Hematite-facilitated microbial ammoxidation for enhanced nitrogen removal in constructed wetlands
Hao Qin , Wenbo Nie , Duo Yi , Dongxu Yang , Mengli Chen , Tao Liu , Yi Chen
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (7) : 82
Hematite-facilitated microbial ammoxidation for enhanced nitrogen removal in constructed wetlands
● H-CWs synergistically eliminate NH4+ and NO3− while reducing N2O emissions. ● Inhibitors and isotope incubations are used to prove the Feammox process. ● Feammox contributes approximately 40% to ammonia removal in H-CWs. ● Nanowires on the hematite suggest ammoxidation likely linked to EET. ● H-CWs enhance the abundance of nitrogen-metabolizing microorganisms and genes.
Constructed wetlands (CWs) are widely applied for decentralized wastewater treatment. However, achieving efficient removal of ammonia (NH4+–N) has proven challenging due to insufficient oxygen. In this study, natural hematite (Fe2O3) was employed as a CW substrate (H-CWs) for the first time to drive anaerobic ammonia oxidation coupled with iron(III) reduction (Feammox). Compared to gravel constructed wetlands (G-CWs), ammonia removal was enhanced by 38.14% to 54.03% and nitrous oxide (N2O) emissions were reduced by 34.60% in H-CWs. The synergistic removal of ammonia and nitrate by H-CWs also resulted in the absence of ammoxidation by-products. Inhibitor and 15N isotope tracer incubations showed that Feammox accounting for approximately 40% of all ammonia removal in the H-CWs. The enrichment of iron phosphate (Fe3Fe4(PO4)6) promoted the accumulation of the Feammox intermediate compound FeOOH. Microbial nanowires were observed on the surface of H-CW substrates as well, suggesting that the observed biological ammoxidation was most likely related to extracellular electron transfer (EET). Microbial and metagenomics analysis revealed that H-CWs elevated the integrity and enhanced the abundance of functional microorganisms and genes associated with nitrogen metabolism. Overall, the efficient ammonia removal in the absence of O2 together with a reduction in N2O emissions as described in this study may provide useful guidance for hematite-mediated anaerobic ammonia removal in CWs.
Constructed wetlands / Nitrogen removal / Feammox / Hematite / Iron cycle
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |