Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment

Pankaj Sharma , Amit Kumar , Tongtong Wang , Mika Sillanpää , Gaurav Sharma , Pooja Dhiman

Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (12) : 151

PDF (6938KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (12) : 151 DOI: 10.1007/s11783-024-1911-5
REVIEW ARTICLE

Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment

Author information +
History +
PDF (6938KB)

Abstract

● BMOFs offer high conductivity, active sites, and photo-responsiveness.

● BMOFs have adjustable active sites for high photocatalytic activity.

● Various tailoring strategies for improving BMOFs properties were summarized.

● Advances in BMOFs materials for photocatalytic applications are discussed.

● BMOFs are integrated to form Z and S-scheme heterojunctions.

Photocatalysis contributes significantly to global economic development and has promising environment application like degradation of organic contamination and energy production. The initiatives are concentrated on accelerating the reaction rates and designing novel photocatalysts for improving the ability and enhance the selectivity toward specific products. Recently, bimetallic nanoparticles (NP)/metal-organic frameworks (BMOFs), gained broader interests in heterogeneous catalysis due to their unique photocatalytic properties. Coupling of bimetallic nanoparticles with metal-organic frameworks has found to be a highly effective strategy to improve the photocatalytic activity and broaden the reaction scope. In addition, BMOFs have been found to have exceptional capabilities in breaking down organic pollutants, reducing heavy metals and producing energy. These remarkable abilities are believed to be a result of the combined effects of the bimetallic centers. This review summarizes and analyses the recent advancements in BMOFs based materials especially heterojunctions for degradation of organic pollutants and also in energy production. Different synthesis techniques of designing BMOFs composites are highlighted in this study. The underlying mechanism synergistically enhanced performance in heterogeneous catalysis is thoroughly examined. This review also explores the challenges and possible future pathways in photocatalysis using BMOFs. There are several important challenges that need to be addressed in order to improve the durability of BMOFs in real-world conditions, optimize the synthesis process for industrial applications and gain a deeper understanding of the complicated structures that influence their photocatalytic processes.

Graphical abstract

Keywords

Metal organic frameworks / Heterojunctions / Photocatalysis / Bimetallic / Energy production / Water treatment

Cite this article

Download citation ▾
Pankaj Sharma, Amit Kumar, Tongtong Wang, Mika Sillanpää, Gaurav Sharma, Pooja Dhiman. Advances in bimetallic metal organic frameworks (BMOFs) based photocatalytic materials for energy production and waste water treatment. Front. Environ. Sci. Eng., 2024, 18(12): 151 DOI:10.1007/s11783-024-1911-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdelhameed R M, Abu-Elghait M, El-Shahat M. (2020). Hybrid three MOFs composites (ZIF-67@ZIF-8@MIL-125-NH2): enhancement the biological and visible‐light photocatalytic activity. Journal of Environmental Chemical Engineering, 8(5): 104107

[2]

Abdul Mubarak N S, Foo K Y, Schneider R, Abdelhameed R M, Sabar S. (2022). The chemistry of MIL-125 based materials: structure, synthesis, modification strategies and photocatalytic applications. Journal of Environmental Chemical Engineering, 10(1): 106883

[3]

Ahmad I, Zou Y, Yan J, Liu Y, Shukrullah S, Naz M Y, Hussain H, Khan W Q, Khalid N R. (2023). Semiconductor photocatalysts: a critical review highlighting the various strategies to boost the photocatalytic performances for diverse applications. Advances in Colloid and Interface Science, 311: 102830

[4]

Al-Nuaim M A, Alwasiti A A, Shnain Z Y. (2023). The photocatalytic process in the treatment of polluted water. Chemicke Zvesti, 77(2): 677–701

[5]

Aldhalmi A K, Alkhayyat S, Younis Albahadly W K, Jawad M A, Alsaraf K M, Riyad Muedii Z A H, Ali F A, Ahmed M, Asiri M. . (2023). A novel fabricate of iron and nickel-introduced bimetallic MOFs for quickly catalytic degradation via the peroxymonosulfate, antibacterial efficiency, and cytotoxicity assay. Inorganic Chemistry Communications, 153: 110823

[6]

Alsafari I A, Chaudhary K, Warsi M F, Warsi A Z, Waqas M, Hasan M, Jamil A, Shahid M. (2023). A facile strategy to fabricate ternary WO3/CuO/rGO nano-composite for the enhanced photocatalytic degradation of multiple organic pollutants and antimicrobial activity. Journal of Alloys and Compounds, 938: 168537

[7]

Amo-Ochoa P, Givaja G, Miguel P J S, Castillo O, Zamora F. (2007). Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF. Inorganic Chemistry Communications, 10(8): 921–924

[8]

An K, Ren H, Yang D, Zhao Z, Gao Y, Chen Y, Tan J, Wang W, Jiang Z. (2021). Nitrogenase-inspired bimetallic metal organic frameworks for visible-light-driven nitrogen fixation. Applied Catalysis B: Environmental, 292: 120167

[9]

Arif N, Lin Y Z, Wang K, Dou Y C, Zhang Y, Li K, Liu S, Liu F T. (2021). Bimetallic zeolite-imidazole framework-based heterostructure with enhanced photocatalytic hydrogen production activity. RSC Advances, 11(16): 9048–9056

[10]

Ayoub G, Karadeniz B, Howarth A J, Farha O K, Đilović I, Germann L S, Dinnebier R E, Užarević K, Friščić T. (2019). Rational synthesis of mixed-metal microporous metal–organic frameworks with controlled composition using mechanochemistry. Chemistry of Materials, 31(15): 5494–5501

[11]

Bai S, Zhang N, Gao C, Xiong Y. (2018). Defect engineering in photocatalytic materials. Nano Energy, 53: 296–336

[12]

Balapure A, Ray Dutta J, Ganesan R. (2024). Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials. RSC Applied Interfaces, 1(1): 43–69

[13]

Banerjee S, Pillai S C, Falaras P, O’Shea K E, Byrne J A, Dionysiou D D. (2014). New insights into the mechanism of visible light photocatalysis. Journal of Physical Chemistry Letters, 5(15): 2543–2554

[14]

Bjørklund G, Semenova Y, Pivina L, Dadar M, Rahman M M, Aaseth J, Chirumbolo S. (2020). Uranium in drinking water: a public health threat. Archives of Toxicology, 94(5): 1551–1560

[15]

Cao Y, Yue L, Li Z, Han Y, Lian J, Qin H, He S. (2023). Construction of Sn-Bi-MOF/Ti3C2 schottky junction for photocatalysis of tetracycline: performance and degradation mechanism. Applied Surface Science, 609: 155191

[16]

Chang H, Li Y, Jia X, Shen Q, Li Q, Liu X, Xue J. (2022). Construction of an amino-rich Ni/Ti bimetallic MOF composite with expanded light absorption and enhanced carrier separation for efficient photocatalytic H2 evolution. Materials Science in Semiconductor Processing, 150: 106914

[17]

Chen C, Suo N, Han X, He X, Dou Z, Lin Z, Cui L. (2021a). Tuning the morphology and electron structure of metal-organic framework-74 as bifunctional electrocatalyst for OER and HER using bimetallic collaboration strategy. Journal of Alloys and Compounds, 865: 158795

[18]

Chen C, Wang S, Han F, Zhou X, Li B. (2024a). Synergy of rapid adsorption and photo-Fenton-like degradation in CoFe-MOF/TiO2/PVDF composite membrane for efficient removal of antibiotics from water. Separation and Purification Technology, 333: 125942

[19]

Chen J, Wei J, Zhang H, Wang X, Fu L, Yang T H. (2022). Construction of CuCd-BMOF/GO composites based on phosphonate and their boosted visible-light photocatalytic degradation. Applied Surface Science, 594: 153493

[20]

Chen J, Zhu Y, Kaskel S. (2021b). Porphyrin‐based metal–organic frameworks for biomedical applications. Angewandte Chemie International Edition, 60(10): 5010–5035

[21]

Chen L, Ren X, Alharbi N S, Chen C. (2021c). Fabrication of a novel Co/Ni-MOFs@BiOI composite with boosting photocatalytic degradation of methylene blue under visible light. Journal of Environmental Chemical Engineering, 9(5): 106194

[22]

Chen L, Wang H F, Li C, Xu Q. (2020). Bimetallic metal–organic frameworks and their derivatives. Chemical Science, 11(21): 5369–5403

[23]

Chen S, Xu X, Gao H, Wang J, Li A, Zhang X. (2021d). Fine-tuning the metal oxo cluster composition and phase structure of Ni/Ti bimetallic MOFs for efficient CO2 reduction. Journal of Physical Chemistry C, 125(17): 9200–9209

[24]

Chen T, Lu C, Wang J, Kong Y, Liu T, Ying S, Ma X, Yi F Y. (2024b). Bimetal-regulated indium-based metal-organic framework family realizing highly efficient photo/electrocatalytic hydrogen evolution reaction. Electrochimica Acta, 480: 143927

[25]

Cheng W, Wang Y, Ge S, Ding X, Cui Z, Shao Q. (2021). One-step microwave hydrothermal preparation of Cd/Zr-bimetallic metal–organic frameworks for enhanced photochemical properties. Advanced Composites and Hybrid Materials, 4(1): 150–161

[26]

Chong W K, Ng B J, Tan L L, Chai S P. (2022). Recent advances in nanoscale engineering of ternary metal sulfide-based heterostructures for photocatalytic water splitting applications. Energy & Fuels, 36(8): 4250–4267

[27]

Cook T R, Zheng Y R, Stang P J. (2013). Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chemical Reviews, 113(1): 734–777

[28]

Dai B, Li Y, Xu J, Sun C, Li S, Zhao W. (2022a). Photocatalytic oxidation of tetracycline, reduction of hexavalent chromium and hydrogen evolution by Cu2O/g-C3N4 S-scheme photocatalyst: performance and mechanism insight. Applied Surface Science, 592: 153309

[29]

Dai R, Han H, Zhu Y, Wang X, Wang Z. (2022b). Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds. Frontiers of Environmental Science & Engineering, 16(4): 40

[30]

Dolgopolova E A, Brandt A J, Ejegbavwo O A, Duke A S, Maddumapatabandi T D, Galhenage R P, Larson B W, Reid O G, Ammal S C, Heyden A. . (2017). Electronic properties of bimetallic metal–organic frameworks (MOFs): tailoring the density of electronic states through MOF modularity. Journal of the American Chemical Society, 139(14): 5201–5209

[31]

Duan M, Jiang L, Zeng G, Wang D, Tang W, Liang J, Wang H, He D, Liu Z, Tang L. (2020). Bimetallic nanoparticles/metal-organic frameworks: Synthesis, applications and challenges. Applied Materials Today, 19: 100564

[32]

El-Yazeed W A, Ahmed A I. (2019). Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity. RSC Advances, 9(33): 18803–18813

[33]

Ezugwu C I, Ghosh S, Bera S, Faraldos M, Mosquera M E G, Rosal R. (2023). Bimetallic metal-organic frameworks for efficient visible-light-driven photocatalytic CO2 reduction and H2 generation. Separation and Purification Technology, 308: 122868

[34]

Fan M, Yan J, Cui Q, Shang R, Zuo Q, Gong L, Zhang W. (2023). Synthesis and peroxide activation mechanism of bimetallic MOF for water contaminant degradation: a review. Molecules (Basel, Switzerland), 28(8): 3622

[35]

Feng L, Ren G, Wang F, Yang W, Zhu G, Pan Q. (2019). Two bimetallic metal–organic frameworks capable of direct photocatalytic degradation of dyes under visible light. Transition Metal Chemistry, 44(3): 275–281

[36]

Gallegos-Cerda S D, Hernández-Varela J D, Chanona Pérez J J, Huerta-Aguilar C A, González Victoriano L, Arredondo-Tamayo B, Reséndiz Hernández O. (2024). Development of a low-cost photocatalytic aerogel based on cellulose, carbon nanotubes, and TiO2 nanoparticles for the degradation of organic dyes. Carbohydrate Polymers, 324: 121476

[37]

Gao W, Wang F, Ou M, Wu Q, Wang L, Zhu H, Li Y, Kong N, Qiu J, Hu S, Song S. (2023a). Enhancing degradation of norfloxacin using chrysanthemum-shaped bimetallic NH2-MIL-53(Fe/Ti) photocatalysts under visible light irradiation. Journal of Environmental Chemical Engineering, 11(5): 111050

[38]

Gao Y, Huang Y, Bao M, Zhang X, Zhou X, Liu L, Zhang Z, Zeng L, Ke J. (2023b). Ti-doped Zr-UiO-66-NH2 boosting charge transfer for enhancing the synergistic removal of Cr(VI) and TC-HCl in wastewater. Process Safety and Environmental Protection, 172: 857–868

[39]

García-Salcido V, Mercado-Oliva P, Guzmán-Mar J L, Kharisov B I, Hinojosa-Reyes L. (2022). MOF-based composites for visible-light-driven heterogeneous photocatalysis: synthesis, characterization and environmental application studies. Journal of Solid State Chemistry, 307: 122801

[40]

Głowniak S, Szczęśniak B, Choma J, Jaroniec M. (2021). Mechanochemistry: toward green synthesis of metal–organic frameworks. Materials Today, 46: 109–124

[41]

Gómez-Avilés A, Peñas-Garzón M, Bedia J, Dionysiou D D, Rodríguez J J, Belver C. (2019). Mixed Ti-Zr metal-organic-frameworks for the photodegradation of acetaminophen under solar irradiation. Applied Catalysis B: Environmental, 253: 253–262

[42]

Goodarzi N, Ashrafi-Peyman Z, Khani E, Moshfegh A Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7): 1102

[43]

Gu Y, Wu Y N, Li L, Chen W, Li F, Kitagawa S. (2017). Controllable modular growth of hierarchical MOF-on-MOF architectures. Angewandte Chemie International Edition, 56(49): 15658–15662

[44]

Guo C, Ma Y, Zou Y, Wang T, Wang J. (2024). Preparation strategy of bimetallic MOF hollow photocatalysts for hydrogen evolution. International Journal of Hydrogen Energy, 51: 950–961

[45]

Guo S H, Qi X J, Zhou H M, Zhou J, Wang X H, Dong M, Zhao X, Sun C Y, Wang X L, Su Z M. (2020). A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value-added formate. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(23): 11712–11718

[46]

Gupta S, Kumar R. (2024). Enhanced photocatalytic performance of the N-rGO/g-C3N4 nanocomposite for efficient solar-driven water remediation. Nanoscale, 16(12): 6109–6131

[47]

Hou C, Chen W, Fu L, Zhang S, Liang C, Wang Y. (2020). Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohydrate Polymers, 247: 116731

[48]

Hou H, Zhang X. (2020). Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chemical Engineering Journal, 395: 125030

[49]

Hu B, Yuan J Y, Tian J Y, Wang M, Wang X, He L, Zhang Z, Wang Z W, Liu C S. (2018). Co/Fe-bimetallic organic framework-derived carbon-incorporated cobalt–ferric mixed metal phosphide as a highly efficient photocatalyst under visible light. Journal of Colloid and Interface Science, 531: 148–159

[50]

Huo Y, Zhang J, Wang Z, Dai K, Pan C, Liang C. (2021). Efficient interfacial charge transfer of 2D/2D porous carbon nitride/bismuth oxychloride step-scheme heterojunction for boosted solar-driven CO2 reduction. Journal of Colloid and Interface Science, 585: 684–693

[51]

Hussain M Z, Yang Z, Huang Z, Jia Q, Zhu Y, Xia Y. (2021). Recent advances in metal–organic frameworks derived nanocomposites for photocatalytic applications in energy and environment. Advanced Science, 8(14): 2100625

[52]

Indrakanti V P, Kubicki J D, Schobert H H. (2011). Photoinduced activation of CO2 on TiO2 surfaces: quantum chemical modeling of CO2 adsorption on oxygen vacancies. Fuel Processing Technology, 92(4): 805–811

[53]

Ismael M. (2023). Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: a review. Journal of Alloys and Compounds, 931: 167469

[54]

Jagan Mohan Reddy A, Suresh K, Sujith Benarzee N, Surendra Babu M S. (2023). Synthesis and characterization of Zn-based bimetallic microporous MOF composites for effective formaldehyde sensing at room temperature. Inorganic Chemistry Communications, 158: 111612

[55]

Jiao L, Wang Y, Jiang H L, Xu Q. (2018). Metal–organic frameworks as platforms for catalytic applications. Advanced Materials, 30(37): 1703663

[56]

Kampouri S, Stylianou K C. (2019). Dual-functional photocatalysis for simultaneous hydrogen production and oxidation of organic substances. ACS Catalysis, 9(5): 4247–4270

[57]

Kang Y, Yang Y, Yin L C, Kang X, Wang L, Liu G, Cheng H M. (2016). Selective breaking of hydrogen bonds of layered carbon nitride for visible light photocatalysis. Advanced Materials, 28(30): 6471–6477

[58]

Karamat S, Akhter T, Ul Hassan S, Faheem M, Mahmood A, Al-Masry W, Razzaque S, Ashraf S, Kim T, Han S K. . (2024). Recycling of polyethylene terephthalate to bismuth-embedded bimetallic MOFs as photocatalysts toward removal of cationic dye in water. Journal of Industrial and Engineering Chemistry, 137: 503–513

[59]

Karamian E, Sharifnia S. (2016). On the general mechanism of photocatalytic reduction of CO2. Journal of CO2 Utilization, 16: 194–203

[60]

Kaushal S, Pal Singh P, Kaur N. (2022). Metal organic framework-derived Zr/Cu bimetallic photocatalyst for the degradation of tetracycline and organic dyes. Environmental Nanotechnology, Monitoring & Management, 18: 100727

[61]

Khan M S, Li Y, Li D S, Qiu J, Xu X, Yang H Y. (2023). A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. Nanoscale Advances, 5: 6318–6348

[62]

Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. (2020). Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chemical Society Reviews, 49(9): 2751–2798

[63]

Kovačič Ž, Likozar B, Huš M. (2020). Photocatalytic CO2 reduction: A review of Ab Initio mechanism, kinetics, and multiscale modeling simulations. ACS Catalysis, 10(24): 14984–15007

[64]

Kumar A, Rana S, Sharma G, Dhiman P, Shekh M I, Stadler F J. (2023). Recent advances in zeolitic imidazole frameworks based photocatalysts for organic pollutant degradation and clean energy production. Journal of Environmental Chemical Engineering, 11(5): 110770

[65]

Kumar A, Sharma P, Wang T, Lai C W, Sharma G, Dhiman P. (2024). Recent progresses in improving the photocatalytic potential of Bi4Ti3O12 as emerging material for environmental and energy applications. Journal of Industrial and Engineering Chemistry, 138: 1–16

[66]

Kumari A, Kaushal S, Singh P P. (2021). Bimetallic metal organic frameworks heterogeneous catalysts: Design, construction, and applications. Materials Today. Energy, 20: 100667

[67]

Kumari P, Bahadur N, Kong L, O’Dell L A, Merenda A, Dumée L F. (2022). Engineering Schottky-like and heterojunction materials for enhanced photocatalysis performance: a review. Materials Advances, 3(5): 2309–2323

[68]

Lee J S M, Fujiwara Y I, Kitagawa S, Horike S. (2019). Homogenized bimetallic catalysts from metal–organic framework alloys. Chemistry of Materials, 31(11): 4205–4212

[69]

Lei K, Kou M, Ma Z, Deng Y, Ye L, Kong Y. (2019). A comparative study on photocatalytic hydrogen evolution activity of synthesis methods of CDs/ZnIn2S4 photocatalysts. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 574: 105–114

[70]

Li M, Yuan J, Wang G, Yang L, Shao J, Li H, Lu J. (2022a). One-step construction of Ti-In bimetallic MOFs to improve synergistic effect of adsorption and photocatalytic degradation of bisphenol A. Separation and Purification Technology, 298: 121658

[71]

Li P, Dong L, Jin H, Yang J, Tu Y, Wang C, He Y. (2022b). Fluorescence detection of phosphate in an aqueous environment by an aluminum-based metal-organic framework with amido functionalized ligands. Frontiers of Environmental Science & Engineering, 16(12): 159

[72]

Li S, Li H, Wang Y, Liang Q, Zhou M, Guo D, Li Z. (2024a). Mixed-valence bimetallic Ce/Zr-NH2-UiO-66 modified with CdIn2S4 to form S-scheme heterojunction for boosting photocatalytic CO2 reduction. Separation and Purification Technology, 333: 125994

[73]

Li S, Yan R, Cai M, Jiang W, Zhang M, Li X. (2023). Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. Journal of Materials Science and Technology, 164: 59–67

[74]

Li T, Tsubaki N, Jin Z. (2024b). S-scheme heterojunction in photocatalytic hydrogen production. Journal of Materials Science and Technology, 169: 82–104

[75]

Li X, Xie J, Jiang C, Yu J, Zhang P. (2018). Review on design and evaluation of environmental photocatalysts. Frontiers of Environmental Science & Engineering, 12(5): 14

[76]

Li Z, Li D, Xue R, Zang L, Ma H, Guo S, Shi L. (2022c). Ni-MOL/In2Se3 heterostructure construction with mixed metal (Ti/Ni) for efficient photocatalytic tetracycline degradation. Chemosphere, 291: 132743

[77]

Liang Q, Zhong L, Du C, Luo Y, Zheng Y, Li S, Yan Q. (2018). Achieving highly efficient electrocatalytic oxygen evolution with ultrathin 2D Fe-doped nickel thiophosphate nanosheets. Nano Energy, 47: 257–265

[78]

Liu L, Chen X L, Cai M, Yan R K, Cui H L, Yang H, Wang J J. (2023). Zn-MOFs composites loaded with silver nanoparticles are used for fluorescence sensing pesticides, Trp, EDA and photocatalytic degradation of organic dyes. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 289: 122228

[79]

Liu S, Qiu Y, Liu Y, Zhang W, Dai Z, Srivastava D, Kumar A, Pan Y, Liu J. (2022). Recent advances in bimetallic metal–organic frameworks (BMOFs): synthesis, applications and challenges. New Journal of Chemistry, 46(29): 13818–13837

[80]

Liu Y, Yang L, Hou Y, Zhang Z, Xiao X, Yue H, Liu X. (2024). 2‐Pyran‐4‐Ylidene malononitrile based conjugated microporous polymers as metal‐free heterogeneous photocatalysts for organic synthesis. Macromolecular Rapid Communications, 45(12): 2400083

[81]

Lu J, Gu S, Li H, Wang Y, Guo M, Zhou G. (2023a). Review on multi-dimensional assembled S-scheme heterojunction photocatalysts. Journal of Materials Science and Technology, 160: 214–239

[82]

Lu W, Wei Z, Gu Z Y, Liu T F, Park J, Park J, Tian J, Zhang M, Zhang Q, Gentle Iii T. . (2014). Tuning the structure and function of metal–organic frameworks via linker design. Chemical Society Reviews, 43(16): 5561–5593

[83]

Lu Y, Li X, Giovanni C, Wang B. (2023b). Construction of MOFs-based nanocomposite membranes for emerging organic contaminants abatement in water. Frontiers of Environmental Science & Engineering, 17(7): 89

[84]

Luo J, Luo X, Gan Y, Xu X, Xu B, Liu Z, Ding C, Cui Y, Sun C. (2023). Advantages of bimetallic organic frameworks in the adsorption, catalysis and detection for water contaminants. Nanomaterials, 13(15): 2194

[85]

Lv S, Sun Y, Liu D, Song C, Wang D. (2023). Construction of S-Scheme heterojunction Ni11(HPO3)8(OH)6/CdS photocatalysts with open framework surface for enhanced H2 evolution activity. Journal of Colloid and Interface Science, 634: 148–158

[86]

Ma C, Gao G, Liu H, Liu Y, Zhang X. (2022). Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 644: 120167

[87]

Makhafola M D, Balogun S A, Modibane K D. (2024). A comprehensive review of bimetallic nanoparticle–graphene oxide and bimetallic nanoparticle–metal–organic framework nanocomposites as photo-, electro-, and photoelectrocatalysts for hydrogen evolution reaction. Energies, 17: 1646

[88]

Masoomi M Y, Morsali A, Dhakshinamoorthy A, Garcia H. (2019). Mixed‐metal MOFs: unique opportunities in metal–organic framework (MOF) functionality and design. Angewandte Chemie, 131(43): 15330–15347

[89]

Meng X, Lv C, Wen X, Hou X, Li C, He J. (2023). Construction of novel bimetallic Ti/Ce-MOFs for ratiometric fluorescence sensing of trace copper and photocatalytic reduction of chromium (VI). Microchemical Journal, 193: 109143

[90]

Mihaylov M, Chakarova K, Andonova S, Drenchev N, Ivanova E, Sabetghadam A, Seoane B, Gascon J, Kapteijn F, Hadjiivanov K. (2016). Adsorption forms of CO2 on MIL-53(Al) and NH2-MIL-53(Al) as revealed by FTIR spectroscopy. Journal of Physical Chemistry C, 120(41): 23584–23595

[91]

Mishra K, Devi N, Siwal S S, Gupta V K, Thakur V K. (2023). Hybrid semiconductor photocatalyst nanomaterials for energy and environmental applications: fundamentals, designing, and prospects. Advanced Sustainable Systems, 7(8): 2300095

[92]

Mondol M M H, Jhung S H. (2021). Adsorptive removal of pesticides from water with metal–organic framework-based materials. Chemical Engineering Journal, 421: 129688

[93]

Nahar S, Zain M F M, Kadhum A a H, Hasan H A, Hasan M R. (2017). Advances in photocatalytic CO2 reduction with water: a aeview. Materials, 10(6): 629

[94]

Nguyen H T T, Tran K N T, Van Tan L, Tran V A, Doan V D, Lee T, Nguyen T D. (2021a). Microwave-assisted solvothermal synthesis of bimetallic metal-organic framework for efficient photodegradation of organic dyes. Materials Chemistry and Physics, 272: 125040

[95]

Nguyen M B, Le G H, Nguyen T D, Nguyen Q K, Pham T T T, Lee T, Vu T A. (2021b). Bimetallic Ag-Zn-BTC/GO composite as highly efficient photocatalyst in the photocatalytic degradation of reactive yellow 145 dye in water. Journal of Hazardous Materials, 420: 126560

[96]

Nguyen M B, Nguyen L H T, Le M T, Tran N Q, Tran N H T, Tran P H, Pham A T T, Tran L D, Doan T L H. (2024). Engineering direct Z-scheme GCN/ bimetallic-MOF heterojunctions as efficient and recyclable photocatalysts for enhancing degradation of RR 195 under visible light. Journal of Industrial and Engineering Chemistry, 134: 217–230

[97]

Nguyen M B, Sy D T, Thoa V T K, Hong N T, Doan H V. (2022). Bimetallic Co-Fe-BTC/CN nanocomposite synthesised via a microwave-assisted hydrothermal method for highly efficient Reactive Yellow 145 dye photodegradation. Journal of the Taiwan Institute of Chemical Engineers, 140: 104543

[98]

Oliveira R A, Castro M A M, Porto D L, Aragão C F S, Souza R P, Silva U C, Bomio M R D, Motta F V. (2024). Immobilization of Bi2MoO6/ZnO heterojunctions on glass substrate: design of drug and dye mixture degradation by solar-driven photocatalysis. Journal of Photochemistry and Photobiology A Chemistry, 452: 115619

[99]

Panda T, Horike S, Hagi K, Ogiwara N, Kadota K, Itakura T, Tsujimoto M, Kitagawa S. (2017). Mechanical alloying of metal–organic frameworks. Angewandte Chemie, 129(9): 2453–2457

[100]

Pavel M, Anastasescu C, State R N, Vasile A, Papa F, Balint I. (2023). Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of Practical Application Potential for Water and Air Cleaning. Materials, 13(2): 380

[101]

Peña R, Romero R, Amado-Piña D, Natividad R. (2024). Cu/TiO2 photo-catalyzed CO2 chemical reduction in a multiphase capillary reactor. Topics in Catalysis, 67: 377–393

[102]

Qi M Y, Conte M, Anpo M, Tang Z R, Xu Y J. (2021). Cooperative coupling of oxidative organic synthesis and hydrogen production over semiconductor-based photocatalysts. Chemical Reviews, 121(21): 13051–13085

[103]

Qi Y, Cai Z, Zheng C, Cheng Z, Fan S, Feng Y S. (2024). Bimetallic synergy significantly enhances the photocatalytic performance of lanthanide porphyrin-based MOFs: efficient photocatalytic oxidation of benzyl alcohol and benzylamine under mild conditions in air. Journal of Catalysis, 429: 115226

[104]

Rana S, Kumar A, Sharma G, Dhiman P, García-Penas A, Stadler F J. (2023). Recent advances in perovskite-based Z-scheme and S-scheme heterojunctions for photocatalytic CO2 reduction. Chemosphere, 339: 139765

[105]

Rana S, Kumar A, Wang T T, Sharma G, Dhiman P, García-Penas A. (2024). A review of carbon material-based Z-scheme and S-scheme heterojunctions for photocatalytic clean energy generation. New Carbon Materials, 39(3): 458–482

[106]

Rauf M A, Ashraf S S. (2009). Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chemical Engineering Journal, 151(1−3): 10–18

[107]

Ren S, Dong J, Duan X, Cao T, Yu H, Lu Y, Zhou D. (2023). A novel (Zr/Ce)UiO-66(NH2)@g-C3N4 Z-scheme heterojunction for boosted tetracycline photodegradation via effective electron transfer. Chemical Engineering Journal, 460: 141884

[108]

Ronda-Lloret M, Pellicer-Carreño I, Grau-Atienza A, Boada R, Diaz-Moreno S, Narciso-Romero J, Serrano-Ruiz J C, Sepúlveda-Escribano A, Ramos-Fernandez E V. (2021). Mixed-valence Ce/Zr metal-organic frameworks: controlling the oxidation state of cerium in one-pot synthesis approach. Advanced Functional Materials, 31(29): 2102582

[109]

Roy D, Neogi S, De S. (2022). Visible light assisted activation of peroxymonosulfate by bimetallic MOF based heterojunction MIL-53(Fe/Co)/CeO2 for atrazine degradation: Pivotal roles of dual redox cycle for reactive species generation. Chemical Engineering Journal, 430: 133069

[110]

Roy S, Pachfule P, Xu Q. (2016). High catalytic performance of MIL-101-immobilized NiRu alloy nanoparticles towards the hydrolytic dehydrogenation of Aammonia borane. European Journal of Inorganic Chemistry, 2016(27): 4353–4357

[111]

Saini I, Singh V, Hamad S, Ram S. (2024). Recent development in bimetallic metal organic frameworks as photocatalytic material. Inorganic Chemistry Communications, 160: 111897

[112]

Shao J, Shao P, Peng M, Li M, Yao Z, Xiong X, Qiu C, Zheng Y, Yang L, Luo X. (2023). A pyrazine based metal-organic framework for selective removal of copper from strongly acidic solutions. Frontiers of Environmental Science & Engineering, 17(3): 33

[113]

Sharma P, Kumar A, Dhiman P, Sharma G, Tessema Mola G, Stadler F J. (2024a). Recent progress in photocatalytic applications of metal tungstates based Z-scheme and S-scheme heterojunctions. Journal of Industrial and Engineering Chemistry, 132: 1–21

[114]

Sharma P, Kumar A, Sharma G, Wang T, Dhiman P, Stadler F J. (2024b). Recent advances in oxygen vacancies rich Z-scheme and S-scheme heterojunctions for water treatment and hydrogen production. Inorganic Chemistry Communications, 161: 112112

[115]

Shen Y, Li Z F, Guo S Y, Shao Y R, Hu T L. (2021). Encapsulation of ultrafine metal–organic framework nanoparticles within multichamber carbon spheres by a two-step double-solvent strategy for high-performance catalysts. ACS Applied Materials & Interfaces, 13(10): 12169–12180

[116]

Shi S, Han X, Liu J, Lan X, Feng J, Li Y, Zhang W, Wang J. (2021). Photothermal-boosted effect of binary CuFe bimetallic magnetic MOF heterojunction for high-performance photo-Fenton degradation of organic pollutants. Science of the Total Environment, 795: 148883

[117]

Shi Y, Wang L, Dong S, Miao X, Zhang M, Sun K, Zhang Y, Cao Z, Sun J. (2022). Wool-ball-like BiOBr@ZnFe-MOF composites for degradation organic pollutant under visible-light: synthesis, performance, characterization and mechanism. Optical Materials, 131: 112580

[118]

Singh N K, Gupta S, Pecharsky V K, Balema V P. (2017). Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks. Journal of Alloys and Compounds, 696: 118–122

[119]

Sun J, Semenchenko L, Lim W T, Ballesteros Rivas M F, Varela-Guerrero V, Jeong H K. (2018). Facile synthesis of Cd-substituted zeolitic-imidazolate framework Cd-ZIF-8 and mixed-metal CdZn-ZIF-8. Microporous and Mesoporous Materials, 264: 35–42

[120]

Sun K, Qian Y, Jiang H L. (2023). Metal-organic frameworks for photocatalytic water splitting and CO2 reduction. Angewandte Chemie International Edition, 62(15): e202217565

[121]

Tan X, Wang S, Han N. (2023). Metal organic frameworks derived functional materials for energy and environment related sustainable applications. Chemosphere, 313: 137330

[122]

Tang L, Lin Q C, Jiang Z, Hu J, Liu Z, Liao W M, Zhou H Q, Chung L H, Xu Z, Yu L, He J. (2023). Nanoscaling and heterojunction for photocatalytic hydrogen evolution by bimetallic metal–organic frameworks. Advanced Functional Materials, 33(22): 2214450

[123]

Tang T, Jin X, Tao X, Huang L, Shang S. (2022). Low-crystalline Ce-based bimetallic MOFs synthesized via DBD plasma for excellent visible photocatalytic performance. Journal of Alloys and Compounds, 895: 162452

[124]

Tong Z, Wang H, An W, Li G, Cui W, Hu J. (2024). FeCu bimetallic metal organic frameworks photo-Fenton synergy efficiently degrades organic pollutants: Structure, properties, and mechanism insight. Journal of Colloid and Interface Science, 661: 1011–1024

[125]

Tripathy S P, Subudhi S, Ray A, Behera P, Bhaumik A, Parida K. (2022). Mixed-valence bimetallic Ce/Zr MOF-based nanoarchitecture: a visible-light-active photocatalyst for ciprofloxacin degradation and hydrogen evolution. Langmuir, 38(5): 1766–1780

[126]

Van Thiet D, Tung N T, Tuan N Q, Tu D N. (2024). Facile synthesis of Cu-Zn bimetallic metal-organic framework for effective catalyst toward electrochemical reduction of CO2. Journal of Alloys and Compounds, 976: 173053

[127]

Vo T K, Hau D C, Nguyen V C, Quang D T, Kim J. (2021). Double-solvent-assisted synthesis of bimetallic CuFe-incorporated MIL-101(Cr) for improved CO-adsorption performance and oxygen-resistant stability. Applied Surface Science, 546: 149087

[128]

Wadhawan S, Jain A, Nayyar J, Mehta S K. (2020). Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: a review. Journal of Water Process Engineering, 33: 101038

[129]

Wang F, Li Q, Xu D. (2017). Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Advanced Energy Materials, 7(23): 1700529

[130]

Wang J, Abazari R, Sanati S, Ejsmont A, Goscianska J, Zhou Y, Dubal D P. (2023). Water‐stable fluorous metal–organic frameworks with open metal sites and amine groups for efficient urea electrocatalytic oxidation. Small, 19(43): 2300673

[131]

Wang J X, Yin J, Shekhah O, Bakr O M, Eddaoudi M, Mohammed O F. (2022a). Energy transfer in metal–organic frameworks for fluorescence sensing. ACS Applied Materials & Interfaces, 14(8): 9970–9986

[132]

Wang M, Yang L, Guo C, Liu X, He L, Song Y, Zhang Q, Qu X, Zhang H, Zhang Z, Fang S. (2018a). Bimetallic Fe/Ti-Based metal–organic framework for persulfate-assisted visible light photocatalytic degradation of orange II. ChemistrySelect, 3(13): 3664–3674

[133]

Wang Q, Astruc D. (2020). State of the art and prospects in metal–organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 120(2): 1438–1511

[134]

Wang T, Li X, Dai W, Fang Y, Huang H. (2015). Enhanced adsorption of dibenzothiophene with zinc/copper-based metal–organic frameworks. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(42): 21044–21050

[135]

Wang X, An C, Zhang S, Wang S, Li J, Zhu Y. (2024a). Metal-free heterostructured 2D/1D polymeric carbon nitride/fibrous phosphorus for boosted photocatalytic hydrogen production from pure water. Separation and Purification Technology, 340: 126733

[136]

Wang Y, Xu F, Zhou L, Li H, Meng Q, Jing L, Tian Z, Hou C. (2024b). 2D N-doped graphene/CoFe MOFs heterostructure functionalized CNF aerogels impart highly efficient photocatalytic oxidation of gaseous VOCs. Journal of Environmental Chemical Engineering, 12(2): 112225

[137]

Wang Y, Xia J, Gao Y. (2022b). Decoding and quantitative detection of antibiotics by a luminescent mixed-lanthanide-organic framework. Frontiers of Environmental Science & Engineering, 16(12): 154

[138]

Wang Z, Wu C, Zhang Z, Chen Y, Deng W, Chen W. (2021). Bimetallic Fe/Co-MOFs for tetracycline elimination. Journal of Materials Science, 56(28): 15684–15697

[139]

Wang Z, Yue X, Xiang Q. (2024c). MOFs-based S-scheme heterojunction photocatalysts. Coordination Chemistry Reviews, 504: 215674

[140]

Wang Z, Zhang J H, Jiang J J, Wang H P, Wei Z W, Zhu X, Pan M, Su C Y. (2018b). A stable metal cluster-metalloporphyrin MOF with high capacity for cationic dye removal. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 6(36): 17698–17705

[141]

Wei F, Wang K, Li W, Ren Q, Qin L, Yu M, Liang Z, Nie M, Wang S. (2023). Preparation of Fe/Ni-MOFs for the adsorption of ciprofloxacin from wastewater. Molecules, 28(11): 4411

[142]

Wu Q, Siddique M S, Guo Y, Wu M, Yang Y, Yang H. (2021a). Low-crystalline bimetallic metal-organic frameworks as an excellent platform for photo-Fenton degradation of organic contaminants: Intensified synergism between hetero-metal nodes. Applied Catalysis B: Environmental, 286: 119950

[143]

Wu Q, Siddique M S, Yu W. (2021b). Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: kinetics and mechanistic studies. Journal of Hazardous Materials, 401: 123261

[144]

Wu X, Bao Z, Yuan B, Wang J, Sun Y, Luo H, Deng S. (2013). Microwave synthesis and characterization of MOF-74 (M=Ni, Mg) for gas separation. Microporous and Mesoporous Materials, 180: 114–122

[145]

Xia P, Liu M, Cheng B, Yu J, Zhang L. (2018). Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2-production activity. ACS Sustainable Chemistry & Engineering, 6(7): 8945–8953

[146]

Xu Y, He L, Yang Z, Lu X, Li C, Yao X, Wu C, Yao Z. (2025). Full solar-spectrum available Z-scheme MOF-on-MOF heterostructure for highly efficient photocatalytic VSCs removal. Separation and Purification Technology, 354: 128942

[147]

Yallur B C, Adimule V, Nabgan W, Raghu M S, Alharthi F A, Jeon B H, Parashuram L. (2023). Solar-light-sensitive Zr/Cu-(H2BDC-BPD) metal organic framework for photocatalytic dye degradation and hydrogen evolution. Surfaces and Interfaces, 36: 102587

[148]

Yan X, Lin B, Ning C, Wang X, Chen Z. (2024). Ternary-role of NiCo-MOFs for boosting the photocatalytic H2-evolution and long term stability of CdS. International Journal of Hydrogen Energy, 51: 1471–1483

[149]

Yang H, He X W, Wang F, Kang Y, Zhang J. (2012). Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye. Journal of Materials Chemistry, 22(41): 21849–21851

[150]

Yang H, Zhang D, Luo Y, Yang W, Zhan X, Yang W, Hou H. (2022). Highly efficient and selective visible‐light driven photoreduction of CO2 to CO by metal–organic frameworks–derived Ni–Co–O porous microrods. Small, 18(40): 2202939

[151]

Yang H, Zhang M, Guan Z, Yang J. (2023a). Cu–Fe bimetallic MOF enhances the selectivity of photocatalytic CO2 reduction toward CO production. Catalysis Science & Technology, 13(21): 6238–6246

[152]

Yang K, Chen L, Duan X, Song G, Sun J, Chen A, Xie X. (2023b). Ligand-controlled bimetallic Co/Fe MOF xerogels for CO2 photocatalytic reduction. Ceramics International, 49(10): 16061–16069

[153]

Yazdani-Aval M, Alizadeh S, Bahrami A, Nematollahi D, Ghorbani-Shahna F. (2021). Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 247: 167841

[154]

Ye Z, Feng S, Wu W, Zhou Y, Wang Y, Dai X, Cao X. (2022). Synthesis of Double MOFs composite material for visible light photocatalytic degradation of tetracycline. Solid State Sciences, 127: 106842

[155]

Younis S A, Lim D K, Kim K H, Deep A. (2020). Metalloporphyrinic metal-organic frameworks: controlled synthesis for catalytic applications in environmental and biological media. Advances in Colloid and Interface Science, 277: 102108

[156]

Yu K, Ahmed I, Won D I, Lee W I, Ahn W S. (2020). Highly efficient adsorptive removal of sulfamethoxazole from aqueous solutions by porphyrinic MOF-525 and MOF-545. Chemosphere, 250: 126133

[157]

Yue X, Cheng L, Fan J, Xiang Q. (2022). 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and Fermi level modulation. Applied Catalysis B: Environmental, 304: 120979

[158]

Zeng Y, Guo N, Li H, Wang Q, Xu X, Yu Y, Han X, Yu H. (2019). Construction of flower-like MoS2/Ag2S/Ag Z-scheme photocatalysts with enhanced visible-light photocatalytic activity for water purification. Science of the Total Environment, 659: 20–32

[159]

Zhang D, Wang M, Wei G, Li R, Wang N, Yang X, Li Z, Zhang Y, Peng Y. (2023). High visible light responsive ZnIn2S4/TiO2–x induced by oxygen defects to boost photocatalytic hydrogen evolution. Applied Surface Science, 622: 156839

[160]

Zhang L, Zhang J, Yu H, Yu J. (2022a). Emerging S-scheme photocatalyst. Advanced Materials, 34(11): 2107668

[161]

Zhang M, Shang Q, Wan Y, Cheng Q, Liao G, Pan Z. (2019). Self-template synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation. Applied Catalysis B: Environmental, 241: 149–158

[162]

Zhang R, Jia K, Xue Z, Hu Z, Yuan N. (2024). Modulation of CdS nanoparticles decorated bimetallic Fe/Mn-MOFs Z-scheme heterojunctions for enhancing photocatalytic degradation of tetracycline. Journal of Alloys and Compounds, 992: 174462

[163]

Zhang X, Yu R, Wang D, Li W, Zhang Y. (2022b). Green photocatalysis of organic pollutants by bimetallic Zn-Zr metal-organic framework catalyst. Frontiers in Chemistry, 10: 918941

[164]

Zhao J H, Wang Y, Tang X, Li Y H, Liu F T, Zhang Y, Li K. (2019). Enhanced photocatalytic hydrogen evolution over bimetallic zeolite imidazole framework-encapsulated CdS nanorods. Dalton Transactions, 48(11): 3560–3565

[165]

Zhao X, Li Z, Dou Y, Jiang X, Bu F, Liu Z, Yu L. (2024). Enhancing photocatalytic performance of Ni-Ti bimetallic metal-organic frameworks for tetracycline degradation under visible light irradiation. Materials Today. Communications, 39: 109015

[166]

Zhen W, Gao H, Tian B, Ma J, Lu G. (2016). Fabrication of low adsorption energy Ni–Mo cluster cocatalyst in metal–organic frameworks for visible photocatalytic hydrogen evolution. ACS Applied Materials & Interfaces, 8(17): 10808–10819

[167]

Zhong H, Ghorbani-Asl M, Ly K H, Zhang J, Ge J, Wang M, Liao Z, Makarov D, Zschech E, Brunner E. . (2020). Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal-organic frameworks. Nature Communications, 11: 1409

[168]

Zhou Y, Abazari R, Chen J, Tahir M, Kumar A, Ikreedeegh R R, Rani E, Singh H, Kirillov A M. (2022). Bimetallic metal–organic frameworks and MOF-derived composites: recent progress on electro- and photoelectrocatalytic applications. Coordination Chemistry Reviews, 451: 214264

[169]

Zhu Q L, Li J, Xu Q. (2013). Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance. Journal of the American Chemical Society, 135(28): 10210–10213

[170]

Zhu T, Jiang J, Wang J, Zhang Z, Zhang J, Chang J. (2022). Fe/Co redox and surficial hydroxyl potentiation in the FeCo2O4 enhanced Co3O4/persulfate process for TC degradation. Journal of Environmental Management, 313: 114855

[171]

Zhu W, Wu Y, Yi G, Su X, Pan Q, Shi S, Oderinde O, Xiao G, Zhang C, Zhang Y. (2023). Synergistic photocatalysis of bimetal mixed ZIFs in enhancing degradation of organic pollutants: experimental and computational studies. Journal of Industrial and Engineering Chemistry, 119: 274–285

[172]

Zou Y, Rukundo E, Feng S, Chen X, Liu Y. (2024). An unlocked core–shell Cu2O/NiCu-MOF ternary heterojunction on g-C3N4 enables highly efficient photocatalytic reduction of CO2 under visible light. Chemical Engineering Journal, 492: 152435

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (6938KB)

4021

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/