Application of nanozymes in problematic biofilm control: progress, challenges and prospects
Junzheng Zhang, Tong Dou, Yun Shen, Wenrui Wang, Luokai Wang, Xuanhao Wu, Meng Zhang, Dongsheng Wang, Pingfeng Yu
Application of nanozymes in problematic biofilm control: progress, challenges and prospects
● The milestones underlying studies and mechanisms are summarized.
● Problematic biofilms can be removed by nanozymes through multiple strategies.
● Surface reactivity regulation can improve the antibiofilm efficiency of nanozymes.
● Machine learning-assisted nanozyme design can help improve treatment efficiency.
Current microbial control strategies face challenges in keeping up with the escalation of microbial problems due to the presence of biofilms. Therefore, there is an urgent need to develop effective and robust strategies to control problematic biofilms in water treatment and reuse systems. Nanozymes, which have intrinsic biocatalytic activity and broad antibacterial spectra, hold promise for controlling resilient biofilms. This review summarizes the milestones of nanozyme studies and their applications as antibiofilm agents. The mechanisms behind the antibacterial, quorum quenching, and depolymerizing properties of nanozymes with different enzyme activities are discussed. Notably, the surface and composition of nanozymes are crucial for their efficacy in biofilm control; thus, rationally designed nanozymes can increase their effectiveness. Additionally, the challenges of nanozymes as antibiofilm agents in realistic scenarios are investigated along with proposed strategies to overcome these challenges. Prospects of nanozyme-based biofilm control, such as machine learning-assisted nanozyme design, are also discussed. Overall, this review highlights the potential of nanozymes as antibiofilm agents and provides insights into the future design of nanozymes for biofilm control.
Nanozymes / Biofilm / Antibacterial mechanisms / Rational design / Machine learning
[1] |
Ahneman D T, Estrada J G, Lin S, Dreher S D, Doyle A G. (2018). Predicting reaction performance in C–N cross-coupling using machine learning. Science, 360(6385): 186–190
CrossRef
Google scholar
|
[2] |
Ali A, Ovais M, Zhou H, Rui Y, Chen C. (2021). Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials, 275: 120951
CrossRef
Google scholar
|
[3] |
Ali S, Sikdar S, Basak S, Mondal M, Mallick K, Salman Haydar M, Ghosh S, Nath Roy M. (2023). Assemble multi-enzyme mimic tandem Mn3O4@ g-C3N4 for augment ROS elimination and label free detection. Chemical Engineering Journal, 463: 142355
CrossRef
Google scholar
|
[4] |
Arenas J, Tommassen J. (2017). Meningococcal biofilm formation: let’s stick together. Trends in Microbiology, 25(2): 113–124
CrossRef
Google scholar
|
[5] |
Attar F, Shahpar M G, Rasti B, Sharifi M, Saboury A A, Rezayat S M, Falahati M. (2019). Nanozymes with intrinsic peroxidase-like activities. Journal of Molecular Liquids, 278: 130–144
CrossRef
Google scholar
|
[6] |
Augustine N, Kumar P, Thomas S. (2010). Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Archives of Microbiology, 192(12): 1019–1022
CrossRef
Google scholar
|
[7] |
Banerjee I, Pangule R C, Kane R S. (2011). Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6): 690–718
CrossRef
Google scholar
|
[8] |
Butler A, Sandy M. (2009). Mechanistic considerations of halogenating enzymes. Nature, 460(7257): 848–854
CrossRef
Google scholar
|
[9] |
Cao F, Zhang L, Wang H, You Y, Wang Y, Gao N, Ren J, Qu X. (2019). Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angewandte Chemie International Edition, 58(45): 16236–16242
CrossRef
Google scholar
|
[10] |
Chen Y, Rong C, Gao W, Luo S, Guo Y, Gu Y, Yang G, Xu W, Zhu C, Qu L L. (2024). Ag-MXene as peroxidase-mimicking nanozyme for enhanced bacteriocide and cholesterol sensing. Journal of Colloid and Interface Science, 653: 540–550
CrossRef
Google scholar
|
[11] |
Chen Y, Sheng Q, Wei J, Wen Q, Ma D, Li J, Xie Y, Shen J, Sun X. (2022). Novel strategy for membrane biofouling control in MBR with nano-MnO2 modified PVDF membrane by in-situ ozonation. Science of the Total Environment, 808: 151996
CrossRef
Google scholar
|
[12] |
Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X. (2016). A multinuclear metal complex based DNase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angewandte Chemie International Edition, 55(36): 10732–10736
CrossRef
Google scholar
|
[13] |
Chen Z, Yu Y, Gao Y, Zhu Z. (2023). Rational design strategies for nanozymes. ACS Nano, 17(14): 13062–13080
CrossRef
Google scholar
|
[14] |
Ciofu O, Moser C, Jensen P Ø, Høiby N. (2022). Tolerance and resistance of microbial biofilms. Nature Reviews. Microbiology, 20(10): 621–635
CrossRef
Google scholar
|
[15] |
Ciofu O, Rojo-Molinero E, Macià M D, Oliver A. (2017). Antibiotic treatment of biofilm infections. Acta Pathologica et Microbiologica Scandinavica. Supplement, 125(4): 304–319
CrossRef
Google scholar
|
[16] |
Cornelissen A, Ceyssens P J, Krylov V N, Noben J P, Volckaert G, Lavigne R. (2012). Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology, 434(2): 251–256
CrossRef
Google scholar
|
[17] |
Costerton J W, Stewart P S, Greenberg E P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418): 1318–1322
CrossRef
Google scholar
|
[18] |
Dang Y, Wang G, Su G, Lu Z, Wang Y, Liu T, Pu X, Wang X, Wu C, Song C.
CrossRef
Google scholar
|
[19] |
Danhorn T, Fuqua C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61(1): 401–422
CrossRef
Google scholar
|
[20] |
Das T, Krom B P, Van Der Mei H C, Busscher H J, Sharma P K. (2011). DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter, 7(6): 2927–2935
CrossRef
Google scholar
|
[21] |
Davies D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews. Drug Discovery, 2(2): 114–122
CrossRef
Google scholar
|
[22] |
Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(5361): 295–298
CrossRef
Google scholar
|
[23] |
Deng Q, Sun P, Zhang L, Liu Z, Wang H, Ren J, Qu X. (2019). Porphyrin MOF dots–based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Advanced Functional Materials, 29(30): 1903018
CrossRef
Google scholar
|
[24] |
Derlon N, Grutter A, Brandenberger F, Sutter A, Kuhlicke U, Neu T R, Morgenroth E. (2016). The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance. Water Research, 102: 63–72
CrossRef
Google scholar
|
[25] |
Desmond P, Best J P, Morgenroth E, Derlon N. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research, 132: 211–221
CrossRef
Google scholar
|
[26] |
Dong Q, Li Z, Xu J, Yuan Q, Chen L, Chen Z. (2022). Versatile graphitic nanozymes for magneto actuated cascade reaction-enhanced treatment of S. mutans biofilms. Nano Research, 15(11): 9800–9808
CrossRef
Google scholar
|
[27] |
Du T, Xiao Z, Zhang G, Wei L, Cao J, Zhang Z, Li X, Song Z, Wang W, Liu J.
CrossRef
Google scholar
|
[28] |
Eberl L, Winson M K, Sternberg C, Stewart G S, Christiansen G, Chhabra S R, Bycroft B, Williams P, Molin S, Givskov M. (1996). Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 20(1): 127–136
CrossRef
Google scholar
|
[29] |
EickhoffM J, Bassler B L (2018). SnapShot: bacterial quorum sensing. Cell, 174(5): 1328–1328 e.1
|
[30] |
FanK, GaoL, WeiH, JiangB, WangD, Zhang R, HeJ, MengX, WangZ, FanH, et al. (2023). Nanozymes. Progress in Chemistry, 35(1): 1–8787
|
[31] |
Fang G, Kang R, Cai S, Ge C. (2023). Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: progress, challenges and prospects. Nano Today, 48: 101755
CrossRef
Google scholar
|
[32] |
Feng Q, Luo L, Chen X, Zhang K, Fang F, Xue Z, Li C, Cao J, Luo J. (2021). Facilitating biofilm formation of Pseudomonas aeruginosa via exogenous N-Acy-L-homoserine lactones stimulation: Regulation on the bacterial motility, adhesive ability and metabolic activity. Bioresource Technology, 341: 125727
CrossRef
Google scholar
|
[33] |
Flemming H C, Van Hullebusch E D, Neu T R, Nielsen P H, Seviour T, Stoodley P, Wingender J, Wuertz S. (2023). The biofilm matrix: multitasking in a shared space. Nature Reviews Microbiology, 21(2): 70–86
CrossRef
Google scholar
|
[34] |
Forier K, Messiaen A S, Raemdonck K, Nelis H, De Smedt S, Demeester J, Coenye T, Braeckmans K. (2014). Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled Release, 195: 21–28
CrossRef
Google scholar
|
[35] |
Fulaz S, Vitale S, Quinn L, Casey E. (2019). Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends in Microbiology, 27(11): 915–926
CrossRef
Google scholar
|
[36] |
Gao F, Shao T, Yu Y, Xiong Y, Yang L. (2021). Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nature Communications, 12(1): 745
CrossRef
Google scholar
|
[37] |
Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha P C, Cormode D P, Koo H. (2016). Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 101: 272–284
CrossRef
Google scholar
|
[38] |
Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9): 577–583
CrossRef
Google scholar
|
[39] |
Gao M, Xu B, Huang Y, Cao J, Yang L, Liu X, Djumaev A, Wu D, Shoxiddinova M, Cai X.
CrossRef
Google scholar
|
[40] |
Gao X, Liu Y, Li Y, Jin B, Jiang P, Chen X, Wei C, Sheng J, Liu Y N, Li J.
CrossRef
Google scholar
|
[41] |
Ghosh S, Roy P, Karmodak N, Jemmis E D, Mugesh G. (2018). Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angewandte Chemie International Edition, 57(17): 4510–4515
CrossRef
Google scholar
|
[42] |
Green J J, Elisseeff J H. (2016). Mimicking biological functionality with polymers for biomedical applications. Nature, 540(7633): 386–394
CrossRef
Google scholar
|
[43] |
Guo W, Wang Y, Zhang K, Dai X, Qiao Z, Liu Z, Yu B, Zhao N, Xu F J. (2023). Near-infrared light-propelled MOF@Au nanomotors for enhanced penetration and sonodynamic therapy of bacterial biofilms. Chemistry of Materials, 35(17): 6853–6864
CrossRef
Google scholar
|
[44] |
Gupta A, Das R, Makabenta J M, Gupta A, Zhang X, Jeon T, Huang R, Liu Y, Gopalakrishnan S, Milán R C.
CrossRef
Google scholar
|
[45] |
Gupta A, Das R, Yesilbag Tonga G, Mizuhara T, Rotello V M. (2018). Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano, 12(1): 89–94
CrossRef
Google scholar
|
[46] |
Habiba K, Bracho-Rincon D P, Gonzalez-Feliciano J A, Villalobos-Santos J C, Makarov V I, Ortiz D, Avalos J A, Gonzalez C I, Weiner B R, Morell G. (2015). Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Applied Materials Today, 1(2): 80–87
CrossRef
Google scholar
|
[47] |
Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik T E, Gural’skiy I Y A, Pfitzner F, Link T, Schenk S.
CrossRef
Google scholar
|
[48] |
Hou F, Zhang T, Peng Y, Cao X, Pang H, Shao Y, Lu X, Yuan J, Chen X, Zhang J. (2022). Partial anammox achieved in full scale biofilm process for typical domestic wastewater treatment. Frontiers of Environmental Science & Engineering, 16(3): 33
CrossRef
Google scholar
|
[49] |
Hou J, Xianyu Y. (2023). Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity. Small, 19(42): 2302640
CrossRef
Google scholar
|
[50] |
Hu D, Deng Y, Jia F, Jin Q, Ji J. (2020). Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano, 14(1): 347–359
CrossRef
Google scholar
|
[51] |
Hu H, Kang X, Shan Z, Yang X, Bing W, Wu L, Ge H, Ji H. (2022). A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections. Nanoscale, 14(7): 2676–2685
CrossRef
Google scholar
|
[52] |
Hu M, Korschelt K, Viel M, Wiesmann N, Kappl M, Brieger J, Landfester K, Therien-Aubin H, Tremel W. (2018). Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Applied Materials & Interfaces, 10(51): 44722–44730
CrossRef
Google scholar
|
[53] |
Huang L, Chen J, Gan L, Wang J, Dong S. (2019a). Single-atom nanozymes. Science Advances, 5(5): eaav5490
CrossRef
Google scholar
|
[54] |
Huang R, Li C H, Cao-Milán R, He L D, Makabenta J M, Zhang X, Yu E, Rotello V M. (2020). Polymer-based bioorthogonal nanocatalysts for the treatment of bacterial biofilms. Journal of the American Chemical Society, 142(24): 10723–10729
CrossRef
Google scholar
|
[55] |
Huang T, Yu Z, Yuan B, Jiang L, Liu Y, Sun X, Liu P, Jiang W, Tang J. (2022). Synergy of light-controlled Pd nanozymes with NO therapy for biofilm elimination and diabetic wound treatment acceleration. Materials Today. Chemistry, 24: 100831
CrossRef
Google scholar
|
[56] |
Huang Y, Ren J, Qu X. (2019b). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 119(6): 4357–4412
CrossRef
Google scholar
|
[57] |
Jegel O, Pfitzner F, Gazanis A, Oberländer J, Pütz E, Lange M, Von Der Au M, Meermann B, Mailänder V, Klasen A.
CrossRef
Google scholar
|
[58] |
Ji H, Hu H, Tang Q, Kang X, Liu X, Zhao L, Jing R, Wu M, Li G, Zhou X.
CrossRef
Google scholar
|
[59] |
Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao G F.
CrossRef
Google scholar
|
[60] |
Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, Lin Y. (2020). When nanozymes meet single-atom catalysis. Angewandte Chemie International Edition, 59(7): 2565–2576
CrossRef
Google scholar
|
[61] |
Jin L, Cao F, Gao Y, Zhang C, Qian Z, Zhang J, Mao Z. (2023). Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Advanced Materials, 35(30): 2301349
CrossRef
Google scholar
|
[62] |
Jin X, Shan J, Zhao J, Wang T, Zhang W, Yang S, Qian H, Cheng L, Chen X L, Wang X. (2024). Bimetallic oxide Cu–Fe3O4 nanoclusters with multiple enzymatic activities for wound infection treatment and wound healing. Acta Biomaterialia, 173: 403–419
CrossRef
Google scholar
|
[63] |
Jin Y, Zhao B, Guo W, Li Y, Min J, Miao W. (2022). Penetration and photodynamic ablation of drug-resistant biofilm by cationic iron oxide nanoparticles. Journal of Controlled Release, 348: 911–923
CrossRef
Google scholar
|
[64] |
Johnson L R. (2008). Microcolony and biofilm formation as a survival strategy for bacteria. Journal of Theoretical Biology, 251(1): 24–34
CrossRef
Google scholar
|
[65] |
Kilic T, Bali E B. (2023). Biofilm control strategies in the light of biofilm-forming microorganisms. World Journal of Microbiology & Biotechnology, 39(5): 131
CrossRef
Google scholar
|
[66] |
Kim J H, Choi D C, Yeon K M, Kim S R, Lee C H. (2011). Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environmental Science & Technology, 45(4): 1601–1607
CrossRef
Google scholar
|
[67] |
Kim U, Kim J H, Oh S W. (2022). Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Critical Reviews in Food Science and Nutrition, 62(21): 5783–5793
CrossRef
Google scholar
|
[68] |
Kolter R, Greenberg E P. (2006). The superficial life of microbes. Nature, 441(7091): 300–302
CrossRef
Google scholar
|
[69] |
Lee B, Yeon K M, Shim J, Kim S R, Lee C H, Lee J, Kim J. (2014). Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica. Biomacromolecules, 15(4): 1153–1159
CrossRef
Google scholar
|
[70] |
Li S, Zhou Z, Tie Z, Wang B, Ye M, Du L, Cui R, Liu W, Wan C, Liu Q.
CrossRef
Google scholar
|
[71] |
Li W, Tian Y, Chen J, Wang X, Zhou Y, Shi N. (2022b). Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes. Frontiers of Environmental Science & Engineering, 16(6): 72
CrossRef
Google scholar
|
[72] |
Li X, Wang L, Du D, Ni L, Pan J, Niu X. (2019a). Emerging applications of nanozymes in environmental analysis: Opportunities and trends. Trends in Analytical Chemistry, 120: 115653
CrossRef
Google scholar
|
[73] |
Li X, Wang X, Lee D J, Yan W M. (2019b). Highly heterogeneous interior structure of biofilm wastewater for enhanced pollutant removals. Bioresource Technology, 291: 121919
CrossRef
Google scholar
|
[74] |
Li Y, Zhang R, Yan X, Fan K. (2023). Machine learning facilitating the rational design of nanozymes. Journal of Materials Chemistry. B, 11(28): 6466–6477
CrossRef
Google scholar
|
[75] |
Ling P, Yang P, Gao X, Sun X, Gao F. (2022). ROS generation strategy based on biomimetic nanosheets by self-assembly of nanozymes. Journal of Materials Chemistry. B, 10(46): 9607–9612
CrossRef
Google scholar
|
[76] |
Liu B, Liu J. (2017). Surface modification of nanozymes. Nano Research, 10(4): 1125–1148
CrossRef
Google scholar
|
[77] |
Liu D, Xi Y, Yu S, Yang K, Zhang F, Yang Y, Wang T, He S, Zhu Y, Fan Z.
CrossRef
Google scholar
|
[78] |
Liu G, Zhang Y, Liu X, Hammes F, Liu W T, Medema G, Wessels P, Van Der Meer W. (2020). 360-degree distribution of biofilm quantity and community in an operational unchlorinated drinking water distribution pipe. Environmental Science & Technology, 54(9): 5619–5628
CrossRef
Google scholar
|
[79] |
Liu H, Zhao D, Zhang C, Li M, Zhang S, Xiao X. (2023b). One-step preparation of MnO2 nanozyme by PS-CDs for antibacterial, inhibition of S. aureus biofilm growth and colorimetric assay of tiopronin. Journal of Industrial and Engineering Chemistry, 125: 127–135
CrossRef
Google scholar
|
[80] |
Liu P, Wu Y, Mehrjou B, Tang K, Wang G, Chu P K. (2022). Versatile phenol-incorporated nanoframes for in situ antibacterial activity based on oxidative and physical damages. Advanced Functional Materials, 32(17): 2110635
CrossRef
Google scholar
|
[81] |
Liu Q, Kuzuya A, Wang Z G. (2023c). Supramolecular enzyme-mimicking catalysts self-assembled from peptides. iScience, 26(1): 105831
CrossRef
Google scholar
|
[82] |
Liu W, Jacquiod S, Brejnrod A, Russel J, Burmølle M, Sørensen S J. (2019a). Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. ISME Journal, 13(12): 3054–3066
CrossRef
Google scholar
|
[83] |
Liu Y, Busscher H J, Zhao B, Li Y, Zhang Z, Van Der Mei H C, Ren Y, Shi L. (2016). Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in Staphylococcal biofilms. ACS Nano, 10(4): 4779–4789
CrossRef
Google scholar
|
[84] |
Liu Y, Shi L, Su L, Van Der Mei H C, Jutte P C, Ren Y, Busscher H J. (2019b). Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 48(2): 428–446
CrossRef
Google scholar
|
[85] |
Liu Z, Wang F, Ren J, Qu X. (2019c). A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 208: 21–31
CrossRef
Google scholar
|
[86] |
Livieri M, Mancin F, Saielli G, Chin J, Tonellato U. (2007). Mimicking enzymes: cooperation between organic functional groups and metal ions in the cleavage of phosphate diesters. Chemistry, 13(8): 2246–2256
CrossRef
Google scholar
|
[87] |
Lohse M B, Gulati M, Johnson A D, Nobile C J. (2018). Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 16(1): 19–31
CrossRef
Google scholar
|
[88] |
Lu C, Zandieh M, Zheng J, Liu J. (2023). Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase. Nanoscale, 15(18): 8189–8196
CrossRef
Google scholar
|
[89] |
Lu J, Hu X, Ren L. (2022). Biofilm control strategies in food industry: inhibition and utilization. Trends in Food Science & Technology, 123: 103–113
CrossRef
Google scholar
|
[90] |
Luo Q, Li J, Wang W, Li Y, Li Y, Huo X, Li J, Wang N. (2022). Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater. ACS Applied Materials & Interfaces, 14(12): 14218–14225
CrossRef
Google scholar
|
[91] |
Ma M, Wang R, Xu L, Du J, Xu M, Liu S. (2021). Emerging investigator series: enhanced peroxidase-like activity and improved antibacterial performance of palladium nanosheets by an alginate-corona. Environmental Science: Nano, 8(12): 3511–3523
CrossRef
Google scholar
|
[92] |
Mahto K U, Vandana M, Priyadarshanee D P, Samantaray S. (2022). Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: beyond the protective role in survivability. Journal of Cleaner Production, 379: 134759
CrossRef
Google scholar
|
[93] |
Mathieu J, Yu P, Zuo P, Da Silva M L B, Alvarez P J J. (2019). Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Accounts of Chemical Research, 52(4): 849–857
CrossRef
Google scholar
|
[94] |
Matias R R, Sepúlveda A M G, Batista B N, De Lucena J M V M, Albuquerque P M. (2021). Degradation of Staphylococcus aureus biofilm using hydrolytic enzymes produced by amazonian endophytic fungi. Applied Biochemistry and Biotechnology, 193(7): 2145–2161
CrossRef
Google scholar
|
[95] |
Mazurenko S, Prokop Z, Damborsky J. (2020). Machine learning in enzyme engineering. ACS Catalysis, 10(2): 1210–1223
CrossRef
Google scholar
|
[96] |
Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y. (2021). An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 418: 129431
CrossRef
Google scholar
|
[97] |
Melander R J, Basak A K, Melander C. (2020). Natural products as inspiration for the development of bacterial antibiofilm agents. Natural Product Reports, 37(11): 1454–1477
CrossRef
Google scholar
|
[98] |
Murray K E, Manitou-Alvarez E I, Inniss E C, Healy F G, Bodour A A. (2015). Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells. Frontiers of Environmental Science & Engineering, 9(1): 39–49
CrossRef
Google scholar
|
[99] |
Nobile C J, Johnson A D. (2015). Candida albicans biofilms and human disease. Annual Review of Microbiology, 69(1): 71–92
CrossRef
Google scholar
|
[100] |
Nothling M D, Xiao Z, Bhaskaran A, Blyth M T, Bennett C W, Coote M L, Connal L A. (2019). Synthetic catalysts inspired by hydrolytic enzymes. ACS Catalysis, 9(1): 168–187
CrossRef
Google scholar
|
[101] |
Pan T, Chen H, Gao X, Wu Z, Ye Y, Shen Y. (2022). Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. Journal of Hazardous Materials, 435: 128996
CrossRef
Google scholar
|
[102] |
Pechaud Y, Derlon N, Queinnec I, Bessiere Y, Paul E. (2024). Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties. Water Research, 250: 120985
CrossRef
Google scholar
|
[103] |
Peulen T O, Wilkinson K J. (2011). Diffusion of nanoparticles in a biofilm. Environmental Science & Technology, 45(8): 3367–3373
CrossRef
Google scholar
|
[104] |
Price J E, Chapman M R. (2018). Phaged and confused by biofilm matrix. Nature Microbiology, 3(1): 2–3
CrossRef
Google scholar
|
[105] |
Proctor C R, Reimann M, Vriens B, Hammes F. (2018). Biofilms in shower hoses. Water Research, 131: 274–286
CrossRef
Google scholar
|
[106] |
Pütz E, Gazanis A, Keltsch N G, Jegel O, Pfitzner F, Heermann R, Ternes T A, Tremel W. (2022). Communication breakdown: into the molecular mechanism of biofilm inhibition by CeO2 nanocrystal enzyme mimics and how it can be exploited. ACS Nano, 16(10): 16091–16108
CrossRef
Google scholar
|
[107] |
Qi R, Cui Y, Liu J, Wang X, Yuan H. (2023). Recent advances of composite nanomaterials for antibiofilm application. Nanomaterials, 13(19): 2725
CrossRef
Google scholar
|
[108] |
Qi Y, Li J, Liang R, Ji S, Li J, Liu M. (2017). Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system. Frontiers of Environmental Science & Engineering, 11(2): 14
CrossRef
Google scholar
|
[109] |
Rajesh P S, Rai V R. (2015). Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66. International Journal of Biological Macromolecules, 81: 1046–1052
CrossRef
Google scholar
|
[110] |
Rumbaugh K P, Sauer K. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10): 571–586
CrossRef
Google scholar
|
[111] |
Sauer K, Stoodley P, Goeres D M, Hall-Stoodley L, Burmolle M, Stewart P S, Bjarnsholt T. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 20(10): 608–620
CrossRef
Google scholar
|
[112] |
Scott S, Zhao H, Dey A, Gunnoe T B. (2020). Nano-apples and orange-zymes. ACS Catalysis, 10(23): 14315–14317
CrossRef
Google scholar
|
[113] |
Shen Y, Nie C, Pan T, Zhang W, Yang H, Ye Y, Wang X. (2023). A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy. Acta Biomaterialia, 168: 580–592
CrossRef
Google scholar
|
[114] |
Si X, Quan X. (2017). Prevention of multi-species wastewater biofilm formation using vanillin and EPS disruptors through non-microbicidal mechanisms. International Biodeterioration & Biodegradation, 116: 211–218
CrossRef
Google scholar
|
[115] |
Silva S, Negri M, Henriques M, Oliveira R, Williams D W, Azeredo J. (2011). Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 19(5): 241–247
CrossRef
Google scholar
|
[116] |
Somerville S V, Li Q, Wordsworth J, Jamali S, Eskandarian M R, Tilley R D, Gooding J J. (2024). Approaches to improving the selectivity of nanozymes. Advanced Materials, 36: 2211288
CrossRef
Google scholar
|
[117] |
Stoodley P, Sauer K, Davies D G, Costerton J W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56(1): 187–209
CrossRef
Google scholar
|
[118] |
Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. (2015). Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angewandte Chemie International Edition, 54(24): 7176–7180
CrossRef
Google scholar
|
[119] |
Sun Z, Xi J, Yang C, Cong W. (2022). Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review. Frontiers of Environmental Science & Engineering, 16(7): 87
CrossRef
Google scholar
|
[120] |
Tao Y, Ju E, Ren J, Qu X. (2015). Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Advanced Materials, 27(6): 1097–1104
CrossRef
Google scholar
|
[121] |
Teirlinck E, Xiong R, Brans T, Forier K, Fraire J, Van Acker H, Matthijs N, De Rycke R, De Smedt S C, Coenye T.
CrossRef
Google scholar
|
[122] |
Tian R, Li Y, Xu J, Hou C, Luo Q, Liu J. (2022). Recent development in the design of artificial enzymes through molecular imprinting technology. Journal of Materials Chemistry. B, 10(35): 6590–6606
CrossRef
Google scholar
|
[123] |
Urban P, Truan G, Pompon D. (2015). Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes. Biochimica et Biophysica Acta, 1850(4): 696–707
CrossRef
Google scholar
|
[124] |
Vishwakarma A, Dang F, Ferrell A, Barton H A, Joy A. (2021). Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms. Journal of the American Chemical Society, 143(25): 9440–9449
CrossRef
Google scholar
|
[125] |
Vishwakarma V. (2020). Impact of environmental biofilms: Industrial components and its remediation. Journal of Basic Microbiology, 60(3): 198–206
CrossRef
Google scholar
|
[126] |
Wang A, Weldrick P J, Madden L A, Paunov V N. (2021a). Biofilm-infected human clusteroid three-dimensional coculture platform to replace animal models in testing antimicrobial nanotechnologies. ACS Applied Materials & Interfaces, 13(19): 22182–22194
CrossRef
Google scholar
|
[127] |
Wang F, Tan J, Zhang S, Zhou Y, He D, Deng L. (2021b). Efficient eradication of bacterial biofilms with highly specific graphene-based nanocomposite sheets. ACS Biomaterials Science & Engineering, 7(11): 5118–5128
CrossRef
Google scholar
|
[128] |
Wang H, Hu C, Hu X, Yang M, Qu J. (2012). Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Research, 46(4): 1070–1078
CrossRef
Google scholar
|
[129] |
Wang H, Wan K, Shi X. (2019). Recent advances in nanozyme research. Advanced Materials, 31(45): 1805368
CrossRef
Google scholar
|
[130] |
Wang L, Gao F, Wang A, Chen X, Li H, Zhang X, Zheng H, Ji R, Li B, Yu X.
CrossRef
Google scholar
|
[131] |
Wang W, Luo Q, Li J, Li L, Li Y, Huo X, Du X, Li Z, Wang N. (2022a). Photothermal-amplified single atom nanozyme for biofouling control in seawater. Advanced Functional Materials, 32(36): 2205461
CrossRef
Google scholar
|
[132] |
Wang W, Luo Q, Li J, Li Y, Wu R, Li Y, Huo X, Wang N. (2022b). Single-atom tungsten engineering of MOFs with biomimetic antibiofilm activity toward robust uranium extraction from seawater. Chemical Engineering Journal, 431: 133483
CrossRef
Google scholar
|
[133] |
Wang W, Luo Q, Li L, Chen S, Wang Y, Du X, Wang N. (2023). Hybrid nickel-molybdenum bimetallic sulfide nanozymes for antibacterial and antibiofouling applications. Advanced Composites and Hybrid Materials, 6(4): 139
CrossRef
Google scholar
|
[134] |
Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X. (2017). Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials, 113: 145–157
CrossRef
Google scholar
|
[135] |
Wang Z, Zhang R, Yan X, Fan K. (2020b). Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Materials Today, 41: 81–119
CrossRef
Google scholar
|
[136] |
Wang Z, Zhang Y, Chen S, Qu Y, Tang M, Wang W, Li W, Gu L. (2024). Multifunctional CeO2 nanozymes for mitigating high-glucose induced senescence and enhancing bone regeneration in type 2 diabetes mellitus. Chemical Engineering Journal, 485: 149842
CrossRef
Google scholar
|
[137] |
Watnick P, Kolter R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182(10): 2675–2679
CrossRef
Google scholar
|
[138] |
Wei H, Gao L, Fan K, Liu J, He J, Qu X, Dong S, Wang E, Yan X. (2021). Nanozymes: a clear definition with fuzzy edges. Nano Today, 40: 101269
CrossRef
Google scholar
|
[139] |
Wei J N, Duvenaud D, Aspuru-Guzik A. (2016). Neural networks for the prediction of organic chemistry reactions. ACS Central Science, 2(10): 725–732
CrossRef
Google scholar
|
[140] |
Wei Y, Wu J, Wu Y, Liu H, Meng F, Liu Q, Midgley A C, Zhang X, Qi T, Kang H.
CrossRef
Google scholar
|
[141] |
Wu B, Haney E F, Akhoundsadegh N, Pletzer D, Trimble M J, Adriaans A E, Nibbering P H, Hancock R E W. (2021). Human organoid biofilm model for assessing antibiofilm activity of novel agents. NPJ Biofilms and Microbiomes, 7(1): 8
CrossRef
Google scholar
|
[142] |
Wu H, Wei M, Hu S, Cheng P, Shi S, Xia F, Xu L, Yin L, Liang G, Li F.
CrossRef
Google scholar
|
[143] |
Wu J, Li S, Wei H. (2018). Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horizons, 3(4): 367–382
CrossRef
Google scholar
|
[144] |
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. (2019a). Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chemical Society Reviews, 48(4): 1004–1076
CrossRef
Google scholar
|
[145] |
Wu Y K, Cheng N C, Cheng C M. (2019b). Biofilms in chronic wounds: pathogenesis and diagnosis. Trends in Biotechnology, 37(5): 505–517
CrossRef
Google scholar
|
[146] |
Xi Z, Wei K, Wang Q, Kim M J, Sun S, Fung V, Xia X. (2021). Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. Journal of the American Chemical Society, 143(7): 2660–2664
CrossRef
Google scholar
|
[147] |
Xiao Y, Zou H, Li J, Song T, Lv W, Wang W, Wang Z, Tao S. (2022). Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes, 14(1): 2039048
CrossRef
Google scholar
|
[148] |
Xu D, Gu T, Lovley D R. (2023a). Microbially mediated metal corrosion. Nature Reviews Microbiology, 21(11): 705–718
CrossRef
Google scholar
|
[149] |
Xu D, Wu L, Yao H, Zhao L. (2022). Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small, 18(37): 2203400
CrossRef
Google scholar
|
[150] |
Xu Y, Luo Y, Weng Z, Xu H, Zhang W, Li Q, Liu H, Liu L, Wang Y, Liu X.
CrossRef
Google scholar
|
[151] |
Yan X, Sun J, Wang Y, Zhang Z, Zhang C, Li W, Xu J, Dai X, Ni B J. (2023). Low-rate ferrate dosing damages the microbial biofilm structure through humic substances destruction and facilitates the sewer biofilm control. Water Research, 235: 119834
CrossRef
Google scholar
|
[152] |
Yang W, Yang X, Zhu L, Chu H, Li X, Xu W. (2021). Nanozymes: activity origin, catalytic mechanism, and biological application. Coordination Chemistry Reviews, 448: 214170
CrossRef
Google scholar
|
[153] |
Yang Y R, Wang X D, Chang J S, Lee D J. (2022). Homogeneously and heterogeneously structured biofilm models for wastewater treatment. Bioresource Technology, 362: 127763
CrossRef
Google scholar
|
[154] |
Ye Z, Fan Y, Zhu T, Cao D, Hu X, Xiang S, Li J, Guo Z, Chen X, Tan K.
CrossRef
Google scholar
|
[155] |
Yin W, Xu S, Wang Y, Zhang Y, Chou S H, Galperin M Y, He J. (2021). Ways to control harmful biofilms: prevention, inhibition, and eradication. Critical Reviews in Microbiology, 47(1): 57–78
CrossRef
Google scholar
|
[156] |
Yuan J P, Guan Z J, Lin H Y, Yan B, Liu K K, Zhou H C, Fang Y. (2023). Modeling the enzyme specificity by molecular cages through regulating reactive oxygen species evolution. Angewandte Chemie International Edition, 62(31): e202303896
CrossRef
Google scholar
|
[157] |
Zahrt A F, Henle J J, Rose B T, Wang Y, Darrow W T, Denmark S E. (2019). Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science, 363(6424): eaau5631
CrossRef
Google scholar
|
[158] |
Zhang P, Chen Y P, Qiu J H, Dai Y Z, Feng B. (2019). Imaging the microprocesses in biofilm matrices. Trends in Biotechnology, 37(2): 214–226
CrossRef
Google scholar
|
[159] |
Zhang R, Xue B, Tao Y, Zhao H, Zhang Z, Wang X, Zhou X, Jiang B, Yang Z, Yan X.
CrossRef
Google scholar
|
[160] |
Zhao X, Liu X, Xu X, Fu Y V. (2017). Microbe social skill: the cell-to-cell communication between microorganisms. Science Bulletin, 62(7): 516–524
CrossRef
Google scholar
|
[161] |
Zhou C, Wang Q, Jiang J, Gao L. (2022a). Nanozybiotics: nanozyme-based antibacterials against bacterial resistance. Antibiotics, 11(3): 390
CrossRef
Google scholar
|
[162] |
Zhou Z, He W, Chao H, Wang H, Su P, Song J, Yang Y. (2022b). Insertion of hemin into metal–organic frameworks: mimicking natural peroxidase microenvironment for the rapid ultrasensitive detection of uranium. Analytical Chemistry, 94(18): 6833–6841
CrossRef
Google scholar
|
[163] |
Zhu G, Zheng P, Wang M, Chen W, Li C. (2022). A novel CuCoS nanozyme for synergistic photothermal and chemodynamic therapy of tumors. Inorganic Chemistry Frontiers, 9(5): 1006–1015
CrossRef
Google scholar
|
[164] |
Zhu Z, Wang L, Li Q. (2018). A bioactive poly (vinylidene fluoride)/graphene oxide@acylase nanohybrid membrane: Enhanced anti-biofouling based on quorum quenching. Journal of Membrane Science, 547: 110–122
CrossRef
Google scholar
|
[165] |
Zhuang J, Midgley A C, Wei Y, Liu Q, Kong D, Huang X. (2024). Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Advanced Materials, 36(10): 2210848
CrossRef
Google scholar
|
/
〈 | 〉 |