Application of nanozymes in problematic biofilm control: progress, challenges and prospects

Junzheng Zhang , Tong Dou , Yun Shen , Wenrui Wang , Luokai Wang , Xuanhao Wu , Meng Zhang , Dongsheng Wang , Pingfeng Yu

Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 136

PDF (18049KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (11) : 136 DOI: 10.1007/s11783-024-1896-0
REVIEW ARTICLE

Application of nanozymes in problematic biofilm control: progress, challenges and prospects

Author information +
History +
PDF (18049KB)

Abstract

● The milestones underlying studies and mechanisms are summarized.

● Problematic biofilms can be removed by nanozymes through multiple strategies.

● Surface reactivity regulation can improve the antibiofilm efficiency of nanozymes.

● Machine learning-assisted nanozyme design can help improve treatment efficiency.

Current microbial control strategies face challenges in keeping up with the escalation of microbial problems due to the presence of biofilms. Therefore, there is an urgent need to develop effective and robust strategies to control problematic biofilms in water treatment and reuse systems. Nanozymes, which have intrinsic biocatalytic activity and broad antibacterial spectra, hold promise for controlling resilient biofilms. This review summarizes the milestones of nanozyme studies and their applications as antibiofilm agents. The mechanisms behind the antibacterial, quorum quenching, and depolymerizing properties of nanozymes with different enzyme activities are discussed. Notably, the surface and composition of nanozymes are crucial for their efficacy in biofilm control; thus, rationally designed nanozymes can increase their effectiveness. Additionally, the challenges of nanozymes as antibiofilm agents in realistic scenarios are investigated along with proposed strategies to overcome these challenges. Prospects of nanozyme-based biofilm control, such as machine learning-assisted nanozyme design, are also discussed. Overall, this review highlights the potential of nanozymes as antibiofilm agents and provides insights into the future design of nanozymes for biofilm control.

Graphical abstract

Keywords

Nanozymes / Biofilm / Antibacterial mechanisms / Rational design / Machine learning

Cite this article

Download citation ▾
Junzheng Zhang, Tong Dou, Yun Shen, Wenrui Wang, Luokai Wang, Xuanhao Wu, Meng Zhang, Dongsheng Wang, Pingfeng Yu. Application of nanozymes in problematic biofilm control: progress, challenges and prospects. Front. Environ. Sci. Eng., 2024, 18(11): 136 DOI:10.1007/s11783-024-1896-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahneman D T, Estrada J G, Lin S, Dreher S D, Doyle A G. (2018). Predicting reaction performance in C–N cross-coupling using machine learning. Science, 360(6385): 186–190

[2]

Ali A, Ovais M, Zhou H, Rui Y, Chen C. (2021). Tailoring metal-organic frameworks-based nanozymes for bacterial theranostics. Biomaterials, 275: 120951

[3]

Ali S, Sikdar S, Basak S, Mondal M, Mallick K, Salman Haydar M, Ghosh S, Nath Roy M. (2023). Assemble multi-enzyme mimic tandem Mn3O4@ g-C3N4 for augment ROS elimination and label free detection. Chemical Engineering Journal, 463: 142355

[4]

Arenas J, Tommassen J. (2017). Meningococcal biofilm formation: let’s stick together. Trends in Microbiology, 25(2): 113–124

[5]

Attar F, Shahpar M G, Rasti B, Sharifi M, Saboury A A, Rezayat S M, Falahati M. (2019). Nanozymes with intrinsic peroxidase-like activities. Journal of Molecular Liquids, 278: 130–144

[6]

Augustine N, Kumar P, Thomas S. (2010). Inhibition of Vibrio cholerae biofilm by AiiA enzyme produced from Bacillus spp. Archives of Microbiology, 192(12): 1019–1022

[7]

Banerjee I, Pangule R C, Kane R S. (2011). Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6): 690–718

[8]

Butler A, Sandy M. (2009). Mechanistic considerations of halogenating enzymes. Nature, 460(7257): 848–854

[9]

Cao F, Zhang L, Wang H, You Y, Wang Y, Gao N, Ren J, Qu X. (2019). Defect-rich adhesive nanozymes as efficient antibiotics for enhanced bacterial inhibition. Angewandte Chemie International Edition, 58(45): 16236–16242

[10]

Chen Y, Rong C, Gao W, Luo S, Guo Y, Gu Y, Yang G, Xu W, Zhu C, Qu L L. (2024). Ag-MXene as peroxidase-mimicking nanozyme for enhanced bacteriocide and cholesterol sensing. Journal of Colloid and Interface Science, 653: 540–550

[11]

Chen Y, Sheng Q, Wei J, Wen Q, Ma D, Li J, Xie Y, Shen J, Sun X. (2022). Novel strategy for membrane biofouling control in MBR with nano-MnO2 modified PVDF membrane by in-situ ozonation. Science of the Total Environment, 808: 151996

[12]

Chen Z, Ji H, Liu C, Bing W, Wang Z, Qu X. (2016). A multinuclear metal complex based DNase-mimetic artificial enzyme: matrix cleavage for combating bacterial biofilms. Angewandte Chemie International Edition, 55(36): 10732–10736

[13]

Chen Z, Yu Y, Gao Y, Zhu Z. (2023). Rational design strategies for nanozymes. ACS Nano, 17(14): 13062–13080

[14]

Ciofu O, Moser C, Jensen P Ø, Høiby N. (2022). Tolerance and resistance of microbial biofilms. Nature Reviews. Microbiology, 20(10): 621–635

[15]

Ciofu O, Rojo-Molinero E, Macià M D, Oliver A. (2017). Antibiotic treatment of biofilm infections. Acta Pathologica et Microbiologica Scandinavica. Supplement, 125(4): 304–319

[16]

Cornelissen A, Ceyssens P J, Krylov V N, Noben J P, Volckaert G, Lavigne R. (2012). Identification of EPS-degrading activity within the tail spikes of the novel Pseudomonas putida phage AF. Virology, 434(2): 251–256

[17]

Costerton J W, Stewart P S, Greenberg E P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284(5418): 1318–1322

[18]

Dang Y, Wang G, Su G, Lu Z, Wang Y, Liu T, Pu X, Wang X, Wu C, Song C. . (2022). Rational construction of a Ni/CoMoO4 heterostructure with strong Ni–O–Co bonds for improving multifunctional nanozyme activity. ACS Nano, 16(3): 4536–4550

[19]

Danhorn T, Fuqua C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61(1): 401–422

[20]

Das T, Krom B P, Van Der Mei H C, Busscher H J, Sharma P K. (2011). DNA-mediated bacterial aggregation is dictated by acid–base interactions. Soft Matter, 7(6): 2927–2935

[21]

Davies D. (2003). Understanding biofilm resistance to antibacterial agents. Nature Reviews. Drug Discovery, 2(2): 114–122

[22]

Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(5361): 295–298

[23]

Deng Q, Sun P, Zhang L, Liu Z, Wang H, Ren J, Qu X. (2019). Porphyrin MOF dots–based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Advanced Functional Materials, 29(30): 1903018

[24]

Derlon N, Grutter A, Brandenberger F, Sutter A, Kuhlicke U, Neu T R, Morgenroth E. (2016). The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance. Water Research, 102: 63–72

[25]

Desmond P, Best J P, Morgenroth E, Derlon N. (2018). Linking composition of extracellular polymeric substances (EPS) to the physical structure and hydraulic resistance of membrane biofilms. Water Research, 132: 211–221

[26]

Dong Q, Li Z, Xu J, Yuan Q, Chen L, Chen Z. (2022). Versatile graphitic nanozymes for magneto actuated cascade reaction-enhanced treatment of S. mutans biofilms. Nano Research, 15(11): 9800–9808

[27]

Du T, Xiao Z, Zhang G, Wei L, Cao J, Zhang Z, Li X, Song Z, Wang W, Liu J. . (2023). An injectable multifunctional hydrogel for eradication of bacterial biofilms and wound healing. Acta Biomaterialia, 161: 112–133

[28]

Eberl L, Winson M K, Sternberg C, Stewart G S, Christiansen G, Chhabra S R, Bycroft B, Williams P, Molin S, Givskov M. (1996). Involvement of N-acyl-L-hormoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens. Molecular Microbiology, 20(1): 127–136

[29]

EickhoffM J, Bassler B L (2018). SnapShot: bacterial quorum sensing. Cell, 174(5): 1328–1328 e.1

[30]

FanK, GaoL, WeiH, JiangB, WangD, Zhang R, HeJ, MengX, WangZ, FanH, et al. (2023). Nanozymes. Progress in Chemistry, 35(1): 1–8787

[31]

Fang G, Kang R, Cai S, Ge C. (2023). Insight into nanozymes for their environmental applications as antimicrobial and antifouling agents: progress, challenges and prospects. Nano Today, 48: 101755

[32]

Feng Q, Luo L, Chen X, Zhang K, Fang F, Xue Z, Li C, Cao J, Luo J. (2021). Facilitating biofilm formation of Pseudomonas aeruginosa via exogenous N-Acy-L-homoserine lactones stimulation: Regulation on the bacterial motility, adhesive ability and metabolic activity. Bioresource Technology, 341: 125727

[33]

Flemming H C, Van Hullebusch E D, Neu T R, Nielsen P H, Seviour T, Stoodley P, Wingender J, Wuertz S. (2023). The biofilm matrix: multitasking in a shared space. Nature Reviews Microbiology, 21(2): 70–86

[34]

Forier K, Messiaen A S, Raemdonck K, Nelis H, De Smedt S, Demeester J, Coenye T, Braeckmans K. (2014). Probing the size limit for nanomedicine penetration into Burkholderia multivorans and Pseudomonas aeruginosa biofilms. Journal of Controlled Release, 195: 21–28

[35]

Fulaz S, Vitale S, Quinn L, Casey E. (2019). Nanoparticle–biofilm interactions: the role of the EPS matrix. Trends in Microbiology, 27(11): 915–926

[36]

Gao F, Shao T, Yu Y, Xiong Y, Yang L. (2021). Surface-bound reactive oxygen species generating nanozymes for selective antibacterial action. Nature Communications, 12(1): 745

[37]

Gao L, Liu Y, Kim D, Li Y, Hwang G, Naha P C, Cormode D P, Koo H. (2016). Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries in vivo. Biomaterials, 101: 272–284

[38]

Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9): 577–583

[39]

Gao M, Xu B, Huang Y, Cao J, Yang L, Liu X, Djumaev A, Wu D, Shoxiddinova M, Cai X. . (2023a). Nano-enabled quenching of bacterial communications for the prevention of biofilm formation. Angewandte Chemie International Edition, 62: e202305485

[40]

Gao X, Liu Y, Li Y, Jin B, Jiang P, Chen X, Wei C, Sheng J, Liu Y N, Li J. . (2023b). Piezoelectric nanozyme for dual-driven catalytic eradication of bacterial biofilms. ACS Applied Materials & Interfaces, 15(11): 14690–14703

[41]

Ghosh S, Roy P, Karmodak N, Jemmis E D, Mugesh G. (2018). Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angewandte Chemie International Edition, 57(17): 4510–4515

[42]

Green J J, Elisseeff J H. (2016). Mimicking biological functionality with polymers for biomedical applications. Nature, 540(7633): 386–394

[43]

Guo W, Wang Y, Zhang K, Dai X, Qiao Z, Liu Z, Yu B, Zhao N, Xu F J. (2023). Near-infrared light-propelled MOF@Au nanomotors for enhanced penetration and sonodynamic therapy of bacterial biofilms. Chemistry of Materials, 35(17): 6853–6864

[44]

Gupta A, Das R, Makabenta J M, Gupta A, Zhang X, Jeon T, Huang R, Liu Y, Gopalakrishnan S, Milán R C. . (2021). Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections. Materials Horizons, 8(12): 3424–3431

[45]

Gupta A, Das R, Yesilbag Tonga G, Mizuhara T, Rotello V M. (2018). Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano, 12(1): 89–94

[46]

Habiba K, Bracho-Rincon D P, Gonzalez-Feliciano J A, Villalobos-Santos J C, Makarov V I, Ortiz D, Avalos J A, Gonzalez C I, Weiner B R, Morell G. (2015). Synergistic antibacterial activity of PEGylated silver–graphene quantum dots nanocomposites. Applied Materials Today, 1(2): 80–87

[47]

Herget K, Hubach P, Pusch S, Deglmann P, Götz H, Gorelik T E, Gural’skiy I Y A, Pfitzner F, Link T, Schenk S. . (2017). Haloperoxidase mimicry by CeO2−x nanorods combats biofouling. Advanced Materials, 29(4): 1603823

[48]

Hou F, Zhang T, Peng Y, Cao X, Pang H, Shao Y, Lu X, Yuan J, Chen X, Zhang J. (2022). Partial anammox achieved in full scale biofilm process for typical domestic wastewater treatment. Frontiers of Environmental Science & Engineering, 16(3): 33

[49]

Hou J, Xianyu Y. (2023). Tailoring the surface and composition of nanozymes for enhanced bacterial binding and antibacterial activity. Small, 19(42): 2302640

[50]

Hu D, Deng Y, Jia F, Jin Q, Ji J. (2020). Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano, 14(1): 347–359

[51]

Hu H, Kang X, Shan Z, Yang X, Bing W, Wu L, Ge H, Ji H. (2022). A DNase-mimetic artificial enzyme for the eradication of drug-resistant bacterial biofilm infections. Nanoscale, 14(7): 2676–2685

[52]

Hu M, Korschelt K, Viel M, Wiesmann N, Kappl M, Brieger J, Landfester K, Therien-Aubin H, Tremel W. (2018). Nanozymes in nanofibrous mats with haloperoxidase-like activity to combat biofouling. ACS Applied Materials & Interfaces, 10(51): 44722–44730

[53]

Huang L, Chen J, Gan L, Wang J, Dong S. (2019a). Single-atom nanozymes. Science Advances, 5(5): eaav5490

[54]

Huang R, Li C H, Cao-Milán R, He L D, Makabenta J M, Zhang X, Yu E, Rotello V M. (2020). Polymer-based bioorthogonal nanocatalysts for the treatment of bacterial biofilms. Journal of the American Chemical Society, 142(24): 10723–10729

[55]

Huang T, Yu Z, Yuan B, Jiang L, Liu Y, Sun X, Liu P, Jiang W, Tang J. (2022). Synergy of light-controlled Pd nanozymes with NO therapy for biofilm elimination and diabetic wound treatment acceleration. Materials Today. Chemistry, 24: 100831

[56]

Huang Y, Ren J, Qu X. (2019b). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical Reviews, 119(6): 4357–4412

[57]

Jegel O, Pfitzner F, Gazanis A, Oberländer J, Pütz E, Lange M, Von Der Au M, Meermann B, Mailänder V, Klasen A. . (2022). Transparent polycarbonate coated with CeO2 nanozymes repel Pseudomonas aeruginosa PA14 biofilms. Nanoscale, 14(1): 86–98

[58]

Ji H, Hu H, Tang Q, Kang X, Liu X, Zhao L, Jing R, Wu M, Li G, Zhou X. . (2022). Precisely controlled and deeply penetrated micro-nano hybrid multifunctional motors with enhanced antibacterial activity against refractory biofilm infections. Journal of Hazardous Materials, 436: 129210

[59]

Jiang B, Duan D, Gao L, Zhou M, Fan K, Tang Y, Xi J, Bi Y, Tong Z, Gao G F. . (2018). Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nature Protocols, 13(7): 1506–1520

[60]

Jiao L, Yan H, Wu Y, Gu W, Zhu C, Du D, Lin Y. (2020). When nanozymes meet single-atom catalysis. Angewandte Chemie International Edition, 59(7): 2565–2576

[61]

Jin L, Cao F, Gao Y, Zhang C, Qian Z, Zhang J, Mao Z. (2023). Microenvironment-activated nanozyme-armed bacteriophages efficiently combat bacterial infection. Advanced Materials, 35(30): 2301349

[62]

Jin X, Shan J, Zhao J, Wang T, Zhang W, Yang S, Qian H, Cheng L, Chen X L, Wang X. (2024). Bimetallic oxide Cu–Fe3O4 nanoclusters with multiple enzymatic activities for wound infection treatment and wound healing. Acta Biomaterialia, 173: 403–419

[63]

Jin Y, Zhao B, Guo W, Li Y, Min J, Miao W. (2022). Penetration and photodynamic ablation of drug-resistant biofilm by cationic iron oxide nanoparticles. Journal of Controlled Release, 348: 911–923

[64]

Johnson L R. (2008). Microcolony and biofilm formation as a survival strategy for bacteria. Journal of Theoretical Biology, 251(1): 24–34

[65]

Kilic T, Bali E B. (2023). Biofilm control strategies in the light of biofilm-forming microorganisms. World Journal of Microbiology & Biotechnology, 39(5): 131

[66]

Kim J H, Choi D C, Yeon K M, Kim S R, Lee C H. (2011). Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environmental Science & Technology, 45(4): 1601–1607

[67]

Kim U, Kim J H, Oh S W. (2022). Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Critical Reviews in Food Science and Nutrition, 62(21): 5783–5793

[68]

Kolter R, Greenberg E P. (2006). The superficial life of microbes. Nature, 441(7091): 300–302

[69]

Lee B, Yeon K M, Shim J, Kim S R, Lee C H, Lee J, Kim J. (2014). Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica. Biomacromolecules, 15(4): 1153–1159

[70]

Li S, Zhou Z, Tie Z, Wang B, Ye M, Du L, Cui R, Liu W, Wan C, Liu Q. . (2022a). Data-informed discovery of hydrolytic nanozymes. Nature Communications, 13(1): 827

[71]

Li W, Tian Y, Chen J, Wang X, Zhou Y, Shi N. (2022b). Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes. Frontiers of Environmental Science & Engineering, 16(6): 72

[72]

Li X, Wang L, Du D, Ni L, Pan J, Niu X. (2019a). Emerging applications of nanozymes in environmental analysis: Opportunities and trends. Trends in Analytical Chemistry, 120: 115653

[73]

Li X, Wang X, Lee D J, Yan W M. (2019b). Highly heterogeneous interior structure of biofilm wastewater for enhanced pollutant removals. Bioresource Technology, 291: 121919

[74]

Li Y, Zhang R, Yan X, Fan K. (2023). Machine learning facilitating the rational design of nanozymes. Journal of Materials Chemistry. B, 11(28): 6466–6477

[75]

Ling P, Yang P, Gao X, Sun X, Gao F. (2022). ROS generation strategy based on biomimetic nanosheets by self-assembly of nanozymes. Journal of Materials Chemistry. B, 10(46): 9607–9612

[76]

Liu B, Liu J. (2017). Surface modification of nanozymes. Nano Research, 10(4): 1125–1148

[77]

Liu D, Xi Y, Yu S, Yang K, Zhang F, Yang Y, Wang T, He S, Zhu Y, Fan Z. . (2023a). A polypeptide coating for preventing biofilm on implants by inhibiting antibiotic resistance genes. Biomaterials, 293: 121957

[78]

Liu G, Zhang Y, Liu X, Hammes F, Liu W T, Medema G, Wessels P, Van Der Meer W. (2020). 360-degree distribution of biofilm quantity and community in an operational unchlorinated drinking water distribution pipe. Environmental Science & Technology, 54(9): 5619–5628

[79]

Liu H, Zhao D, Zhang C, Li M, Zhang S, Xiao X. (2023b). One-step preparation of MnO2 nanozyme by PS-CDs for antibacterial, inhibition of S. aureus biofilm growth and colorimetric assay of tiopronin. Journal of Industrial and Engineering Chemistry, 125: 127–135

[80]

Liu P, Wu Y, Mehrjou B, Tang K, Wang G, Chu P K. (2022). Versatile phenol-incorporated nanoframes for in situ antibacterial activity based on oxidative and physical damages. Advanced Functional Materials, 32(17): 2110635

[81]

Liu Q, Kuzuya A, Wang Z G. (2023c). Supramolecular enzyme-mimicking catalysts self-assembled from peptides. iScience, 26(1): 105831

[82]

Liu W, Jacquiod S, Brejnrod A, Russel J, Burmølle M, Sørensen S J. (2019a). Deciphering links between bacterial interactions and spatial organization in multispecies biofilms. ISME Journal, 13(12): 3054–3066

[83]

Liu Y, Busscher H J, Zhao B, Li Y, Zhang Z, Van Der Mei H C, Ren Y, Shi L. (2016). Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in Staphylococcal biofilms. ACS Nano, 10(4): 4779–4789

[84]

Liu Y, Shi L, Su L, Van Der Mei H C, Jutte P C, Ren Y, Busscher H J. (2019b). Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chemical Society Reviews, 48(2): 428–446

[85]

Liu Z, Wang F, Ren J, Qu X. (2019c). A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria. Biomaterials, 208: 21–31

[86]

Livieri M, Mancin F, Saielli G, Chin J, Tonellato U. (2007). Mimicking enzymes: cooperation between organic functional groups and metal ions in the cleavage of phosphate diesters. Chemistry, 13(8): 2246–2256

[87]

Lohse M B, Gulati M, Johnson A D, Nobile C J. (2018). Development and regulation of single- and multi-species Candida albicans biofilms. Nature Reviews Microbiology, 16(1): 19–31

[88]

Lu C, Zandieh M, Zheng J, Liu J. (2023). Comparison of the peroxidase activities of iron oxide nanozyme with DNAzyme and horseradish peroxidase. Nanoscale, 15(18): 8189–8196

[89]

Lu J, Hu X, Ren L. (2022). Biofilm control strategies in food industry: inhibition and utilization. Trends in Food Science & Technology, 123: 103–113

[90]

Luo Q, Li J, Wang W, Li Y, Li Y, Huo X, Li J, Wang N. (2022). Transition metal engineering of molybdenum disulfide nanozyme for biomimicking anti-biofouling in seawater. ACS Applied Materials & Interfaces, 14(12): 14218–14225

[91]

Ma M, Wang R, Xu L, Du J, Xu M, Liu S. (2021). Emerging investigator series: enhanced peroxidase-like activity and improved antibacterial performance of palladium nanosheets by an alginate-corona. Environmental Science: Nano, 8(12): 3511–3523

[92]

Mahto K U, Vandana M, Priyadarshanee D P, Samantaray S. (2022). Bacterial biofilm and extracellular polymeric substances in the treatment of environmental pollutants: beyond the protective role in survivability. Journal of Cleaner Production, 379: 134759

[93]

Mathieu J, Yu P, Zuo P, Da Silva M L B, Alvarez P J J. (2019). Going viral: emerging opportunities for phage-based bacterial control in water treatment and reuse. Accounts of Chemical Research, 52(4): 849–857

[94]

Matias R R, Sepúlveda A M G, Batista B N, De Lucena J M V M, Albuquerque P M. (2021). Degradation of Staphylococcus aureus biofilm using hydrolytic enzymes produced by amazonian endophytic fungi. Applied Biochemistry and Biotechnology, 193(7): 2145–2161

[95]

Mazurenko S, Prokop Z, Damborsky J. (2020). Machine learning in enzyme engineering. ACS Catalysis, 10(2): 1210–1223

[96]

Mei L, Zhu S, Liu Y, Yin W, Gu Z, Zhao Y. (2021). An overview of the use of nanozymes in antibacterial applications. Chemical Engineering Journal, 418: 129431

[97]

Melander R J, Basak A K, Melander C. (2020). Natural products as inspiration for the development of bacterial antibiofilm agents. Natural Product Reports, 37(11): 1454–1477

[98]

Murray K E, Manitou-Alvarez E I, Inniss E C, Healy F G, Bodour A A. (2015). Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells. Frontiers of Environmental Science & Engineering, 9(1): 39–49

[99]

Nobile C J, Johnson A D. (2015). Candida albicans biofilms and human disease. Annual Review of Microbiology, 69(1): 71–92

[100]

Nothling M D, Xiao Z, Bhaskaran A, Blyth M T, Bennett C W, Coote M L, Connal L A. (2019). Synthetic catalysts inspired by hydrolytic enzymes. ACS Catalysis, 9(1): 168–187

[101]

Pan T, Chen H, Gao X, Wu Z, Ye Y, Shen Y. (2022). Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. Journal of Hazardous Materials, 435: 128996

[102]

Pechaud Y, Derlon N, Queinnec I, Bessiere Y, Paul E. (2024). Modelling biofilm development: The importance of considering the link between EPS distribution, detachment mechanisms and physical properties. Water Research, 250: 120985

[103]

Peulen T O, Wilkinson K J. (2011). Diffusion of nanoparticles in a biofilm. Environmental Science & Technology, 45(8): 3367–3373

[104]

Price J E, Chapman M R. (2018). Phaged and confused by biofilm matrix. Nature Microbiology, 3(1): 2–3

[105]

Proctor C R, Reimann M, Vriens B, Hammes F. (2018). Biofilms in shower hoses. Water Research, 131: 274–286

[106]

Pütz E, Gazanis A, Keltsch N G, Jegel O, Pfitzner F, Heermann R, Ternes T A, Tremel W. (2022). Communication breakdown: into the molecular mechanism of biofilm inhibition by CeO2 nanocrystal enzyme mimics and how it can be exploited. ACS Nano, 16(10): 16091–16108

[107]

Qi R, Cui Y, Liu J, Wang X, Yuan H. (2023). Recent advances of composite nanomaterials for antibiofilm application. Nanomaterials, 13(19): 2725

[108]

Qi Y, Li J, Liang R, Ji S, Li J, Liu M. (2017). Chemical additives affect sulfate reducing bacteria biofilm properties adsorbed on stainless steel 316L surface in circulating cooling water system. Frontiers of Environmental Science & Engineering, 11(2): 14

[109]

Rajesh P S, Rai V R. (2015). Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66. International Journal of Biological Macromolecules, 81: 1046–1052

[110]

Rumbaugh K P, Sauer K. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10): 571–586

[111]

Sauer K, Stoodley P, Goeres D M, Hall-Stoodley L, Burmolle M, Stewart P S, Bjarnsholt T. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 20(10): 608–620

[112]

Scott S, Zhao H, Dey A, Gunnoe T B. (2020). Nano-apples and orange-zymes. ACS Catalysis, 10(23): 14315–14317

[113]

Shen Y, Nie C, Pan T, Zhang W, Yang H, Ye Y, Wang X. (2023). A multifunctional cascade nanoreactor based on Fe-driven carbon nanozymes for synergistic photothermal/chemodynamic antibacterial therapy. Acta Biomaterialia, 168: 580–592

[114]

Si X, Quan X. (2017). Prevention of multi-species wastewater biofilm formation using vanillin and EPS disruptors through non-microbicidal mechanisms. International Biodeterioration & Biodegradation, 116: 211–218

[115]

Silva S, Negri M, Henriques M, Oliveira R, Williams D W, Azeredo J. (2011). Adherence and biofilm formation of non-Candida albicans Candida species. Trends in Microbiology, 19(5): 241–247

[116]

Somerville S V, Li Q, Wordsworth J, Jamali S, Eskandarian M R, Tilley R D, Gooding J J. (2024). Approaches to improving the selectivity of nanozymes. Advanced Materials, 36: 2211288

[117]

Stoodley P, Sauer K, Davies D G, Costerton J W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56(1): 187–209

[118]

Sun H, Zhao A, Gao N, Li K, Ren J, Qu X. (2015). Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angewandte Chemie International Edition, 54(24): 7176–7180

[119]

Sun Z, Xi J, Yang C, Cong W. (2022). Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review. Frontiers of Environmental Science & Engineering, 16(7): 87

[120]

Tao Y, Ju E, Ren J, Qu X. (2015). Bifunctionalized mesoporous silica-supported gold nanoparticles: intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Advanced Materials, 27(6): 1097–1104

[121]

Teirlinck E, Xiong R, Brans T, Forier K, Fraire J, Van Acker H, Matthijs N, De Rycke R, De Smedt S C, Coenye T. . (2018). Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nature Communications, 9(1): 4518

[122]

Tian R, Li Y, Xu J, Hou C, Luo Q, Liu J. (2022). Recent development in the design of artificial enzymes through molecular imprinting technology. Journal of Materials Chemistry. B, 10(35): 6590–6606

[123]

Urban P, Truan G, Pompon D. (2015). Access channels to the buried active site control substrate specificity in CYP1A P450 enzymes. Biochimica et Biophysica Acta, 1850(4): 696–707

[124]

Vishwakarma A, Dang F, Ferrell A, Barton H A, Joy A. (2021). Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms. Journal of the American Chemical Society, 143(25): 9440–9449

[125]

Vishwakarma V. (2020). Impact of environmental biofilms: Industrial components and its remediation. Journal of Basic Microbiology, 60(3): 198–206

[126]

Wang A, Weldrick P J, Madden L A, Paunov V N. (2021a). Biofilm-infected human clusteroid three-dimensional coculture platform to replace animal models in testing antimicrobial nanotechnologies. ACS Applied Materials & Interfaces, 13(19): 22182–22194

[127]

Wang F, Tan J, Zhang S, Zhou Y, He D, Deng L. (2021b). Efficient eradication of bacterial biofilms with highly specific graphene-based nanocomposite sheets. ACS Biomaterials Science & Engineering, 7(11): 5118–5128

[128]

Wang H, Hu C, Hu X, Yang M, Qu J. (2012). Effects of disinfectant and biofilm on the corrosion of cast iron pipes in a reclaimed water distribution system. Water Research, 46(4): 1070–1078

[129]

Wang H, Wan K, Shi X. (2019). Recent advances in nanozyme research. Advanced Materials, 31(45): 1805368

[130]

Wang L, Gao F, Wang A, Chen X, Li H, Zhang X, Zheng H, Ji R, Li B, Yu X. . (2020a). Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application. Advanced Materials, 32(48): 2005423

[131]

Wang W, Luo Q, Li J, Li L, Li Y, Huo X, Du X, Li Z, Wang N. (2022a). Photothermal-amplified single atom nanozyme for biofouling control in seawater. Advanced Functional Materials, 32(36): 2205461

[132]

Wang W, Luo Q, Li J, Li Y, Wu R, Li Y, Huo X, Wang N. (2022b). Single-atom tungsten engineering of MOFs with biomimetic antibiofilm activity toward robust uranium extraction from seawater. Chemical Engineering Journal, 431: 133483

[133]

Wang W, Luo Q, Li L, Chen S, Wang Y, Du X, Wang N. (2023). Hybrid nickel-molybdenum bimetallic sulfide nanozymes for antibacterial and antibiofouling applications. Advanced Composites and Hybrid Materials, 6(4): 139

[134]

Wang Z, Dong K, Liu Z, Zhang Y, Chen Z, Sun H, Ren J, Qu X. (2017). Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials, 113: 145–157

[135]

Wang Z, Zhang R, Yan X, Fan K. (2020b). Structure and activity of nanozymes: Inspirations for de novo design of nanozymes. Materials Today, 41: 81–119

[136]

Wang Z, Zhang Y, Chen S, Qu Y, Tang M, Wang W, Li W, Gu L. (2024). Multifunctional CeO2 nanozymes for mitigating high-glucose induced senescence and enhancing bone regeneration in type 2 diabetes mellitus. Chemical Engineering Journal, 485: 149842

[137]

Watnick P, Kolter R. (2000). Biofilm, city of microbes. Journal of Bacteriology, 182(10): 2675–2679

[138]

Wei H, Gao L, Fan K, Liu J, He J, Qu X, Dong S, Wang E, Yan X. (2021). Nanozymes: a clear definition with fuzzy edges. Nano Today, 40: 101269

[139]

Wei J N, Duvenaud D, Aspuru-Guzik A. (2016). Neural networks for the prediction of organic chemistry reactions. ACS Central Science, 2(10): 725–732

[140]

Wei Y, Wu J, Wu Y, Liu H, Meng F, Liu Q, Midgley A C, Zhang X, Qi T, Kang H. . (2022). Prediction and design of nanozymes using explainable machine learning. Advanced Materials, 34(27): 2201736

[141]

Wu B, Haney E F, Akhoundsadegh N, Pletzer D, Trimble M J, Adriaans A E, Nibbering P H, Hancock R E W. (2021). Human organoid biofilm model for assessing antibiofilm activity of novel agents. NPJ Biofilms and Microbiomes, 7(1): 8

[142]

Wu H, Wei M, Hu S, Cheng P, Shi S, Xia F, Xu L, Yin L, Liang G, Li F. . (2023). A photomodulable bacteriophage-spike nanozyme enables dually enhanced biofilm penetration and bacterial capture for photothermal-boosted catalytic therapy of mrsa infections. Advanced Science, 10(24): 2301694

[143]

Wu J, Li S, Wei H. (2018). Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horizons, 3(4): 367–382

[144]

Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. (2019a). Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chemical Society Reviews, 48(4): 1004–1076

[145]

Wu Y K, Cheng N C, Cheng C M. (2019b). Biofilms in chronic wounds: pathogenesis and diagnosis. Trends in Biotechnology, 37(5): 505–517

[146]

Xi Z, Wei K, Wang Q, Kim M J, Sun S, Fung V, Xia X. (2021). Nickel–platinum nanoparticles as peroxidase mimics with a record high catalytic efficiency. Journal of the American Chemical Society, 143(7): 2660–2664

[147]

Xiao Y, Zou H, Li J, Song T, Lv W, Wang W, Wang Z, Tao S. (2022). Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes, 14(1): 2039048

[148]

Xu D, Gu T, Lovley D R. (2023a). Microbially mediated metal corrosion. Nature Reviews Microbiology, 21(11): 705–718

[149]

Xu D, Wu L, Yao H, Zhao L. (2022). Catalase-like nanozymes: classification, catalytic mechanisms, and their applications. Small, 18(37): 2203400

[150]

Xu Y, Luo Y, Weng Z, Xu H, Zhang W, Li Q, Liu H, Liu L, Wang Y, Liu X. . (2023b). Microenvironment-responsive metal-phenolic nanozyme release platform with antibacterial, ROS scavenging, and osteogenesis for periodontitis. ACS Nano, 17(19): 18732–18746

[151]

Yan X, Sun J, Wang Y, Zhang Z, Zhang C, Li W, Xu J, Dai X, Ni B J. (2023). Low-rate ferrate dosing damages the microbial biofilm structure through humic substances destruction and facilitates the sewer biofilm control. Water Research, 235: 119834

[152]

Yang W, Yang X, Zhu L, Chu H, Li X, Xu W. (2021). Nanozymes: activity origin, catalytic mechanism, and biological application. Coordination Chemistry Reviews, 448: 214170

[153]

Yang Y R, Wang X D, Chang J S, Lee D J. (2022). Homogeneously and heterogeneously structured biofilm models for wastewater treatment. Bioresource Technology, 362: 127763

[154]

Ye Z, Fan Y, Zhu T, Cao D, Hu X, Xiang S, Li J, Guo Z, Chen X, Tan K. . (2022). Preparation of two-dimensional Pd@Ir nanosheets and application in bacterial infection treatment by the generation of reactive oxygen species. ACS Applied Materials & Interfaces, 14(20): 23194–23205

[155]

Yin W, Xu S, Wang Y, Zhang Y, Chou S H, Galperin M Y, He J. (2021). Ways to control harmful biofilms: prevention, inhibition, and eradication. Critical Reviews in Microbiology, 47(1): 57–78

[156]

Yuan J P, Guan Z J, Lin H Y, Yan B, Liu K K, Zhou H C, Fang Y. (2023). Modeling the enzyme specificity by molecular cages through regulating reactive oxygen species evolution. Angewandte Chemie International Edition, 62(31): e202303896

[157]

Zahrt A F, Henle J J, Rose B T, Wang Y, Darrow W T, Denmark S E. (2019). Prediction of higher-selectivity catalysts by computer-driven workflow and machine learning. Science, 363(6424): eaau5631

[158]

Zhang P, Chen Y P, Qiu J H, Dai Y Z, Feng B. (2019). Imaging the microprocesses in biofilm matrices. Trends in Biotechnology, 37(2): 214–226

[159]

Zhang R, Xue B, Tao Y, Zhao H, Zhang Z, Wang X, Zhou X, Jiang B, Yang Z, Yan X. . (2022). Edge-site engineering of defective Fe-N4 nanozymes with boosted catalase-like performance for retinal vasculopathies. Advanced Materials, 34(39): 2205324

[160]

Zhao X, Liu X, Xu X, Fu Y V. (2017). Microbe social skill: the cell-to-cell communication between microorganisms. Science Bulletin, 62(7): 516–524

[161]

Zhou C, Wang Q, Jiang J, Gao L. (2022a). Nanozybiotics: nanozyme-based antibacterials against bacterial resistance. Antibiotics, 11(3): 390

[162]

Zhou Z, He W, Chao H, Wang H, Su P, Song J, Yang Y. (2022b). Insertion of hemin into metal–organic frameworks: mimicking natural peroxidase microenvironment for the rapid ultrasensitive detection of uranium. Analytical Chemistry, 94(18): 6833–6841

[163]

Zhu G, Zheng P, Wang M, Chen W, Li C. (2022). A novel CuCoS nanozyme for synergistic photothermal and chemodynamic therapy of tumors. Inorganic Chemistry Frontiers, 9(5): 1006–1015

[164]

Zhu Z, Wang L, Li Q. (2018). A bioactive poly (vinylidene fluoride)/graphene oxide@acylase nanohybrid membrane: Enhanced anti-biofouling based on quorum quenching. Journal of Membrane Science, 547: 110–122

[165]

Zhuang J, Midgley A C, Wei Y, Liu Q, Kong D, Huang X. (2024). Machine-learning-assisted nanozyme design: lessons from materials and engineered enzymes. Advanced Materials, 36(10): 2210848

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (18049KB)

2035

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/