Micro and nano-sized bubbles for sanitation and water reuse: from fundamentals to application
Abudukeremu Kadier , Gulizar Kurtoglu Akkaya , Raghuveer Singh , Noorzalila Muhammad Niza , Anand Parkash , Ghizlane Achagri , Prashant Basavaraj Bhagawati , Perumal Asaithambi , Zakaria Al-Qodah , Naser Almanaseer , Magdalena Osial , Sunday Joseph Olusegun , Agnieszka Pregowska , Eduardo Alberto López-Maldonado
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (12) : 147
Micro and nano-sized bubbles for sanitation and water reuse: from fundamentals to application
● MNBs can enhance other water purification methods. ● MNB technology is its ability to eliminate pathogens in water and wastewater sources. ● The stability or MNBs and oxygen transfer depend on the size of bubbles. ● Ozone-MNBs provide an efficient and cost-effective approach to wastewater treatment.
The global scarcity of drinking water is an emerging problem associated with increasing pollution with many chemicals from industry and rapid microbial growth in aquatic systems. Despite the wide availability of conventional water and wastewater treatment methods, many limitations and challenges exist to overcome. Applying technology based on microbubbles (MBs) and nano-bubbles (NBs) offers ecological, fast, and cost-effective water treatment. All due to the high stability and long lifetime of the bubbles in the water, high gas transfer efficiency, free radical generation capacity, and large specific surface areas with interface potential of generated bubbles. MBs and NBs-based technology are attractive solutions in various application areas to improve existing water and wastewater treatment processes including industrial processes. In this paper, recent progress in NBs and MBs technology in water purification and wastewater treatment along with fundamentals, application, challenges, and future research were comperhensively discussed.
Nanobubbles / Microbubbles / MNB / Wastewater treatment / Water pollution utilization
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
Verinda S B, Yulianto E, Gunawan G, Nur M (2021). Ozonated nanobubbles:a potential hospital wastewater treatment during the COVID-19 outbreak in Indonesia to eradicate the persistent SARS-CoV-2 in HWWs? Annals of Tropical Medicine and Public Health, 24(1): 197 |
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
Xue S, Zhang Y, Marhaba T, Zhang W (2022) Aeration and dissolution behavior of oxygen nanobubbles in water. Journal of Colloid and Interface Science, 60: 584–591 |
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
Higher Education Press 2024
/
| 〈 |
|
〉 |