luo , Yisheng Cao , Lixia Yang , Shuqu Zhang

Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (2) : 26

PDF (5270KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (2) : 26 DOI: 10.1007/s11783-025-1946-2
REVIEW ARTICLE

Directional deep oxidation of toluene via phenolized pathway—A review concerning dominant factors involved in photocatalysis

Author information +
History +
PDF (5270KB)

Abstract

Photocatalytic oxidation through semiconductor photocatalysis is an efficient and green technology for pollutant removal, which has been widely applied to degrade volatile organic chemicals under ambient conditions. However, most of reports focus on the reduction of VOCs concentration while ignore the generation of toxic intermediates, as well as the corresponding secondary pollution. Therefore, it is necessary to further explore how to timely achieve efficient and deep oxidation of VOCs. In this review, we undertake a detailed analysis of photocatalytic degradation of toluene, a representative compound of aromatic hydrocarbon VOCs, and identify the most capable phenolized pathway governed by hydroxyl radicals (•OH). With this pathway, no toxic intermediate like benzene is produced during the photocatalysis. The driving factor, oxygen vacancy (OV), for fueling the generation of •OH is highlighted and the specific approaches including doping engineering and co-catalyst loading that can create rich OVs in semiconductor photocatalysts are described. Furthermore, the challenges and opportunities faced by the phenolized pathway in the future development are prospected.

Graphical abstract

Keywords

Toluene degradation / Oxygen vacancy / Photocatalysis / Phenolized pathway

Highlight

● Phenolized pathway of toluene degradation was summarized for the first time.

● The role of oxygen vacancies realizing phenolized pathway was elucidated.

● Strategies for creating oxygen vacancies were summarized.

Cite this article

Download citation ▾
Mingxia Lu, Jinmin Wu, Yan Luo, Yisheng Cao, Lixia Yang, Shuqu Zhang. Directional deep oxidation of toluene via phenolized pathway—A review concerning dominant factors involved in photocatalysis. Front. Environ. Sci. Eng., 2025, 19(2): 26 DOI:10.1007/s11783-025-1946-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ai L H, Zhang C Y, Chen Z L. (2011). Removal of methylene blue from aqueous solution by a solvothermal-synthesized graphene/magnetite composite. Journal of Hazardous Materials, 192(3): 1515–1524

[2]

Almaie S, Vatanpour V, Rasoulifard M H, Koyuncu I. (2022). Volatile organic compounds (VOCs) removal by photocatalysts: a review. Chemosphere, 306: 135655

[3]

Anggarini U, Yu L, Nagasawa H, Kanezashi M, Tsuru T. (2021). Microporous nickel-coordinated aminosilica membranes for improved pervaporation performance of methanol/toluene separation. ACS Applied Materials & Interfaces, 13(19): 23247–23259

[4]

Aziz A, Kim K S. (2017). Synergistic effect of UV pretreated Fe-ZSM-5 catalysts for heterogeneous catalytic complete oxidation of VOC: a technology development for sustainable use. Journal of Hazardous Materials, 340: 351–359

[5]

Ban F, Ye C, Yang S, Li M. (2023). Degradation of phenol by UV light-assisted electrocatalytic treatment. Journal of the Iranian Chemical Society, 20(8): 2031–2041

[6]

Belaissaoui B, Le Moullec Y, Favre E. (2016). Energy efficiency of a hybrid membrane/condensation process for VOC (Volatile Organic Compounds) recovery from air: a generic approach. Energy, 95: 291–302

[7]

Biswas A, Chakraborty A, Jana N R. (2018). Nitrogen and fluorine codoped, colloidal TiO2 nanoparticle: tunable doping, large red-shifted band edge, visible light induced photocatalysis, and cell death. ACS Applied Materials & Interfaces, 10(2): 1976–1986

[8]

Boogaard P J. (2022). Human biomonitoring of low-level benzene exposures. Critical Reviews in Toxicology, 52(10): 799–810

[9]

Cha J B, Saqlain S, Seo H O, Kim Y D. (2019). Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification. Applied Surface Science, 479: 31–38

[10]

Chang F, Yan W, Lei B, Zhang X, Chen H, Hu X, Liu X. (2020). In-situ constructing Bi2S3 nanocrystals-modified Bi12O17Cl2 nanosheets with features of rich oxygen vacancies and reinforced photocatalytic performance. Separation and Purification Technology, 235: 116171

[11]

Chen A, Chen G, Wang Y, Lu Y, Chen J, Gong J. (2021). Fabrication of novel Ag4Bi2O5–x towards excellent photocatalytic oxidation of gaseous toluene under visible light irradiation. Environmental Research, 197: 111130

[12]

Deng Y C, Zhou Z P, Zeng H, Tang R D, Li L, Wang J J, Feng C Y, Gong D X, Tang L, Huang Y. (2023). Phosphorus and kalium co-doped g-C3N4 with multiple-locus synergies to degrade atrazine: insights into the depth analysis of the generation and role of singlet oxygen. Applied Catalysis B: Environmental, 320(320): 121942

[13]

Dong X A, Cui W, Wang H, Li J, Sun Y, Wang H, Zhang Y, Huang H, Dong F. (2019). Promoting ring-opening efficiency for suppressing toxic intermediates during photocatalytic toluene degradation via surface oxygen vacancies. Science Bulletin, 64(10): 669–678

[14]

Duan B Q, Zhou Y K, Huang C, Huang Q, Chen Y W, Xu H T, Shen S B. (2018). Impact of Zr-doped TiO2 photocatalyst on formaldehyde degradation by Na addition. Industrial & Engineering Chemistry Research, 57(42): 14044–14051

[15]

Fang M, Tan X, Liu Z, Hu B, Wang X. (2021). Recent progress on metal-enhanced photocatalysis: a review on the mechanism. Research, 2021: 9794329

[16]

Feng H, Xu Z F, Ren L, Liu C, Zhuang J C, Hu Z P, Xu X, Chen J, Wang J O, Hao W C. . (2018). Activating titania for efficient electrocatalysis by vacancy engineering. ACS Catalysis, 8(5): 4288–4293

[17]

Gao H, Lv X, Zhang M, Li Q, Chen J, Hu Z, Jia H. (2022). Copper-cobalt strong interaction to improve photothermocatalytic performance of cobalt-copper oxides supported on copper foam for toluene oxidation. Chemical Engineering Journal, 434: 134618

[18]

Geng Q, Xie H, Cui W, Sheng J, Tong X, Sun Y, Li J, Wang Z, Dong F. (2021). Optimizing the electronic structure of BiOBr nanosheets via combined Ba doping and oxygen vacancies for promoted photocatalysis. Journal of Physical Chemistry C, 125(16): 8597–8605

[19]

Gogoi D, Namdeo A, Golder A K, Peela N R. (2020). Ag-doped TiO2 photocatalysts with effective charge transfer for highly efficient hydrogen production through water splitting. International Journal of Hydrogen Energy, 45(4): 2729–2744

[20]

He J, Zheng F, Zhou Y, Li X, Wang Y, Xiao J, Li Y, Chen D, Lu J. (2022). Catalytic oxidation of VOCs over 3D@ 2D Pd/CoMn2O4 nanosheets supported on hollow Al2O3 microspheres. Journal of Colloid and Interface Science, 613: 155–167

[21]

Hu Q, Niu J T, Zhang K Q, Yao M. (2022). Fabrication of Mn-doped SrTiO3/carbon fiber with oxygen vacancy for enhanced photocatalytic hydrogen evolution. Materials, 15(13): 4723

[22]

Huang N, Qu Z, Dong C, Qin Y, Duan X. (2018). Superior performance of α@β-MnO2 for the toluene oxidation: active interface and oxygen vacancy. Applied Catalysis A: General, 560: 195–205

[23]

Huang S, Bao R, Wang J, Yi J, Zhang Z, Liu L, Han Y, Li Z, Min D, Zhang W. . (2023). Synergistic effect of oxygen vacancy defects and TiO2/WO3 heterostructures in photocatalytic hydrogen production and dye degradation. Journal of Alloys and Compounds, 961: 170945

[24]

Huang Y, Li H, Balogun M S, Liu W, Tong Y, Lu X, Ji H. (2014). Oxygen vacancy induced bismuth oxyiodide with remarkably increased visible-light absorption and superior photocatalytic performance. ACS Applied Materials & Interfaces, 6(24): 22920–22927

[25]

Huang Y M, Yu Y, Yu Y F, Zhang B. (2020). Oxygen vacancy engineering in photocatalysis. Solar RRL, 4(8): 2000037

[26]

Ji M, Chen R, Di J, Liu Y, Li K, Chen Z, Xia J, Li H. (2019). Oxygen vacancies modulated Bi-rich bismuth oxyiodide microspheres with tunable valence band position to boost the photocatalytic activity. Journal of Colloid and Interface Science, 533: 612–620

[27]

Jia Y, Zhang X, Wang R Y, Yuan J, Zheng R Z, Zhang J Q, Qian F P, Chen Y F, Zhang M, Guo L A. (2023). Energy band engineering of WO3/Bi2WO6 direct Z-scheme for enhanced photocatalytic toluene degradation. Applied Surface Science, 618: 156636

[28]

Kang I, Xi J, Hu H. (2018). Photolysis and photooxidation of typical gaseous VOCs by UV irradiation: removal performance and mechanisms. Frontiers of Environmental Science & Engineering, 12(3): 8

[29]

Kang T, Yang D, Du F, Hu P, Teng F, Fan H. (2022). Using magnesium reduction strategy to produce black Ga2O3 with variable oxygen vacancies for photocatalytic applications. Journal of Alloys and Compounds, 926: 166887

[30]

Khan M E, Khan M M, Cho M H. (2018). Recent progress of metal-graphene nanostructures in photocatalysis. Nanoscale, 10(20): 9427–9440

[31]

Kumar A, Raizada P, Khan A A P, Nguyen V, Le Q V, Singh A, Saini V, Selvasembian R, Huynh T, Singh P. (2021). Phenolic compounds degradation: insight into the role and evidence of oxygen vacancy defects engineering on nanomaterials. Science of the Total Environment, 800: 149410

[32]

Kumar R, Sudhaik A, Sonu Raizada P, Nguyen V, Le Q V, Ahamad T, Thakur S, Hussain C, Singh P. (2023). Integrating K and P co-doped g-C3N4 with ZnFe2O4 and graphene oxide for S-scheme-based enhanced adsorption coupled photocatalytic real wastewater treatment. Chemosphere, 337: 139267

[33]

Kumaravel V, Mathew S, Bartlett J, Pillai S C. (2019). Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Applied Catalysis B: Environmental, 244: 1021–1064

[34]

Li F, Liu G, Liu F, Wu J, Yang S. (2023a). Synergetic effect of CQD and oxygen vacancy to TiO2 photocatalyst for boosting visible photocatalytic NO removal. Journal of Hazardous Materials, 452: 131237

[35]

Li J, Zhang M, Weng B, Chen X, Chen J, Jia H P. (2020a). Oxygen vacancies mediated charge separation and collection in Pt/WO3 nanosheets for enhanced photocatalytic performance. Applied Surface Science, 507: 145133

[36]

Li J J, Lv X L, Weng B, Roeffaers M B J, Jia H P. (2023b). Engineering light propagation for synergetic photo- and thermocatalysis toward volatile organic compounds elimination. Chemical Engineering Journal, 461: 142022

[37]

Li J J, Weng B, Cai S C, Chen J, Jia H P, Xu Y J. (2018). Efficient promotion of charge transfer and separation in hydrogenated TiO2/WO3 with rich surface-oxygen-vacancies for photodecomposition of gaseous toluene. Journal of Hazardous Materials, 342: 661–669

[38]

Li J R, Li K L, Lei B, Ran M X, Sun Y J, Zhang Y X, Kim K H, Dong F. (2021a). High-efficiency photocatalytic decomposition of toluene over defective InOOH: promotive role of oxygen vacancies in ring opening process. Chemical Engineering Journal, 413: 127389

[39]

Li M, Li D, Zhang Z, Ji C, Zhou S, Guo W, Zhao C, Liu F, Han F. (2021b). Study on the performance and mechanism of degradation of toluene with non-thermal plasmas synergized supported TiO2/γ-Al2O3 catalyst. Journal of Environmental Chemical Engineering, 9(4): 105529

[40]

Li M, Mu J, Liu Y, Wang H, Wang Y, Song H. (2023c). Removal of phenol by lignin-based activated carbon as an efficient adsorbent for adsorption of phenolic wastewater. Research on Chemical Intermediates, 49(5): 2209–2232

[41]

Li X, Niu Y, Su H, Qi Y. (2022). Simple thermocatalytic oxidation degradation of VOCs. Catalysis Letters, 152(6): 1801–1818

[42]

Li X, Wu X, Liu S, Li Y, Fan J, Lv K. (2020b). Effects of fluorine on photocatalysis. Chinese Journal of Catalysis, 41(10): 1451–1467

[43]

Li Y, Chen T, Zhao S, Wu P, Chong Y, Li A, Zhao Y, Chen G, Jin X, Qiu Y. . (2022). Engineering cobalt oxide with coexisting cobalt defects and oxygen vacancies for enhanced catalytic oxidation of toluene. ACS Catalysis, 12(9): 4906–4917

[44]

Lim J, Yang Y, Hoffmann M R. (2019). Activation of peroxymonosulfate by oxygen vacancies-enriched cobalt-doped black TiO2 nanotubes for the removal of organic pollutants. Environmental Science & Technology, 53(12): 6972–6980

[45]

Liu H, Yu Y, Shao Q, Long C. (2019). Porous polymeric resin for adsorbing low concentration of VOCs: unveiling adsorption mechanism and effect of VOCs’ molecular properties. Separation and Purification Technology, 228: 115755

[46]

Liu X, Zheng J, Peng K, Qin G, Yang Y, Huang Z. (2022). The intrinsic effects of oxygen vacancy and doped non-noble metal in TiO2(B) on photocatalytic oxidation VOCs by visible light driving. Journal of Environmental Chemical Engineering, 10(3): 107390

[47]

Lu M, Yang L, Wu Z, Wang Q, Wang M, Xu J, Zhang S, Song R, Dai W, Zou J. . (2024). An all-in-one self-supporting Na-Bi2WO6 photocatalyst for portable air purifier: laminar splitting boosts high efficacy in mineralizing toluene and disinfection. Applied Catalysis B: Environment and Energy, 354: 124134

[48]

Ma H, Wang X M, Tan T Q, Zhou X, Dong F, Sun Y J. (2022). Stabilize the oxygen vacancies in Bi2SiO5 for durable photocatalysis via altering local electronic structure with phosphate dopant. Applied Catalysis B: Environmental, 319: 121911

[49]

Ma H, Yang W, Tang H, Pan Y, Li W, Fang R, Shen Y, Dong F. (2023). Enhance the stability of oxygen vacancies in SrTiO3 via metallic Ag modification for efficient and durable photocatalytic NO abatement. Journal of Hazardous Materials, 452: 131269

[50]

Ma J, Zhu C, Xu Y, Lu J, Huang L, Yang Z. (2017). Photocatalytic degradation of gaseous benzene with H3PW12O40/TiO2/palygorskite composite catalyst. Journal of Saudi Chemical Society, 21(2): 132–142

[51]

Mao C L, Cheng H G, Tian H, Li H, Xiao W J, Xu H, Zhao J C, Zhang L Z. (2018). Visible light driven selective oxidation of amines to imines with BiOCl: does oxygen vacancy concentration matter. Applied Catalysis B: Environmental, 228: 87–96

[52]

Muthukumar P, Yuvapriya D, Selvakumar D, Niranjana Sri S, Saisubramanian N, Pannipara M, Al-Sehemi A G, Philip Anthony S. (2023). Plasmonic nanoparticles doped metal oxide hybrid materials for efficient photocatalytic dye degradation and strong anti-biofilm activity. Materials Science and Engineering B, 296(296): 116688

[53]

Natarajan P, Chandrababu P, Karmegam P M, Madasamy J & Somasundaram S. (2023). Tungsten-based activated carbon matrix for the catalytic oxidation of model volatile organic compounds (VOCs) and pharmaceutical VOCs from wastewater. Carbon Letters, 33(4): 1115–1132

[54]

Niu J, Qian H, Liu J, Liu H, Zhang P, Duan E. (2018). Process and mechanism of toluene oxidation using Cu1-yMn2CeyOx/sepiolite prepared by the co-precipitation method. Journal of Hazardous Materials, 357: 332–340

[55]

Peng K, Hou Y, Zhang Y, Liu X, Li Y, Li B, Zeng Z, Huang Z. (2022). Engineering oxygen vacancies in metal-doped MnO2 nanospheres for boosting the low-temperature toluene oxidation. Fuel, 314: 123123

[56]

Putri L K, Ong W J, Chang W S, Chai S P. (2015). Heteroatom doped graphene in photocatalysis: a review. Applied Surface Science, 358: 2–14

[57]

Qi M, Hou Q, Li Y. (2023). First principles study of the effect of (Mg, C) doping and Zn vacancies on the carrier activity, lifetime, visible light effect, and oxidation–reduction reaction of ZnO(001) monolayers. Applied Surface Science, 616: 156477

[58]

Qiao Y, Hu H, Zhao Y, Jin M, Yang D, Yin J, Wu P, Liu W, Li J. (2023). Benzene induces spleen injury through the B cell receptor signaling pathway. Ecotoxicology and Environmental Safety, 257: 114924

[59]

Qin J, Wang J, Yang J, Hu Y, Fu M, Ye D. (2020). Metal organic framework derivative-TiO2 composite as efficient and durable photocatalyst for the degradation of toluene. Applied Catalysis B: Environmental, 267: 118667

[60]

Qu J, Chen D, Li N, Xu Q, Li H, He J, Lu J. (2019). Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Applied Catalysis B: Environmental, 256: 117877

[61]

Qu J, Chen D, Li N, Xu Q, Li H, He J, Lu J. (2020). Construction of Pd-modified NiCoOx hollow nanospheres with surface hydroxyls and oxygen vacancies for highly enhanced catalytic toluene oxidation activity. ACS Sustainable Chemistry & Engineering, 8(28): 10581–10587

[62]

Ran M, Cui W, Li K, Chen L, Zhang Y, Dong F, Sun Y. (2022). Light‐induced dynamic stability of oxygen vacancies in BiSbO4 for efficient photocatalytic formaldehyde degradation. Energy & Environmental Materials, 5(1): 305–312

[63]

Rao J, Chen X, Zheng X, Du C. (2023). Study on the regulation of BiOCl and its mechanism of photocatalytic degradation of toluene. Atmospheric Pollution Research, 14(10): 101854

[64]

Shao W, Wang H, Zhang X D. (2018). Elemental doping for optimizing photocatalysis in semiconductors. Dalton Transactions, 47(36): 12642–12646

[65]

Shayegan Z, Haghighat Z, Lee C S. (2019). Performance of surface fluorinated P25-TiO2 on the photocatalytic degradation of volatile organic compounds in indoor environment. IOP Conference Series. Materials Science and Engineering, 609(4): 042057

[66]

Shen Y. (2023). Biomass-derived porous carbons for sorption of volatile organic compounds (VOCs). Fuel, 336: 126801

[67]

Sørensen S B, Feilberg A, Kristensen K. (2023). Removal of volatile organic compounds by mobile air cleaners: dynamics, limitations, and possible side effects. Building and Environment, 242: 110541

[68]

Su C X, Fang L, Liu L J, Xiang F, Zhang H, Kuang X J. (2013). Dielectric and optical properties of Ba5AFe0.5Ta9.5O30 (A = K, Li) tungsten bronze ceramics. Journal of Materials Science Materials in Electronics, 24(10): 3891–3896

[69]

Subagyo R, Yudhowijoyo A, Sholeha N A, Hutagalung S S, Prasetyoko D, Birowosuto M D, Arramel A, Jiang J, Kusumawati Y. (2023). Recent advances of modification effect in Co3O4-based catalyst towards highly efficient photocatalysis. Journal of Colloid and Interface Science, 650: 1550–1590

[70]

Sun J, Mu Q, Kimura H, Murugadoss V, He M, Du W, Hou C. (2022). Oxidative degradation of phenols and substituted phenols in the water and atmosphere: a review. Advanced Composites and Hybrid Materials, 5(2): 627–640

[71]

Tian L, Xing L, Shen X, Li Q, Ge S, Liu B, Jie L. (2020). Visible light enhanced Fe–I–TiO2 photocatalysts for the degradation of gaseous benzene. Atmospheric Pollution Research, 11(1): 179–185

[72]

Wang H, Cao C, Li D, Ge Y, Chen R, Song R, Gao W, Wang X, Deng X, Zhang H. . (2023a). Achieving high selectivity in photocatalytic oxidation of toluene on amorphous biocl nanosheets coupled with TiO2. Journal of the American Chemical Society, 145(30): 16852–16861

[73]

Wang H, Li X, Zhao X, Li C, Song X, Zhang P, Huo P, Li X. (2022a). A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2): 178–214

[74]

Wang H, Ren Q, Xiao L, Chen L, He Y, Yang L, Sun Y, Dong F. (2022b). The spatially separated active sites for holes and electrons boost the radicals generation for toluene degradation. Journal of Hazardous Materials, 437: 129329

[75]

Wang H, Wang Y, Jiang C, Ye K, He X, Xue C, Yang Z, Zhou X, Ji H. (2020). Hybridization of CuO with Bi2MoO6 nanosheets as a surface multifunctional photocatalyst for toluene oxidation under solar irradiation. ACS Applied Materials & Interfaces, 12(2): 2259–2268

[76]

Wang H J, Li X, Zhao X X, Li C Y, Song X H, Zhang P, Huo P W, Li X. (2022c). A review on heterogeneous photocatalysis for environmental remediation: from semiconductors to modification strategies. Chinese Journal of Catalysis, 43(2): 178–214

[77]

Wang J, Wang Z, Huang B, Ma Y, Liu Y, Qin X, Zhang X, Dai Y. (2012). Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials & Interfaces, 4(8): 4024–4030

[78]

Wang M, Shen M, Jin X, Tian J, Li M, Zhou Y, Zhang L, Li Y, Shi J. (2019). Oxygen Vacancy Generation and Stabilization in CeO2–x by Cu Introduction with Improved CO2 Photocatalytic Reduction Activity. ACS Catalysis, 9(5): 4573–4581

[79]

Wang M, Xiao H, Ru Y, Yang L, Liu W, Ma T, Yang L, Zhang S, Dai W. (2022d). In2S3 nanoflakes grounded in Bi2WO6 nanoplates: a novel hierarchical heterojunction catalyst anchored on W mesh for efficient elimination of toluene. Environmental Research, 212: 113148

[80]

Wang R, Duan W, Cheng S, Wang X. (2023b). Nonlinear and lagged effects of VOCs on SOA and O3 and multi-model validated control strategy for VOC sources. Science of the Total Environment, 887: 164113

[81]

Wang Y X, Zhang Y Y, Zhu X J, Liu Y, Wu Z B. (2022e). Fluorine-induced oxygen vacancies on TiO2 nanosheets for photocatalytic indoor VOCs degradation. Applied Catalysis B: Environmental, 316: 121610

[82]

Wu H, Peng J, Sun H, Ruan Q, Dong H, Jin Y, Sun Z, Hu Y. (2022a). Surface activation of calcium tungstate by europium doping for improving photocatalytic performance: Towards lanthanide site photocatalysis. Chemical Engineering Journal, 432: 134339

[83]

Wu H, Wang J, Chen R, Yuan C, Zhang J, Zhang Y, Sheng J, Dong F. (2021). Zn-doping mediated formation of oxygen vacancies in SnO2 with unique electronic structure for efficient and stable photocatalytic toluene degradation. Chinese Journal of Catalysis, 42(7): 1195–1204

[84]

Wu M, Huang H, Leung D Y C. (2022b). A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation. Journal of Environmental Management, 307: 114559

[85]

Wu M D, Chen S Y, Xiang W G. (2020). Oxygen vacancy induced performance enhancement of toluene catalytic oxidation using LaFeO3 perovskite oxides. Chemical Engineering Journal, 387: 124101

[86]

Xiong S, Huang N, Peng Y, Chen J, Li J. (2021). Balance of activation and ring-breaking for toluene oxidation over CuO-MnOx bimetallic oxides. Journal of Hazardous Materials, 415: 125637

[87]

Yan L, Wang Q, Qu W, Yan T, Li H, Wang P, Zhang D. (2022). Tuning Tiδ+–Vo·–Ptδ+ interfaces over Pt/TiO2 catalysts for efficient photocatalytic oxidation of toluene. Chemical Engineering Journal, 431: 134209

[88]

Yang J, Li L, Fu F, Xu H, Da K, Cao S, Chen W, Yang L, Fan X. (2023a). Construction of Z-scheme Ag/AgCl/Bi2WO6 photocatalysts with enhanced visible-light photocatalytic performance for gaseous toluene degradation. Applied Surface Science, 610: 155598

[89]

Yang J, Yang L, Fang M, Li L, Fu F, Xu H, Li M, Fan X. (2023b). A compact Z-scheme heterojunction of BiOCl/Bi2WO6 for efficiently photocatalytic degradation of gaseous toluene. Journal of Colloid and Interface Science, 631: 44–54

[90]

Yang L, Guo J, Yang T, Guo C, Zhang S, Luo S, Dai W, Li B, Luo X, Li Y. (2021). Self-assembly Cu2O nanowire arrays on Cu mesh: a solid-state, highly-efficient, and stable photocatalyst for toluene degradation under sunlight. Journal of Hazardous Materials, 402: 123741

[91]

Yang L, Guo J, Zhang J, Zhang S, Dai W, Xiao X, Luo X, Luo S. (2022). Utter degradation of toluene with inhibiting the generation of benzene by self-supporting Bi2MoO6 nanoflakes featuring OV-enriched interface. Chemical Engineering Journal, 427: 131550

[92]

Yang Q, Li X, Tian Q W, Pan A X, Liu X J, Yin H, Shi Y Q, Fang G G. (2023c). Synergistic effect of adsorption and photocatalysis of BiOBr/lignin-biochar composites with oxygen vacancies under visible light irradiation. Journal of Industrial and Engineering Chemistry, 117: 117–129

[93]

Yang X Q, Yu X L, Jing M Z, Song W Y, Liu J, Ge M F. (2019). Defective MnxZr1–xO2 solid solution for the catalytic oxidation of toluene: insights into the oxygen vacancy contribution. ACS Applied Materials & Interfaces, 11(1): 730–739

[94]

Ying T T, Liu W, Yang L X, Zhang S Q, Wu Z Y, Li J Y, Song R J, Dai W L, Zou J P, Luo S L. (2024). S-scheme construction boosts highly active self-supporting CeO2/Cu2O photocatalyst for efficient degradation of indoor VOCs. Separation and Purification Technology, 330: 125272

[95]

Yu J, Wang X, Chen L, Lu G H, Shi G S, Xie X F, Wang Y, Sun J. (2022a). Enhanced adsorption and visible-light photocatalytic degradation of toluene by CQDs/UiO-66 MOG with hierarchical pores. Chemical Engineering Journal, 435: 135033

[96]

Yu L, Wang L, Xu W, Chen L, Fu M, Wu J, Ye D. (2018). Journal of Environmental Sciences. Journal of Environmental Sciences, 67: 171–178

[97]

Yu X, Shi M, Fan Y, Yang L, Zhang J, Liu W, Dai W, Zhang S, Zhou L, Luo X. . (2022b). Activation or passivation: influence of halogen dopant (F, Cl, Br) on photothermal activity of Mn2O3 in degrading toluene. Applied Catalysis B: Environmental, 309: 121236

[98]

Yuan S, Chen M, Qin X, Chen X, Zhang J, Zhang C. (2023a). Effects of surface fluoride modification on TiO2 for the photocatalytic oxidation of toluene. Journal of Environmental Sciences, 147: 561–570

[99]

Yuan Y, Liu Y, Xie X, Wen Y, Song M, He J, Wang Z. (2023b). 2D defect-engineered Ag-doped gamma-Fe2O3/BiVO4: the effect of noble metal doping and oxygen vacancies on exciton-triggering photocatalysis production of singlet oxygen. Chemosphere, 322: 138176

[100]

Zan J, Song H, Zuo S Y, Chen X R, Xia D S, Li D Y. (2020). MIL-53(Fe)-derived Fe2O3 with oxygen vacancy as Fenton-like photocatalysts for the elimination of toxic organics in wastewater. Journal of Cleaner Production, 246: 118971

[101]

Zhang C, Qin J, Yang C, Hu Y. (2023a). Sulfur-vacancy-rich ZnS/CdIn2S4 heterojunction for efficient photocatalytic selective oxidation of toluene to benzaldehyde. Journal of Photochemistry and Photobiology A: Chemistry, 444: 114898

[102]

Zhang J, Shen B, Hu Z, Zhen M, Guo S Q, Dong F. (2021a). Uncovering the synergy between Mn substitution and O vacancy in ZnAl-LDH photocatalyst for efficient toluene removal. Applied Catalysis B: Environmental, 296: 120376

[103]

Zhang K, Ding H, Pan W, Mu X, Qiu K, Ma J, Zhao Y, Song J, Zhang Z. (2022). Research progress of a composite metal oxide catalyst for VOC degradation. Environmental Science & Technology, 56(13): 9220–9236

[104]

Zhang Q, Guo F, Yu L, Wang B, Ding J, Fan L, Wu Y, Yang B, Xu Q. (2023b). Efficient degradation of toluene over MnO2/TiO2 nanobelts under vacuum ultraviolet irradiation. Industrial & Engineering Chemistry Research, 62(3): 1257–1263

[105]

Zhang S S, Pu W H, Chen A, Xu Y K, Wang Y Y, Yang C Z, Gong J Y. (2020a). Oxygen vacancies enhanced photocatalytic activity towards VOCs oxidation over Pt deposited Bi2WO6 under visible light. Journal of Hazardous Materials, 384(384): 121478

[106]

Zhang X, Chen J, Jiang S, Zhang X, Bi F, Yang Y, Wang Y, Wang Z. (2021b). Enhanced photocatalytic degradation of gaseous toluene and liquidus tetracycline by anatase/rutile titanium dioxide with heterophase junction derived from materials of Institut Lavoisier-125(Ti): degradation pathway and mechanism studies. Journal of Colloid and Interface Science, 588: 122–137

[107]

Zhang Y, Shi J, Huang Z, Guan X, Zong S, Cheng C, Zheng B, Guo L. (2020b). Synchronous construction of CoS2 in-situ loading and S doping for g-C3N4: enhanced photocatalytic H2-evolution activity and mechanism insight. Chemical Engineering Journal, 401: 126135

[108]

Zhao P, Zhu L. (2016). Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air. Frontiers of Environmental Science & Engineering, 10(2): 219–228

[109]

Zhao S, Wen Y, Liu X, Pen X, F, Gao F, Xie X, Du C, Yi H, Kang D, Tang X. (2020). Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene. Nano Research, 13(6): 1544–1551

[110]

Zhou T, Xie A, Wang Q, Li X, Zhu Z, Zhang W, Tao Y, Luo S. (2020). A novel high-performance CeO2-CuMn2O4 catalyst for toluene degradation. Environmental Science and Pollution Research International, 27(34): 43150–43162

[111]

Zhou X, Zhang J, Wang X, Tan T, Fang R, Chen S, Dong F. (2022). Efficient NO removal and photocatalysis mechanism over Bi-metal@Bi2O2[BO2(OH)] with oxygen vacancies. Journal of Colloid and Interface Science, 436: 129271

RIGHTS & PERMISSIONS

Higher Education Press 2025

AI Summary AI Mindmap
PDF (5270KB)

1043

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/