Radical innovation breakthroughs of biodegradation of plastics by insects: history, present and future perspectives

Shan-Shan Yang , Wei-Min Wu , Federica Bertocchini , Mark Eric Benbow , Suja P. Devipriya , Hyung Joon Cha , Bo-Yu Peng , Meng-Qi Ding , Lei He , Mei-Xi Li , Chen-Hao Cui , Shao-Nan Shi , Han-Jun Sun , Ji-Wei Pang , Defu He , Yalei Zhang , Jun Yang , Deyi Hou , De-Feng Xing , Nan-Qi Ren , Jie Ding , Craig S. Criddle

Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 78

PDF (14470KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 78 DOI: 10.1007/s11783-024-1838-x
REVIEW ARTICLE

Radical innovation breakthroughs of biodegradation of plastics by insects: history, present and future perspectives

Author information +
History +
PDF (14470KB)

Abstract

● Insect damaging and penetrating plastic materials has been observed since 1950s.

● Biodegradation of plastics by insects has become hot research frontiers.

● All major plastics can be biodegraded with half-live on hourly basis.

● The biodegradation is performed by the insect hosts together with gut microbiota.

● Future perspectives focus on biodegradation mechanisms and potential applications.

Insects damaging and penetrating plastic packaged materials has been reported since the 1950s. Radical innovation breakthroughs of plastic biodegradation have been initiated since the discovery of biodegradation of plastics by Tenebrio molitor larvae in 2015 followed by Galleria mellonella in 2017. Here we review updated studies on the insect-mediated biodegradation of plastics. Plastic biodegradation by insect larvae, mainly by some species of darkling beetles (Tenebrionidae) and pyralid moths (Pyralidae) is currently a highly active and potentially transformative area of research. Over the past eight years, publications have increased explosively, including discoveries of the ability of different insect species to biodegrade plastics, biodegradation performance, and the contribution of host and microbiomes, impacts of polymer types and their physic-chemical properties, and responsible enzymes secreted by the host and gut microbes. To date, almost all major plastics including polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyurethane (PUR), and polystyrene (PS) can be biodegraded by T. molitor and ten other insect species representing the Tenebrionidae and Pyralidae families. The biodegradation processes are symbiotic reactions or performed by synergistic efforts of both host and gut-microbes to rapidly depolymerize and biodegrade plastics with hourly half-lives. The digestive ezymens and bioreagents screted by the insects play an essential role in plasatic biodegradation in certain species of Tenebrionidae and Pyralidae families. New research on the insect itself, gut microbiomes, transcriptomes, proteomes and metabolomes has evaluated the mechanisms of plastic biodegradation in insects. We conclude this review by discussing future research perspectives on insect-mediated biodegradation of plastics.

Graphical abstract

Keywords

Plastics / Biodegradation / Insects / Gut microbiomes / Enzymes

Cite this article

Download citation ▾
Shan-Shan Yang, Wei-Min Wu, Federica Bertocchini, Mark Eric Benbow, Suja P. Devipriya, Hyung Joon Cha, Bo-Yu Peng, Meng-Qi Ding, Lei He, Mei-Xi Li, Chen-Hao Cui, Shao-Nan Shi, Han-Jun Sun, Ji-Wei Pang, Defu He, Yalei Zhang, Jun Yang, Deyi Hou, De-Feng Xing, Nan-Qi Ren, Jie Ding, Craig S. Criddle. Radical innovation breakthroughs of biodegradation of plastics by insects: history, present and future perspectives. Front. Environ. Sci. Eng., 2024, 18(6): 78 DOI:10.1007/s11783-024-1838-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdulhay H S. (2020). Biodegradation of plastic wastes by confused flour beetle Tribolium confusum Jacquelin du Val larvae. Asian Journal of Agriculture and Biology, 8(2): 201–206

[2]

Aboelkheir M G, Visconte L Y, Oliveira G E, Filho R D, Souza F G. (2019). The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Science of the Total Environment, 649: 1075–1082

[3]

AgamuthuP (2018). Marine debris, plastics, microplastics and nano-plastics: What next? Waste Management & Research, 36(10): 869–871 10.1177/0734242X18796770

[4]

Albertsson A C. (1978). Biodegradation of synthetic polymers. II. A limited microbial conversion of 14C in polyethylene to 14CO2 by some soil fungi. Journal of Applied Polymer Science, 22(12): 3419–3433

[5]

Albertsson A C. (1980). The shape of the biodegradation curve for low and high density polyethenes in prolonged series of experiments. European Polymer Journal, 16(7): 623–630

[6]

Ali S S, Elsamahy T, Zhu D C, Sun J Z. (2023). Biodegradability of polyethylene by efficient bacteria from the guts of plastic-eating waxworms and investigation of its degradation mechanism. Journal of Hazardous Materials, 443: 130287

[7]

Al-Tohamy R, Ali S S, Zhang M, Sameh M, Zahoor Y A G, Mahmoud D, Waleed N, Okasha S R, Sun J Z. (2023). Can wood-feeding termites solve the environmental bottleneck caused by plastics? A critical state-of-the-art review. Journal of Environmental Management, 326: 116606

[8]

An R, Liu C G, Wang J, Jia P Y. (2023). Recent advances in degradation of polymer plastics by insects inhabiting microorganisms. Polymers, 15(5): 1307

[9]

Bai Y, Li C, Yang M, Liang S. (2018). Complete mitochondrial genome of the dark mealworm Tenebrio obscurus Fabricius (Insecta: Coleoptera:, Tnebrionidae). Mitochondrial DNA. Part B, Resources, 3(1): 171–172

[10]

Baldera-Moreno Y, Pino V, Farres A, Banerjee A, Gordillo F, Andler R. (2022). Biotechnological aspects and mathematical modeling of the biodegradation of plastics under controlled conditions. Polymers, 14(3): 1–22

[11]

BertocchiniF, AriasC F (2023). Why have we not yet solved the challenge of plastic degradation by biological means? PLoS Biology, 21(3): e3001979 10.1371/journal.pbio.3001979

[12]

Billen P, Khalifa L, Van Gerven F, Tavernier S, Spatari S. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Science of the Total Environment, 735: 139521

[13]

Bombelli P, Howe C J, Bertocchini F. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27(8): R292–R293

[14]

BoschiA, Scieuzo C, SalviaR, AriasC F, PerezR P, BertocchiniF, FalabellaP (2023). Beyond microbial biodegradation: plastic degradation by Gealleria mellonella. Journal of Polymers and the Environment, 10.1007/s10924-023-03084-6

[15]

Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia Y A, Nizza A. (2015). Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. British Poultry Science, 56: 569–575

[16]

BowdenM E (1997). Chemical Achievers: the Human Face of the Chemical Sciences. Philadelphia: Chemical Heritage Foundation. ISBN 9780941901123

[17]

Boźek M, Hanus-Lorenz B, Rybak J. (2017). The studies on waste biodegradation by Tenebrio molitor. E3S Web of Conferences, 17: 00011

[18]

Brandon A M, El Abbadi S H, Ibekwe U A, Cho Y M, Wu W M, Criddle C S. (2020). Fate of hexabromocyclododecane (HBCD), a common flame retardant, in polystyrene-degrading mealworms: elevated HBCD levels in egested polymer but no bioaccumulation. Environmental Science & Technology, 54(1): 364–371

[19]

Brandon A M, Gao S H, Tian R, Ning D, Yang S S, Zhou J Z, Wu W M, Criddle C S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52(11): 6526–6533

[20]

Brandon A M, Garcia A M, Khlystov N A, Wu W M, Criddle C S. (2021). Enhanced bioavailability and microbial biodegradation of polystyrene in an enrichment derived from the gut microbiome of Tenebrio molitor (mealworm larvae). Environmental Science & Technology, 55(3): 2027–2036

[21]

Brown A E. (1945). The problem of fugal growth on synthetic resins. Modern Plastics, 23: 189

[22]

Brune A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews. Microbiology, 12(3): 168–180

[23]

Burd B S, Mussagy C U, Singulani J D L, Tanaka J L, Scontri M, Brasil G S A P, Guerra N B, Assato P A, Abreu P D S, Bebber C C. . (2023). Galleria mellonella larvae as an alternative to low-density polyethylene and polystyrene biodegradation. Journal of Polymers and the Environment, 31(3): 1232–1241

[24]

CalmontB, Soldati F (2008). Ecologie et biologie de Tenebrio opacus Duftschmid, 1812 Distribution et détermination des espèces françaises du genre Tenebrio Linnaeus, 1758 (Coleoptera: Tenebrionidae). R A R E, T XVII (3): 81–87

[25]

Cassone B J, Grove H C, Elebute O, Villanueva S M P, LeMoine C M R. (2020). Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proceeding of the Royal Society B-Biological Sciences, 287: 20200112

[26]

Cassone B J, Grove H C, Kurchaba N, Geronimo P, LeMoine C M R. (2022). Fat on plastic: metabolic consequences of an LDPE diet in the fat body of the greater wax moth larvae (Galleria mellonella). Journal of Hazardous Materials, 425: 127862

[27]

Chalup A, Ayup M M, Garzia A C M, Malizia A, Martin E, De Cristóbal R, Galindo-Cardona A. (2018). First report of the lesser wax moth Achroia grisella F. (Lepidoptera: Pyralidae) consuming polyethylene (silo-bag) in northwestern Argentina. Journal of Apicultural Research, 57(4): 569–571

[28]

Chamas A, Moon H, Zheng J J, Qiu Y, Tabassum T, Jang J H, Abu-Omar M, Scott S L, Suh S W. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8(9): 3494–3511

[29]

Chen Z, Zhang Y L, Xing R Z, Rensing C, J, Chen M L, Zhong S N, Zhou S G. (2023). Reactive oxygen species triggered oxidative degradation of polystyrene in the gut of superworms (Zophobas atratus Larvae). Environmental Science & Technology, 57(20): 7867–7874

[30]

Cheng L X, Tong Y J, Zhao Y C, Sun Z B, Wang X P, Ma F Z, Bai M. (2022). Study on the relationship between richness and morphological diversity of higher taxa in the darkling beetles (Coleoptera: Tenebrionidae). Diversity, 14(1): 60

[31]

Cheng X T, Xia M L, Yang Y. (2023). Biodegradation of vulcanized rubber by a gut bacterium from plastic-eating mealworms. Journal of Hazardous Materials, 448: 130940

[32]

Cline L D. (1978). Penetration of seven common flexible packaging materials by larvae and adults of eleven species of stored product insects. Journal of Economic Entomology, 71(5): 726–729

[33]

Cucini C, Funari R, Mercati D, Nardi F, Carapelli A, Marri L. (2022). Polystyrene shaping effect on the enriched bacterial community from the plastic-eating Alphitobius diaperinus (Insecta: Coleaoptera). Symbiosis, 86(3): 305–313

[34]

CuciniC, Leo C, VitaleM, FratiF, Carapelli A, NardiF (2020). Bacterial and fungal diversity in the gut of polystyrene-fed Alphitobius diaperinus (Insecta: Coleoptera). Animal Genetics, 17–18: 200109

[35]

Dawson A L, Kawaguchi S, King C K, Townsend K A, King R, Huston W M, Nash S M B. (2018). Thurning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nature Communications, 9(1): 1001

[36]

De Flippis F, Bonelli M, Bruno D, Sequino G, Montali A, Reguzzoni M, Pasolli E, Savy D, Cangemi S, Cozzolino V. . (2023). Plastics shape the black soldier fly larvae gut microbiome and select for biodegrading functions. Microbiome, 11(1): 205

[37]

Despins J L, Turner E C, Pfeiffer D G. (1991). Evaluation of methods to protect poultry house insulation from infestations by lesser mealworm (Colleopera: Tenerbronidae). Journal of Agricultural Entomology, 8: 209–217

[38]

Ding M Q, Yang S S, Ding J, Zhang Z R, Zhao Y L, Dai W, Sun H J, Zhao L, Xing D F, Ren N Q. . (2023). Gut microbiome associating with carbon and nitrogen metabolism during biodegradation of polyethene in Tenebrio larvae with crop residues as co-diets. Environmental Science & Technology, 57(8): 3031–3041

[39]

Ding M Q, Ding J, Zhang Z R, Li M X, Cui C H, Pang J W, Xing D F, Ren N Q, Wu W M, Yang S S. (2024). Biodegradation of various grades of polyethylene microplastics by Tenebrio molitor and Tenebrio obscurus larvae: effects on their physiology. Journal of Environmental Management, 358: 120832

[40]

Dunn K. (2021). Antibiotic effects on Tenebrio molitor ingestion of Styrofoam. International Journal of High School Research, 3(4): 37–41

[41]

Engel P, Moran N A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37(5): 699–735

[42]

Fabreag M A C, Familara J A. (2019). Biodegradation of expanded polystyrene (EPS) (Styrofoam) block as feedstock to Tribolium castaneum (red flour beetle) imago: A promising plastic-degrading process. World News of Natural Sciences, 24: 145–156

[43]

Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X. . (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80–2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America, 104(13): 5602–5607

[44]

Fudlosid S, Ritchie M W, Muzzatti M J, Allison J E, Provencher J, MacMillan H A. (2022). Ingestion of microplastic fibres, but not microplastic beads, impacts growth rates in the tropical house gricket Gryllodes Sigillatus. Frontiers in Physiology, 13: 871149

[45]

Gallitelli L, Zauli A, Scalici M. (2022). Another one bites the plastics. Ecology and Evolution, 12(9): e9332

[46]

Gao J, Wang L W, Wu W M, Luo J, Hou D Y. (2024). Microplastic generation from field-collected plastic gauze: unveiling the aging processes. Journal of Hazardous Materials, 467: 133615

[47]

Gaytán I, Sánchez-Reyes A, Burelo M, Vargas-Suárez M, Liachko I, Press M, Sullivan S, Cruz-Gómez J, Loza-Tavera H. (2020). Degradation of recalcitrant polyurethane and xenobiotic additives by a selected landfill microbial community and its biodegradative potential revealed by proximity ligation-based metagenomic analysis. Frontiers in Microbiology, 10: 2986

[48]

Genta F A, Dillon R J, Terra W R, Ferreira C. (2006). Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor larvae. Journal of Insect Physiology, 52(6): 593–601

[49]

Gerhardt P D, Lindgren D L. (1954). Penetration of various packaging films by common stored-product insects 1. Journal of Economic Entomology, 47(2): 282–287

[50]

Gola D, Tyagi P K, Arya A, Chauhan N, Agarwal M, Singh S K, Gola S. (2021). The impact of microplastics on marine environment: A review. Environmental Nanotechnology, Monitoring & Management, 16: 100552

[51]

Gopinath P M, Darekar A S, Kanimozhi S, Mukherjee A, Chandrasekaran N. (2022). Female mosquito-a potential vector for transporting plastic residues to humans. Chemosphere, 301: 134666

[52]

Hahladakis J H, Velis C A, Weber R, Iacovidou E, Purnell P. (2018). An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal, and recycling. Journal of Hazardous Materials, 344: 179–199

[53]

He L, Yang S S, Ding J, Chen C X, Yang F, He Z L, Pang J W, Peng B Y, Zhang Y L, Xing D F. . (2024a). Biodegradation of polyethylene terephthalate by Tenebrio molitor: insights for polymer chain size, gut metabolome and host genes. Journal of Hazardous Materials, 465: 133446

[54]

He L, Ding J, Yang S S, Zang Y N, Pang J W, Xing D F, Zhang L Y, Ren N Q, Wu W M. (2024b). Molecular-weight-dependent degradation of plastics: deciphering host−microbiome synergy biodegradation of high-hurity polypropylene microplastics by mealworms. Environmental Sciece & Technology, 58: 6647–6658

[55]

He L, Yang S S, Ding J, He Z L, Pang J W, Xing D F, Zhao L, Zheng H S, Ren N Q, Wu W M. (2023). Responses of gut microbiomes to commercial polyester polymer biodegradation in Tenebrio molitor Larvae. Journal of Hazardous Materials, 457: 131759

[56]

Highland H A, Wilsons R. (1981). Resistance of polymer films to penetration by lesser grain borer and description of a device for measuring resistance. Journal of Economic Entomology, 74(1): 67–70

[57]

Hu J, He D, Zhang X, Li X, Chen Y, Gao W, Zhang Y, Ok Y S, Luo Y. (2022). National-scale distribution of micro(meso)plastics in farmland soils across China: Implications for environmental impacts. Journal of Hazardous Materials, 424: 127283

[58]

Inderthal H, Tai S L, Harrison S T L. (2021). Non-hydrolyzable plastics: an interdisciplinary look at plastic bio-oxidation. Trends in Biotechnology, 39(1): 12–23

[59]

Jiang S, Su T, Zhao J, Wang Z. (2021). Isolation, identification, and characterization of polystyrene-degrading bacteria from the gut of Galleria mellonella (Lepidoptera: Pyralidae) larvae. Frontiers in Bioengineering and Biotechnology, 9: 736062

[60]

Kesti S S, Thimmappa S C. (2019). First report on biodegradation of low density polyethylene by rice moth larvae, Corcyra cephalonica (Stainton). Holistic Approach to Environment, 4(4): 79–83

[61]

Kim H R, Lee H M, Yu H C, Jeon E, Lee S, Li J, Kim D H. (2020). Biodegradation of polystyrene by Pseudomonas sp. isolated from the gut of superworms (larvae of Zophobas atratus). Environmental Science & Technology, 54(11): 6987–6996

[62]

Kim S Y, Kim H G, Song S H, Kim N J. (2015). Developmental characteristics of Zophobas atratus (Coleoptera: Tenebrionidae) larvae in different instars. International Journal of Industrial Entomology, 30(2): 45–49

[63]

Kong H G, Kim H H, Chung J, Jun J, Lee S, Kim H M, Jeon S, Park S G, Bhak J, Ryu C M. (2019). The Galleria mellonella hologenome supports microbiota-independent metabolism of long-chain hydrocarbon beeswax. Cell Reports, 26(9): 2451–2464.e5

[64]

Kong Y, Hay J N. (2002). The measurement of the crystallinity of polymers by DSC. Polymer, 43(14): 3873–3878

[65]

Kristensen N P, Scoble M J, Karsholt O. (2007). Lepidoptera phylogeny and systematics: The state of inventorying moth and butterfly diversity. Zootaxa, 1668(1): 699–747

[66]

Kumar A, Kalleshwaraswamy C M, Sharma R, Sharma P, Poonia A. (2022). Biodegradation of plastic using termites and their gut microbiota: a mini review. IOP Conference Series. Earth and Environmental Science, 1057(1): 012016

[67]

Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya S P. (2019a). Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environmental Science and Pollution Research International, 26(18): 18509–18519

[68]

Kundungal H, Gangarapu M, Sarangapani S, Patchaiyappan A, Devipriya S P. (2019b). Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low-density polyethylene films by greater waxworm. Environmental Technology, 42(5): 717–730

[69]

Kundungal H, Synshiang K, Devipriya S P. (2021). Biodegradation of polystyrene wastes by a newly reported honey bee pest Uloma sp. larvae: an insight to the ability of polystyrene fed larvae to complete its life cycle. Environmental Challeges, 4: 100083

[70]

Lee H M, Kim H R, Jeon E, Yu H C, Lee S, Li J, Kim D H. (2020). Evaluation of the biodegradation efficiency of four various types of plastics by Pseudomonas aeruginosa isolated from the gut extract of superworms. Microorganisms, 8(9): 1341

[71]

Leejarkpai T, Suwanmanee U, Rudeekit Y, Mungcharoen T. (2011). Biodegrable kinetics of plastics under controlled composting conditions. Waste Management, 31(6): 1153–1161

[72]

LeichtA, Masuda H (2022). Ingestion of Nylon 11 polymers by the mealworm (Tenebrio molitor) beetle and subsequent enrichment of monomer-metabolizing bacteria in fecal microbiome. Frontiers in Bioscience (Elite Edition), 15(2): 11 (Elite Ed) 10.31083/j.fbe1502011

[73]

LeMoine C M R, Grove H C, Smith C M, Cassone B J. (2020). A very hungry caterpillar: polyethylene metabolism and lipid homeostasis in larvae of the greater wax moth (Galleria mellonella). Environmental Science & Technology, 54(22): 14706–14715

[74]

Leslie H A, van Velzen M J M, Brandsma S H, Vethaak A D, Garcia-Vallejo J J, Lamoree M H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163: 107199

[75]

Li Y, Tao L, Wang Q, Wang F B, Li G, Song M Y. (2023). Potential health impact of microplastics: a review of environmental distribution, human exposure, and toxic effects. Environmental Health, 1(4): 249–257

[76]

Liu J W, Liu J Y, Xu B, Xu A M, Cao S X, Wei R, Zhou J, Jiang M, Dong W L. (2022a). Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome. Chemosphere, 304: 135263

[77]

Liu Z M, Zhao J, Lu K, Wang Z Y, Yin L, Zheng H, Wang X, Mao L, Xing B S. (2022b). Biodegradation of graphere oxide by insects (Tenebrio molitor larvae): role of gut microbiome and enzymes. Environmental Science & Technology, 56(23): 16737–16747

[78]

López-Naranjo E J, Alzate-Gaviria L M, Hernández-Zárate G, Reyes-Trujeque J, Cupul-Manzano C V, Cruz-Estrada R H. (2013). Effect of biological degradation by termites on the flexural properties of pinewood residue/recycled high-density polyethylene composites. Journal of Applied Polymer Science, 128(5): 2595–2603

[79]

Lott C, Eich A, Makarow D, Unger B, van Eekert M, Schuman E, Reinach M S, Lasut M T, Weber M. (2021). Half-life of biodegradable plastics in the marine environment depends on material, habitat, and climate zone. Frontiers of Materials Science, 8: 662074

[80]

Lou H, Fu R, Long T Y, Fan B Z, Guo C, Li L L, Zhang J, Zhang G C. (2022). Biodegradation of polyethylene by Meyerozyma guilliermondii and Serratia marcescens isolated from the gut of waxworms (larvae of Plodia interpunctella). Science of the Total Environment, 853: 158604

[81]

Lou Y, Ekaterina P, Yang S S, Lu B, Liu B, Ren N Q, Corvini P F X, Xing D F. (2020). Biodegradation of polyethylene and polystyrene by greater wax moth larvae (Galleria mellonella L.) and the effect of co-diet supplementation on the core gut microbiome. Environmental Science & Technology, 54(5): 2821–2831

[82]

Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J E. (2008). Polymer biodegradation: mechanisms and estimation techniques. Chemosphere, 73(4): 429–442

[83]

Luo L, Wang Y, Guo H, Yang Y, Qi N, Zhao X, Gao S, Zhou A. (2021). Biodegradation of foam plastics by Zophobas atratus larvae (Coleoptera: Tenebrionidae) associated with changes of gut digestive enzymes activities and microbiome. Chemosphere, 282: 131006

[84]

Mahmoud E A, Al-Hagar O E A, Abd El-Aziz M F. (2021). Gamma radiation effect on the midgut bacteria of Plodia interpunctella and its role in organic wastes biodegradation. International Journal of Tropical Insect Science, 41(1): 261–272

[85]

Mamtimin T, Han H W, Khan A, Feng P Y, Zhang Q, Ma X B, Fang Y T, Liu P, Kulshrestha S, Shigaki T. . (2023). Gut microbiome of mealworms (Tenebrio molitor Larvae) show similar responses to polystyrene and corn straw diets. Microbiome, 11(1): 98

[86]

Matjašič T, Simčič T, Medvešček N, Bajt O, Dreo T, Mori N. (2021). Critical evaluation of biodegradation studies on synthetic plastics through a systematic literature review. Science of the Total Environment, 752: 141959

[87]

MiaoS J, Zhang Y L (2010). Feeding and degradation effect on plastic of Zophobas morio. Journal of Environmenal Entomology, 32: 435–444 (in Chinese)

[88]

Min K, Cuiffi J D, Mathers R T. (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11(1): 727

[89]

Navlekar A S, Osuji E, Carr D L. (2023). Gut microbial communities in mealworms and Idian meal moth larvae respond differently to plastics degradation. Journal of Polymers and the Environment, 31(6): 2434–2447

[90]

Newton J. (1988). Insects and packaging: a review. International Biodeterioration & Biodegradation, 24(3): 175–187

[91]

Nukmal N, Puspita S, Kanedi M. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). Online Journal of Biological Sciences, 18(1): 24–28

[92]

Nyamjav I, Jang Y J, Lee Y E, Lee S. (2023a). Biodegradation of polyvinyl chloride by Citrobacter koseri isolated from superworms Zophobas atratus larvae). Frontiers in Microbiology, 14: 1175249

[93]

Nyamjav I, Jang Y J, Park N, Lee Y E, Lee S. (2023b). Physicochemical and structural evidence that Bacillus cereus isolated from the gut of waxworms (Galleria mellonella larvae) biodegrades polypropylene efficiently in vitro. Journal of Polymers and the Environment, 31(10): 4274–4287

[94]

Ort J M, Parrado J, Pascual J A, Orts A, Cuartero J, Ros M T M. (2023). Polyurethane foam residue biodegradation through the Tenebrio molitor digestive tract: microbial communities and enzymatic activity. Polymers, 15: 204

[95]

Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K. (1995). Biodegradation of low-density polyethylene, polystyrene, polyvinyl-chloride, and urea-formaldehyde resin buried under soil for over 32 years. Journal of Applied Polymer Science, 56(13): 1789–1796

[96]

Peng B Y, Chen Z, Chen J, Yu H, Zhou X, Criddle C S, Wu W M, Zhang Y. (2020b). Biodegradation of polyvinyl chloride (PVC) in Tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environment International, 145: 106106

[97]

Peng B Y, Chen Z, Chen J, Zhou X, Wu W M, Zhang Y. (2021). Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: a sustainable approach for waste management. Journal of Hazardous Materials, 416: 125803

[98]

Peng B Y, Li Y, Fan R, Chen Z, Chen J, Brandon A M, Criddle C S, Zhang Y, Wu W M. (2020a). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266: 115206

[99]

Peng B Y, Su Y, Chen Z, Chen J, Zhou X, Benbow M E, Criddle C S, Wu W M, Zhang Y. (2019). Biodegradation of polystyrene by dark (Tenebrio obscurus) and yellow (Tenebrio molitor) mealworms (Coleoptera: Tenebrionidae). Environmental Science & Technology, 53(9): 5256–5265

[100]

Peng B Y, Su Y, Zhang X, Sun J J. (2023a). Unveiling the residual plastics and produced toxicity during biodegradation of polyethylene (PE), polystyrene (PS), and polyvinyl chloride (PVC) microplastics by mealworms (Larvae of Tenebrio molitor). Journal of Hazardous Materials, 452: 131326

[101]

Peng B Y, Sun Y, Li P, Yu S R, Xu Y Z, Chen J B, Zhou X F, Wu W M, Zhang Y L. (2023c). Biodegradation of polyvinyl chloride, polystyrene, and polylactic acid microplastics in Tenebrio molitor larvae: physiological responses. Journal of Environmental Management, 345: 118818

[102]

Peng B Y, Sun Y, Wu Z Y, Chen J B, Shen Z, Zhou X F, Wu W M, Zhang Y L. (2022a). Biodegradation of polystyrene and low-density polyethylene by Zophobas atratus larvae: Fragmentation into microplastics, gut microbiota shift, and microbial functional enzymes. Journal of Cleaner Production, 367: 132987

[103]

Peng B Y, Sun Y, Xiao S Z, Chen J B, Zhou X F, Wu W M, Zhang Y L. (2022b). Influence of polymer size on polystyrene biodegradation in mealworms (Tenebrio molitor): responses of depolymerization pattern, gut microbiome, and metabolome to polymers with low to ultrahigh molecular weight. Environmental Science & Technology, 56(23): 17310–17320

[104]

Peng B Y, Xiao S Z, Sun Y, Liu Y R, Chen J B, Zhou X F, Wu W M, Zhang Y L. (2023d). Unveiling fragmentation of plastic particles during biodegradation of polystyrene and polyethylene foams in mealworms: highly sensitive detection and digestive modeling prediction. Environmental Science & Technology, 57(40): 15099–15111

[105]

Peng B Y, Xu Y Z, Sun Y, Xiao S Z, Sun J J, Shen Z, Chen J B, Zhou X F, Zhang Y L. (2023e). Biodegradation of polyethylene (PE) microplastics by mealworm larvae: physiological responses, oxidative stress, and residual plastic particles. Journal of Cleaner Production, 402: 136831

[106]

Peng B Y, Zhang X, Sun Y, Liu Y R, Chen J B, Shen Z, Zhou X F, Zhang Y L. (2023b). Biodegradation and carbon resource recovery of poly(butylene adipate-co-terephthalate) (PBAT) by mealworms: removal efficiency, depolymerization pattern, and microplastic residue. ACS Sustainable Chemistry & Engineering, 11(5): 1774–1784

[107]

Peydaei A, Bagheri H, Gurevich L, de Jonge N, Nielsen J L. (2020). Impact of polyethylene on salivary glands proteome in Galleria melonella. Comparative Biochemistry and Physiology D-genomics & proteomics, 34: 100678

[108]

Peydaei A, Bagheri H, Gurevich L, de Jonge N, Nielsen J L. (2021). Mastication of polyolefins alters the microbial composition in Galleria mellonella. Environmental Pollution, 280: 116877

[109]

Przemieniecki S W, Kosewska A, Ciesielski S, Kosewska O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256: 113265

[110]

Przemieniecki S W, Kosewska A, Kosewska O, Purwin C, Lipiński K, Ciesielski S. (2022). Polyethylene, polystyrene and lignocellulose wastes as mealworm (Tenebrio molitor L.) diets and their impact on the breeding condition, biometric parameters, metabolism, and digestive microbiome. Science of the Total Environment, 832: 154758

[111]

Qian N X, Gao X, Lang X Q, Deng H P, Bratu T M, Chen Q X, Stapleton P, Yan B Z, Min W. (2024). Rapid single-particle chemical imaging of nanoplastics by SRS microscopy. Proceedings of the National Academy of Sciences of the United States of America, 121(3): e2300582121

[112]

Réjasse A, Waeytensb J, Deniset-Besseauc A, Crapartd N, Nielsen-Lerouxa C, Sandt C. (2022). Plastic biodegradation: does Galleria mellonella larvae bio-assimilate polyethylene? A spectral histology approach using isotopic labelling and infrared microspectroscopy. Environmental Science & Technology, 56(1): 525–534

[113]

Ren L, Men L, Zhang Z, Guan F, Tian J, Wang B, Wang J, Zhang Y, Zhang W. (2019). Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16(11): 1941

[114]

Restrepo-Flórez J M, Bassi A, Thompson M R. (2014). Microbial degradation and deterioration of polyethylene: a review. International Biodeterioration & Biodegradation, 88: 83–90

[115]

Ritchie M W, Cheslock A, Bourdages M P T, Hamilton B M, Provencher J F, Allison J E, MacMillan H A. (2023). Quantifying microplastic ingestion, degradation and excretion in insects using fluorescent plastics quantifying microplastic ingestion, degradation and excretion in insects using fluorescent plastics. Conservation Physiology, 11(1): 1–10

[116]

Ritchie M W, Provencher J F, Allison J E, Muzzatti M J, MacMillan H A. (2024). The digestive system of a cricket pulverizes polyethylene microplastics down to the nanoplastic scale. Environmental Pollution, 343: 123168

[117]

Riudavets J, Salas I, Pons M J. (2007). Damage characteristics produced by insect pests in packaging film. Journal of Stored Products Research, 43(4): 564–570

[118]

Rumbos C I, Athanassiou C G. (2021). The superworm, Zophobas morio (Coleoptera: Tenebrionidae): a ‘sleeping giant’ in nutrient sources. Journal of Insect Science, 21(2): 1–11

[119]

RushP A, Hoffard W H (1989). White grubs. In: Cordell C E, Anderson R L, Hoffard W H, Landis T D, Smith Jr. R S, Toko H V, editors. Forest Nursery Pests. Agriculture Handbook 680. Washington, DC: USDA Forest Srrvice

[120]

Sanchez C. (2020). Fungal potential for the degradation of petroleum-based polymers: an overview of macro- and microplastics biodegradation. Biotechnology Advances, 40: 107501

[121]

Sanchez-HernandezJ C (2021). A toxicological perspective of plastic biodegradation by insect larvae. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 248(Part C): 109117 10.1016/j.cbpc.2021.109117

[122]

Sandt C, Waeytens J, Deniser-Besseau A, Nielsen-Leroux Réjasse A. (2021). Use and misuse of FTIR spectroscopy for studying the bio-oxidation of plastics. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 256: 119841

[123]

Sanluis-Verdes A, Colomer-Vidal P, Rodriguez-Ventura F, Bello-Villarino M, Spinola-Amilibia M, Ruiz-Lopez E, Illanes-Vicioso R, Castroviejo P, Aiese Cigliano R, Montoya M. . (2022). Wax worm saliva and the enzymes therein are the key to polyethylene degradation by Galleria mellonella. Nature Communications, 13(1): 5568

[124]

Serrano-Antón B, Rodríguez-Ventura F, Colomer-Vidal P, Cigliano R A, Arias C F, Bertocchini F. (2023). The virtual microbiome: A computational framework to evaluate microbiome analyses. PLoS One, 18(2): e0280391

[125]

Shah A A, Hasan F, Hameed A, Ahmed S. (2008). Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 26(3): 246–265

[126]

Shah R, Nguyen T V, Marcora A, Ruffell A, Hulthen A, Pham K, Wijffels G, Paull C, Beale D J. (2023). Exposure to polylatic acid induces oxidative stress and reduces the ceramide levels in larvae of greater wax moth (Galleria mellonella). Environmental Research, 220: 115137

[127]

SlipinskiS A, LeschenR A B, Lawrence J F (2011). Order Coleoptera Linnaeus, 1758. In: Zhang Z Q, editor. Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 203–208. Auckland: Magnolia Press, EP1830470 A1

[128]

Soldati L, Kergoat G J, Clamens A L, Jourdan H, Jabbour-Zahab R, Condamine F L. (2014). Integrative taxonomy of new Caledonian beetles: species delimitation and definition of the Uloma isoceroides species group (Coleoptera, Tenebrionidae, Ulomini), with the description of four new species. ZooKeys, 415: 133–167

[129]

Song Y, Qiu R, Hu J, Li X, Zhang X, Chen Y, Wu W M, He D F. (2020). Biodegradation and disintegration of expanded polystyrene by land snails Achatina fulica. Science of the Total Environment, 746: 141289

[130]

Spínola-Amilibia M, Illanes-Vicioso R, Ruiz-López E, Colomer-Vidal P, Ventura Rodriguez F, Peces Perez R, Arias C F, Torroba T, Solà M, Arias-Palomo E. . (2023). Plastic degradation by insect hexamerins: near-atomic resolu-tion structures of the polyethylene degrading proteins from the wax worm saliva. Scince Advances, 38: eadi6813

[131]

Stehmeier L G, Francis M M, Jack T R, Diegor E, Winsor L, Abrajano Jr T A. (1999). Field and in viro edidence for in-situ bioremediation using compound-specific 13C/12C ratio monitoring. Organic Geochemistry, 30: 821–833

[132]

StorkN E (2018). How many species of insects and other terrestrial arthropods are there on earth? Annual Review of Entomology, 63(1): 31–45 10.1146/annurev-ento-020117-043348

[133]

Sun J R, Prabhu A, Aroney S T N, Rinke C. (2022a). Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in Styrofoam feeding trials. Microbial Genomics, 8(6): mgen000842

[134]

Sun Q H, Li J, Wang C, Chen A Q, You Y L, Yang S P, Liu H H, Jiang G B, Wu Y N, Li Y S. (2022b). Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Frontiers of Environmental Science & Engineering, 16(1): 1

[135]

Tan K M, Fauzi N M, Kassim A S M, Razak A H A, Kamarudin KR. (2021). Isolation and identification of polystyrene degrading bacteria from Zophobas morio’s Gut. Walailak Journal of Science and Technology, 18(8): 9118

[136]

Tang Z L, Kuo T A, Liu H H. (2017). The study of the microbes degraded polystyrene. Advances in Technology and Innovation, 2(1): 13–17

[137]

Thamil C T. (2016). Isolation and identification of polyethylene biodegradation bacterial from the guts of plastic bags - eating damp wood termites. Life Science Archives (LSA), 2(2): 490–499

[138]

Tschinkel W R. (1981). Larval dispersal and cannibalism in a natural population of Zophobas atratus (Coleoptera: Tenebrionidae). Animal Behaviour, 29(4): 990–996

[139]

Tschinkel W R. (1984). Zophobas atratus (Fab.) and Z. rugipes Kirsch (Coleoptera: Tenebrionidae) are the same species. Coleopterists Bulletin, 38: 325–333

[140]

Tsochatzis E D, Berggreen I E, Norgaard J, Theodoridis G, Dalsgaard T K. (2021). Biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies evaluated by metabolic profiling using GC-TOF-MS. Chemosphere, 281: 130840

[141]

Tsochatzis E D, Berggreen I E, Vidal N P, Roman L, Gika H, Corredig M. (2022). Cellular lipids and protein alteration during biodegrdation of expanded polystyrene by mealworm larvae under different feeding conditions. Chemosphere, 300: 134420

[142]

Tsochatzis E D, Lopes J A, Gika H, Theodoridis G. (2020). Polystyrene biodegradation by Tenebrio molitor larvae: identification of generated substances using GC-MS untargeted screening method. Polymers, 13(1): 17

[143]

Urbanek A K, Rybak J, Wrobel M, Leluk K, Mironczuk A M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262: 114281

[144]

Vasileva A V, Medvedeva I V, Kostyukova N M, Mukminov M N, Shuralev E A. (2018). Engenieering technology in plastic biodegradation by large bee moth larvae depends on the type of polyethylene. International Journal of Engineering Science, 7: 215–218

[145]

Wang C Q, O’Connor D, Wang L W, Wu W M, Luo J, Hou D Y. (2022a). Microplastics in urban runoff: Global occurrence and fate. Water Research, 225: 119129

[146]

Wang L, Wu W M, Bolan N S, Tsang D C W, Li Y, Qin M, Hou D Y. (2021). Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: current status and future perspectives. Journal of Hazardous Materials, 401: 123415

[147]

Wang S, Shi W, Huang Z, Zhou N, Xie Y, Tang Y, Hu F, Liu G, Zheng H. (2022b). Complete digestion/biodegradation of polystyrene microplastics by greater wax moth (Galleria mellonella) larvae: direct in vivo evidence, gut microbiota independence, and potential metabolic pathways. Journal of Hazardous Materials, 423: 127213

[148]

Wang Y, Luo L, Li X, Wang J, Wang H, Chen C, Guo H, Han T, Zhou A, Zhao X. (2022c). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment, 837: 155719

[149]

Wang Z, Xin X, Shi X, Zhang Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Science of the Total Environment, 726: 138564

[150]

WarnkeP, Cuhls K, Schmoch U, Daniel L, Andreescu L, Dragomir B, Gheorghiu R, Baboschi C, Curaj A, Parkkinen M, et al. (2019). European Commission, Directorate-General for Research and Innovation, 100 Radical Innovation Breakthroughs for the Future. Brussels: Publications Office of the European Union

[151]

Wei R, Tiso T, Bertling J, O’Connor K, Blank L M, Bornscheuer U T. (2020). Possibilities and limitations of biotechnological plastic degradation and recycling. Nature Catalysis, 3(11): 867–871

[152]

Whalley P E S. (1965). Damage to polythene by aquatic moths. Nature, 207(4992): 104

[153]

Woo S, Song I, Cha H J. (2020). Fast and facile biodegradation of polystyrene by the Gut Microbial Flora of Plesiophthalmus davidis Larvae. Applied and Environmental Microbiology, 86(18): e01361–20

[154]

Wu W M, Criddle C S. (2021). Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology, 648: 95–120

[155]

Wu W M, Yang J, Criddle C S. (2017). Microplastics pollution and reduction strategies. Frontiers of Environmental Science & Engineering, 11(1): 6–7

[156]

Wu Z Y, Shi W, Valencak T G, Zhang Y N, Liu G X, Ren D X. (2023). Biodegradation of conventional plastics: Candidate organisms and potential mechanisms. Science of the Total Environment, 885: 163908

[157]

Xia M, Hu L, Huo Y X, Yang Y. (2020a). Myroides albus sp. nov., isolated from the gut of plastic-eating larvae of the coleopteran insect Zophobas atratus. International Journal of Systematic and Evolutionary Microbiology, 70: 5460–5466

[158]

Xia M, Wang J, Huo Y X, Yang Y. (2020b). Mixta tenebrionis sp. nov., isolated from the gut of the plastic-eating mealworm Tenebrio molitor L. International Journal of Systematic and Evolutionary Microbiology, 70(2): 790–796

[159]

Xu Y, Xian Z N, Yue W L, Yin C F, Zhou N Y. (2023). Degradation of polyvinyl chloride by a bacterial consortium enriched from the gut of Tenebrio molitor larvae. Chemosphere, 318: 137944

[160]

Yang J, Yang Y, Wu W M, Zhao J, Jiang L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48(23): 13776–13784

[161]

Yang L, Gao J, Liu Y, Zhuang G, Peng X, Wu W M, Zhuang X. (2021d). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262: 127818

[162]

Yang S S, Brandon A M, Flanagan J C A, Yang J, Ning D, Cai S Y, Fan H Q, Wang Z Y, Ren J, Benbow M E. . (2018a). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191: 979–989

[163]

Yang S S, Chen Y D, Kang J H, Xie T R, He L, Xing D F, Ren N Q, Ho S H, Wu W M. (2019a). Generation of high-efficient biochar for dye adsorption using frass of yellow mealworms (larvae of Tenebrio molitor Linnaeus) fed with wheat straw for insect biomass production. Journal of Cleaner Production, 227: 33–47

[164]

Yang S S, Chen Y D, Zhang Y, Zhou H M, Ji X Y, He L, Xing D F, Ren N Q, Ho S H, Wu W M. (2019b). A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as by product for heavy metal removal. Environmental Pollution, 252: 1142–1153

[165]

Yang S S, Ding M Q, He L, Zhang C H, Li Q X, Xing D F, Cao G L, Zhao L, Ding J, Ren N Q. . (2021b). Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) angd superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Science of the Total Environment, 756: 144087

[166]

Yang S S, Ding M Q, Ren X R, Zhang Z R, Li M X, Zhang L L, Pang J W, Chen C X, Zhao L, Xing D F. . (2022b). Impacts of physical-chemical property of polyethylene on depolymerization and biodegradation in yellow and dark mealworms with high purity microplastics. Science of the Total Environment, 828: 154458

[167]

Yang S S, Ding M Q, Zhang Z R, Ding J, Bai S W, Cao G L, Zhao L, Pang J W, Xing D F, Ren N Q. . (2021a). Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Science of the Total Environment, 789: 147915

[168]

Yang S S, Wu W M, Brandon A M, Fan H Q, Receveur J P, Li Y, Wang Z Y, Fan R, McClellan R L, Gao S H. . (2018b). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212: 262–271

[169]

Yang S S, Wu W M, Pang J W, He L, Ding M Q, Li M X, Zhao Y L, Sun H J, Xing D F, Ren N Q. . (2023a). Bibliometric analysis of publications on biodegradation of plastics: explosively emerging research over 70 years. Journal of Cleaner Production, 428: 139423

[170]

Yang X G, Wen P P, Yang Y F, Jia P P, Li W G, Pei D S. (2022a). Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Frontiers in Microbiology, 13: 1001750

[171]

Yang X L, Wang S H, Gong Y, Yang Z G. (2021c). Effect of biological degradation by termites on the abnormal leakage of buried HDPE pipes. Engineering Failure Analysis, 124: 105367

[172]

Yang Y, Hu L, Wang J L, Jin G S. (2023b). Nitrogen fixation and diazotrophic community in plastic-eating mealworms Tenebrio molitor. Microbial Ecology, 85(1): 264–276

[173]

Yang Y, Wang J, Xia M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708: 135233

[174]

Yang Y, Yang J, Wu W M, Zhao J, Song Y, Gao L, Yang R, Jiang L. (2015a). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 1. chemical and physical characterization and isotopic tests. Environmental Science & Technology, 49(20): 12080–12086

[175]

Yang Y, Yang J, Wu W M, Zhao J, Song Y, Gao L, Yang R, Jiang L. (2015b). Biodegradation and mineralization of polystyrene by plastic-eating mealworms: Part 2. Role of gut microorganisms. Environmental Science & Technology, 49(20): 12087–12093

[176]

Yin C F, Xu Y, Zhou N Y. (2020). Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. International Biodeterioration & Biodegradation, 155: 105089

[177]

Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351(6278): 1196–1199

[178]

Zhang H, Liu Q, Wu H, Sun W X, Yang F, Ma Y H, Qi Y J. (2023). Biodegradation of polyethylene film by the Bacillus sp. PELW2042 from the guts of Tenebrio molitor (Mealworm Larvae). Process Biochemistry, 130: 236–244

[179]

Zhang J, Gao D, Li Q, Zhao Y, Li L, Lin H, Bi Q, Zhao Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704: 135931

[180]

Zhang Z, Peng H P, Yang D C, Zhang G Q, Zhang J L, Ju F. (2022). Polyvinyl chloride degradation by a bacterium isolated from the gut of insect larvae. Nature Communications, 13(1): 5360

[181]

Zhang Z Q. (2011). Animal biodiversity: an introduction to higher-level classification and taxonomic richness. Zootaxa, 7(1): 3148

[182]

Zhong Z, Nong W, Xie Y, Hui J H L, Chu L M. (2022). Long-term effect of plastic feeding on growth and transcriptomic response of mealworms (Tenebrio molitor L.). Chemosphere, 287: 132063

[183]

Zhong Z, Zhou X, Xie Y C, Chu L M. (2023). The interplay of larval age and particle size regulates micro-polystyrene biodegradation and development of Tenebrio molitor L. Science of the Total Environment, 857: 159335

[184]

Zhu P, Gong S S, Deng M Q, Xia B, Yang Y, Tang J, Qian G, Yu F, Goonetilleke A, Li X. (2023). Biodegradation of waste refrigerator polyurethane by mealworms. Frontiers of Environmental Science & Engineering, 17(3): 38

[185]

Zhu P, Shen Y, Li X, Liu X, Qian G, Zhou J. (2022). Feeding preference of insect larvae to waste electrical and electronic equipment plastics. Science of the Total Environment, 807: 151037

[186]

Zielińska E, Zieliński D, Jakubczyk A, Karaś M, Pankiewicz U, Flasz B, Dziewiecka M, Lewicki S. (2021). The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytoxicity and oxidative stress parameters. Food Chemistry, 345: 128846

[187]

Zolotova N, Kosyreva A, Dzhalilova D, Fokichev N, Makarova O. (2022). Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ, 10: e13503

RIGHTS & PERMISSIONS

The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (14470KB)

6693

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/