Unveiling the complexities of microbiologically induced corrosion: mechanisms, detection techniques, and mitigation strategies
Mahmoud A. Ahmed , Safwat A. Mahmoud , Ashraf A. Mohamed
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (10) : 120
Unveiling the complexities of microbiologically induced corrosion: mechanisms, detection techniques, and mitigation strategies
● Microbiologically influenced corrosion is reviewed focusing on its mechanisms and mitigation ● MIC mechanisms help understand the complex interaction of microbes and metallic surfaces ● Traditional and advanced monitoring techniques for diagnosing and assessing MIC are discussed ● Application of various biocides are highlighted, along with their performance enhancement strategies ● Enzymatic remediation is explored as a sustainable alternative approach for MIC mitigation
Microbiologically induced corrosion (MIC) is a complex and destructive phenomenon that occurs in various sectors, involving the interaction between microorganisms and metal surfaces, resulting in accelerated corrosion rates. This review article provides a comprehensive analysis of MIC, encompassing microbial species involved, their metabolic activities, and influential environmental factors driving the corrosion process. The mechanisms of MIC, both in the presence and absence of oxygen, are explored, along with the diverse effects of microbes on different types of corrosion and their economic impacts. Assessment and monitoring techniques, including traditional and advanced methods such as microbiological and electrochemical methods, are discussed. Furthermore, it examines preventive and control measures, such as the use of biocides and their mechanisms of action. Strategies to enhance the performance of these control measures and the effectiveness of antimicrobial agents during disinfection processes, including surfactants and chelators, are discussed. Additionally, the review highlights enzymatic remediation as a sustainable alternative approach, providing detailed examples. The challenges in mitigating MIC and potential future developments and collaborative opportunities are also addressed. This systematic review is a valuable resource for researchers, industry professionals, and policymakers seeking a comprehensive understanding of the complex phenomenon of MIC and effective strategies for its management.
Metal failure / Biofilm formation / Enzymatic remediation / Antimicrobial agents / Bio-corrosion mechanisms
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
Amjad Z (2010). The Science and Technology of Industrial Water Treatment. Boca Raton: CRC Press |
| [18] |
|
| [19] |
Araya-Obando J A (2022). Manganese Removal from Groundwater in Non-bioaugmented Pumice Biofilters Under Tropical Conditions. Cartago: The Costa Rica Institute of Technology |
| [20] |
|
| [21] |
Ashrafi A (2023). Biosensors, mechatronics, & microfluidics for early detection & monitoring of microbial corrosion: a comprehensive critical review. Results in Materials, 25: 100402 |
| [22] |
Asif M, Aziz A, Ashraf G, Iftikhar T, Sun Y, Liu H (2022). Turning the page: advancing detection platforms for sulfate reducing bacteria and their perks. The Chemical Record, 22(1): e202100166 |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
Jimoh A A, Booysen E, Van Zyl L, Trindade M (2023). Do biosurfactants as anti-biofilm agents have a future in industrial water systems? Frontiers in Bioengineering and Biotechnology, 11: 1244595 |
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
Marchant R, Banat I M (2012). Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnology Letters, 34(9): 1597–1605 |
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
|
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
|
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
Raya D, Militello K, Gadhamshetty V, Dhiman S (2023). Microbial stress response: mechanisms and data science: ACS Publications, 59–73 |
| [174] |
|
| [175] |
|
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
|
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
|
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
|
| [189] |
|
| [190] |
|
| [191] |
|
| [192] |
|
| [193] |
|
| [194] |
|
| [195] |
|
| [196] |
Solomon G R, Balaji R, Ilayaperumal K, Chellappa B (2021). Performance Analysis and Efficiency Enhancement of Cooling Tower in 210 MW Thermal Unit. London: IOP Publishing, 012062 |
| [197] |
|
| [198] |
Soo Epark H, Jack T R (2014). The role of acetogens in microbial influenced corrosion of steel. Frontiers in Microbiology, 50: fmicb.2014.00268 |
| [199] |
|
| [200] |
|
| [201] |
|
| [202] |
|
| [203] |
|
| [204] |
|
| [205] |
|
| [206] |
|
| [207] |
|
| [208] |
|
| [209] |
|
| [210] |
|
| [211] |
|
| [212] |
Tidwell T J, De Paula R M, Nilsen G P, Keasler V V (2015). Visualization and Quantification of Biofilm Removal for the Mitigation of MIC, NACE—International Corrosion Conference Series 2015, March 15–19, Dallas, TX, USA |
| [213] |
|
| [214] |
|
| [215] |
|
| [216] |
|
| [217] |
|
| [218] |
|
| [219] |
|
| [220] |
Ullah S (2011). Biocides in Papermaking Chemistry. Saarbruden: LAP Lambert Academic Publishing |
| [221] |
|
| [222] |
|
| [223] |
|
| [224] |
|
| [225] |
|
| [226] |
|
| [227] |
|
| [228] |
|
| [229] |
|
| [230] |
|
| [231] |
|
| [232] |
|
| [233] |
|
| [234] |
|
| [235] |
|
| [236] |
|
| [237] |
|
| [238] |
|
| [239] |
|
| [240] |
|
| [241] |
|
| [242] |
|
| [243] |
|
| [244] |
|
| [245] |
Williams T M (2007). The Mechanism of Action of Isothiazolone Biocide, NACE - International Corrosion Conference Series, March 12–16, 2006, San Diego, CA, USA |
| [246] |
|
| [247] |
|
| [248] |
|
| [249] |
|
| [250] |
|
| [251] |
|
| [252] |
|
| [253] |
|
| [254] |
|
| [255] |
|
| [256] |
|
| [257] |
|
| [258] |
|
| [259] |
|
| [260] |
|
Higher Education Press 2024
/
| 〈 |
|
〉 |