Continuous wildfires threaten public and ecosystem health under climate change across continents
Guochao Chen , Minghao Qiu , Peng Wang , Yuqiang Zhang , Drew Shindell , Hongliang Zhang
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 130
Continuous wildfires threaten public and ecosystem health under climate change across continents
● Wildfire and emission patterns vary globally, intensifying at high latitudes. ● Climate change-driven warming and drought are key in wildfire patterns. ● Wildfires impact health, especially in high-emission areas, lack management.
Wildfires burn approximately 3%–4% of the global land area annually, resulting in massive emissions of greenhouse gases and air pollutants. Over the past two decades, there has been a declining trend in both global burned area and wildfire emissions. This trend is largely attributed to a decrease in wildfire activity in Africa, which accounts for a substantial portion of the total burned area and emissions. However, the northern high-latitude regions of Asia and North America have witnessed substantial interannual variability in wildfire activity, with several severe events occurring in recent years. Climate plays a pivotal role in influencing wildfire activity and has led to more wildfires in high-latitude regions. These wildfires pose significant threats to climate, ecosystems, and human health. Given recent changes in wildfire patterns and their impacts, it is critical to understand the contributors of wildfires, focus on deteriorating high-latitude areas, and address health risks in poorly managed areas to mitigate wildfire effects.
Wildfire activity / Wildfire emissions / Climate change / Air quality
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
AMAP (2021). AMAP Assessment 2021: Impacts of Short-lived Climate Forcers on Arctic Climate, Air Quality, and Human Health. Tromsø: Arctic Monitoring and Assessment Programme (AMAP) |
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
IPCC (2021). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press |
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn
Supplementary files
/
| 〈 |
|
〉 |