New Opportunities for Neutrons in Environmental and Biological Sciences

Alexander Johs , Shuo Qian , Leighton Coates , Brian H. Davison , James G. Elkins , Xin Gu , Jennifer Morrell-Falvey , Hugh O’Neill , Jeffrey M. Warren , Eric M. Pierce , Kenneth Herwig

Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (7) : 92

PDF (4556KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (7) : 92 DOI: 10.1007/s11783-024-1852-z
PERSPECTIVES

New Opportunities for Neutrons in Environmental and Biological Sciences

Author information +
History +
PDF (4556KB)

Abstract

● Neutrons reveal the structure and dynamics of materials nondestructively.

● Neutron methods probe complex systems across a wide range of length and time scales.

● Advances in instruments and source enable smaller samples and time-resolved studies.

● Multi-modal techniques and deuteration capabilities enable new science.

● Processes in soil, water, plants, microbes from enzymes to organisms.

The use of neutron methods in environmental and biological sciences is rapidly emerging and accelerating with the development of new instruments at neutron user facilities. This article, based on a workshop held at Oak Ridge National Laboratory (ORNL), offers insights into the application of neutron techniques in environmental and biological sciences. We highlight recent advances and identify key challenges and potential future research areas. These include soil and rhizosphere processes, root water dynamics, plant-microbe interactions, structure and dynamics of biological systems, applications in synthetic biology and enzyme engineering, next-generation bioproducts, biomaterials and bioenergy, nanoscale structure, and fluid dynamics of porous materials in geochemistry. We provide an outlook on emerging opportunities with an emphasis on new capabilities that will be enabled at the Spallation Neutron Source Second Target Station currently under design at ORNL. The mission of scientific neutron user facilities worldwide is to enable science using state-of-the-art neutron capabilities. We aim to encourage researchers in the environmental and biological research community to explore the unique capability afforded by neutrons at these facilities.

Graphical abstract

Keywords

Neutrons / Environment / Biology / Neutron imaging / Neutron scattering / Second Target Station (STS)

Cite this article

Download citation ▾
Alexander Johs, Shuo Qian, Leighton Coates, Brian H. Davison, James G. Elkins, Xin Gu, Jennifer Morrell-Falvey, Hugh O’Neill, Jeffrey M. Warren, Eric M. Pierce, Kenneth Herwig. New Opportunities for Neutrons in Environmental and Biological Sciences. Front. Environ. Sci. Eng., 2024, 18(7): 92 DOI:10.1007/s11783-024-1852-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamsPAnknerJ FAnovitzL MBanerjeeABegoliEBoehlerRCalderSChakoumakosB CCharltonT RChenW R, . (2020). First experiments: new science opportunities at the spallation neutron source second target station (abridged). Medium: ED; Size

[2]

Aiken G R , Hsu-Kim H , Ryan J N . (2011). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental Science & Technology, 45(8): 3196–3201

[3]

Ankner J F , Ashkar R , Browning J F , Charlton T R , Doucet M , Halbert C E , Islam F , Karim A , Kharlampieva E , Kilbey S M II . . (2023). Cinematic reflectometry using QIKR, the quite intense kinetics reflectometer. Review of Scientific Instruments, 94(1): 013302

[4]

AnovitzL MColeD R (2018). Analysis of the pore structures of shale using neutron and X-Ray small angle scattering. In: Geological Carbon Storage. Washington, DC: American Geophysical Union (AGU)

[5]

Astner A F , Hayes D G , Pingali S V , O’Neill H M , Littrell K C , Evans B R , Urban V S . (2020). Effects of soil particles and convective transport on dispersion and aggregation of nanoplastics via small-angle neutron scattering (SANS) and ultra SANS (USANS). PLoS One, 15(7): e0235893

[6]

Brügger A , Bilheux H Z , Lin J Y Y , Nelson G J , Kiss A M , Morris J , Connolly M J , Long A M , Tremsin A S , Strzelec A . . (2023). The complex, unique, and powerful imaging instrument for dynamics (CUPI2D) at the spallation neutron source. Review of Scientific Instruments, 94(5): 051301

[7]

Campbell R A . (2018). Recent advances in resolving kinetic and dynamic processes at the air/water interface using specular neutron reflectometry. Current Opinion in Colloid & Interface Science, 37: 49–60

[8]

Cheng C L , Kang M , Perfect E , Voisin S , Horita J , Bilheux H Z , Warren J M , Jacobson D L , Hussey D S . (2012). Average soil water retention curves measured by neutron radiography. Soil Science Society of America Journal, 76(4): 1184–1191

[9]

Delay M , Frimmel F H . (2012). Nanoparticles in aquatic systems. Analytical and Bioanalytical Chemistry, 402(2): 583–592

[10]

Do C , Ashkar R , Boone C , Chen W R , Ehlers G , Falus P , Faraone A , Gardner J S , Graves V , Huegle T . . (2022). EXPANSE: a time-of-flight EXPanded angle neutron spin echo spectrometer at the second target station of the spallation neutron source. Review of Scientific Instruments, 93(7): 075107

[11]

Garlea V O , Calder S , Huegle T , Lin J Y Y , Islam F , Stoica A , Graves V B , Frandsen B , Wilson S D . (2022). VERDI: VERsatile DIffractometer with wide-angle polarization analysis for magnetic structure studies in powders and single crystals. Review of Scientific Instruments, 93(6): 065103

[12]

Gautam S , Liu T T , Rother G , Jalarvo N , Mamontov E , Welch S , Sheets J , Droege M , Cole D R . (2015). Dynamics of propane in nanoporous silica aerogel: a quasielastic neutron scattering study. Journal of Physical Chemistry C, 119(32): 18188–18195

[13]

Gu X , Cole D R , Rother G , Mildner D F R , Brantley S L . (2015). Pores in marcellus shale: a neutron scattering and FIB-SEM study. Energy & Fuels, 29(3): 1295–1308

[14]

Hand E . (2023). Hidden hydrogen. Science, 379(6633): 630–636

[15]

Hayward D W , Chiappisi L , Prévost S , Schweins R , Gradzielski M . (2018). A small-angle neutron scattering environment for in-situ observation of chemical processes. Scientific Reports, 8: 7299

[16]

Jarvie H P , Al-Obaidi H , King S M , Bowes M J , Lawrence M J , Drake A F , Green M A , Dobson P J . (2009). Fate of silica nanoparticles in simulated primary wastewater treatment. Environmental Science & Technology, 43(22): 8622–8628

[17]

Jarvie H P , King S M . (2007). Small-angle neutron scattering study of natural aquatic nanocolloids. Environmental Science & Technology, 41(8): 2868–2873

[18]

Jeffries C M , Ilavsky J , Martel A , Hinrichs S , Meyer A , Pedersen J S , Sokolova A V , Svergun D I . (2021). Small-angle X-ray and neutron scattering. Nature Reviews. Methods Primers, 1: 70

[19]

JohsAQianSCoatesLDavisonB HElkinsJ GGuXMorrell-FalveyJO’NeillHWarrenJPierceE Met al. (2022). ORNL Second Target Station Project: Biological & Environmental Science Workshop. Oak Ridge: Oak Ridge National Laboratory (ORNL)

[20]

KlosowskiP (2019). Neutron Sources Around the World. Available online at the website of ncnr.nist.gov (accessed 2024-03-18)

[21]

Kong D J , Chen W R , Zeng K Q , Porcar L , Wang Z . (2022). Localized elasticity governs the nonlinear rheology of colloidal supercooled liquids. Physical Review X, 12(4): 041006

[22]

Liu Y H , Cao H B , Rosenkranz S , Frost M , Huegle T , Lin J Y Y , Torres P , Stoica A , Chakoumakos B C . (2022). PIONEER, a high-resolution single-crystal polarized neutron diffractometer. Review of Scientific Instruments, 93(7): 073901

[23]

Lucero C L, Bentz D P, Hussey D S, Jacobson D L, Weiss W J (2015). Using neutron radiography to quantify water transport and the degree of saturation in entrained air cement based mortar. In: Proceedings of the 10th world conference on neutron radiography (WCNR-10). Oct 5−10, 2014, Grindelwald, Switzerland

[24]

Ma C , Malessa A , Boersma A J , Liu K , Herrmann A . (2020). Supercharged proteins and polypeptides. Advanced Materials, 32(20): 1905309

[25]

Maity A , Singh S , Mehta S , Youngs T G A , Bahadur J , Polshettiwar V . (2023). Insights into the CO2 capture characteristics within the hierarchical pores of carbon nanospheres using small-angle neutron scattering. Langmuir, 39(12): 4382–4393

[26]

Mamontov E , Boone C , Frost M J , Herwig K W , Huegle T , Lin J Y Y , Mccormick B , Mchargue W , Stoica A D , Torres P . . (2022). A concept of a broadband inverted geometry spectrometer for the Second Target Station at the Spallation Neutron Source. Review of Scientific Instruments, 93(4): 045101

[27]

Maranzano B J , Wagner N J . (2002). Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transition. Journal of Chemical Physics, 117(22): 10291–10302

[28]

McFarlane J , Anovitz L M , Cheshire M C , Distefano V H , Bilheux H Z , Bilheux J C , Daemen L L , Hale R E , Howard R L , Ramirez-Cuesta A . . (2021). Water migration and swelling in engineered barrier materials for radioactive waste disposal. Nuclear Technology, 207(8): 1237–1256

[29]

NakamuraAIinoR (2018). Glycobiophysics. Yamaguchi Y, Kato K, eds. Singapore: Springer Singapore, 201–217

[30]

Qian S , Heller W , Chen W R , Christianson A , Do C , Wang Y Y , Lin J Y Y , Huegle T , Jiang C Y , Boone C . . (2022). CENTAUR-The small- and wide-angle neutron scattering diffractometer/spectrometer for the Second Target Station of the Spallation Neutron Source. Review of Scientific Instruments, 93(7): 075104

[31]

Ramsay J D F , Swanton S W , Bunce J . (1990). Swelling and dispersion of smectite clay colloids-determination of structure by neutron-diffraction and small-angle neutron-scattering. Journal of the Chemical Society, Faraday Transactions, 86(23): 3919–3926

[32]

Rother G , Ilton E S , Wallacher D , Hauβ T , Schaef H T , Qafoku O , Rosso K M , Felmy A R , Krukowski E G , Stack A G , Grimm N , Bodnar R J . (2013). CO2 sorption to subsingle hydration layer montmorillonite clay studied by excess sorption and neutron diffraction measurements. Environmental Science & Technology, 47(1): 205–211

[33]

Sala G , Mourigal M , Boone C , Butch N P , Christianson A D , Delaire O , Desantis A J , Hart C L , Hermann R P , Huegle T . . (2022). CHESS: the future direct geometry spectrometer at the second target station. Review of Scientific Instruments, 93(6): 065109

[34]

Shepherd R H , King M D , Rennie A R , Ward A D , Frey M M , Brough N , Eveson J , Del Vento S , Milsom A , Pfrang C . . (2022). Measurement of gas-phase OH radical oxidation and film thickness of organic films at the air-water interface using material extracted from urban, remote and wood smoke aerosol. Environmental Science: Atmospheres, 2(4): 574–590

[35]

Sing K S W . (1985). Reporting physisorption data for gas solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57(4): 603–619

[36]

Tötzke C , Kardjilov N , Manke I , Oswald S E . (2017). Capturing 3D water flow in rooted soil by ultra-fast neutron tomography. Scientific Reports, 7: 6192

[37]

Warren J M , Bilheux H , Kang M S , Voisin S , Cheng C L , Horita J , Perfect E . (2013). Neutron imaging reveals internal plant water dynamics. Plant and Soil, 366(1–2): 683–693

[38]

WenkH R (2006). Neutron Scattering in Earth Sciences. Berlin, Boston: De Gruyter

[39]

Zhang P , Wittmann F H , Zhao T , Lehmann E H . (2010). Neutron imaging of water penetration into cracked steel reinforced concrete. Physica B, Condensed Matter, 405(7): 1866–1871

RIGHTS & PERMISSIONS

Higher Education Press 2024

AI Summary AI Mindmap
PDF (4556KB)

1672

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/