Effects of acid deposition control in China: a review based on responses of subtropical forests
Danni Xie , Xiaodong Ge , Lei Duan , Jan Mulder
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 77
Effects of acid deposition control in China: a review based on responses of subtropical forests
● S and N leaching from forest soils declined due to recent decreases in anthropogenic S and N emissions in China. ● Streamwater chemistry recovery was delayed by at least 5 years after peak S and N deposition. ● N2O–N emission are particularly high in (sub)tropical forests and may amount to 8% of total N deposition from the atmosphere. ● N2O emissions from forest soils declined with reduction in N deposition.
For many decades, acid deposition used to pose a significant regional air pollution challenge in China. After substantial emission control of anthropogenically derived sulfur and nitrogen containing gasses, both sulfur and nitrogen deposition, as well as the acid rain-affected area, have significantly decreased compared to their peak levels. Forests, particularly in the humid subtropics, are sensitive to acid deposition, as evidenced by soil acidification, sulfate and nitrate leaching in stream water, and elevated soil nitrous oxide emission. Reduction in the total deposition of sulfur and nitrogen, caused a significant decline in sulfate and nitrate leaching from subtropical forest and subsequently in sulfate and nitrate concentrations in stream water, although there was about a 5-year delay. This delay may be attributed to the desorption of accumulated sulfate and continued elevated mineralization of accumulated nitrogen pools. Emissions of nitrous oxide, a potent greenhouse gas, also declined in nitrogen-saturated subtropical forest soils, as soil water nitrate concentration decreased. Therefore, subtropical forests in China suffering from elevated acid deposition have begun to recover. Yet, the current levels of sulfur and nitrogen deposition continue to exceed the critical loads, i.e., the assigned threshold levels in accordance with emission control policies, in more than 10% of the country’s land area, respectively, indicating remaining risks of acidification and eutrophication. Thus, further emission reductions are urgently needed, also because they will help achieving goals related to air quality and nitrous oxide emissions.
Acidification / Critical load / Nitrous oxide / Surface water chemistry / Recovery
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
CMA (2023). Annual acid rain monitoring report in China in 2022. Beijing: China Meteorological Administration |
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
FAO (2020). Global Forest Resources Assessment 2020. Geneva: Food and Agriculture Organization of the United Nations |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
IPCC (2013). Climate Change 2013: the physical science basis. In: TFD, Stocker, Qin G K, Plattner M, et al. eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA Cambridge University Press |
| [28] |
IPCC (2014). Climate Change 2014: Synthesis Report. In: Core Writing Team, Pachauri R K, . Meyer L A. eds. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA Cambridge University Press |
| [29] |
IPCC (2021). Climate Change 2021: The Physical Science Basis. In: Masson-Delmotte V, Zhai A, Pirani S L, et al. eds. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK & New York, NY, USA Cambridge University Press |
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
|
The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn
/
| 〈 |
|
〉 |