Recent advances, challenges, and perspectives on carbon capture

Shihan Zhang , Yao Shen , Chenghang Zheng , Qianqian Xu , Yifang Sun , Min Huang , Lu Li , Xiongwei Yang , Hao Zhou , Heliang Ma , Zhendong Li , Yuanhang Zhang , Wenqing Liu , Xiang Gao

Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 75

PDF (11128KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 75 DOI: 10.1007/s11783-024-1835-0
REVIEW ARTICLE

Recent advances, challenges, and perspectives on carbon capture

Author information +
History +
PDF (11128KB)

Abstract

�?Recent advances in promising CCUS technologies are assessed.

�?Research status and trends in CCUS are visually analyzed.

�?Carbon capture remains a hotspot of CCUS research.

�?State-of-the-art capture technologies is summarized.

�?Perspective research of carbon capture is proposed

Carbon capture, utilization and storage (CCUS) technologies play an essential role in achieving Net Zero Emissions targets. Considering the lack of timely reviews on the recent advancements in promising CCUS technologies, it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application. To that end, this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations. Then, based on a visually bibliometric analysis, the carbon capture remains a hotspot in the CCUS development. Noting that the materials applied in the carbon capture process determines its performance. As a result, the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed. Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed, and insights into the research needs such as material design, process optimization, environmental impact, and technical and economic assessments are provided.

Graphical abstract

Keywords

Carbon capture, utilization and storage / Visualization analysis / Research hotspots and trends / CO 2 capture technology

Cite this article

Download citation ▾
Shihan Zhang, Yao Shen, Chenghang Zheng, Qianqian Xu, Yifang Sun, Min Huang, Lu Li, Xiongwei Yang, Hao Zhou, Heliang Ma, Zhendong Li, Yuanhang Zhang, Wenqing Liu, Xiang Gao. Recent advances, challenges, and perspectives on carbon capture. Front. Environ. Sci. Eng., 2024, 18(6): 75 DOI:10.1007/s11783-024-1835-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abd A A, Naji S Z, Hashim A S, Othman M R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous sorbents: a review. Journal of Environmental Chemical Engineering, 8(5): 104142

[2]

Adánez J, Gayán P, Celaya J, De Diego L F, García-Labiano F, Abad A. (2006). Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Industrial & Engineering Chemistry Research, 45(17): 6075–6080

[3]

Aghaie M, Rezaei N, Zendehboudi S. (2018). A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renewable & Sustainable Energy Reviews, 96: 502–525

[4]

Ahmed R, Liu G J, Yousaf B, Abbas Q, Ullah H, Ali M U. (2020). Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation: a review. Journal of Cleaner Production, 242: 118409

[5]

Al-Absi A A, Mohamedali M, Domin A, Benneker A M, Mahinpey N. (2022). Development of in situ polymerized amines into mesoporous silica for direct air CO2 capture. Chemical Engineering Journal, 447: 137465

[6]

AndrusH EChiu J HThibeaultP RMillerC (2010). Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype. Morgantown: National Energy Technology Laboratory (NETL)

[7]

Antzaras A N, Papalas T, Heracleous E, Kouris C. (2023). Techno-economic and environmental assessment of CO2 capture technologies in the cement industry. Journal of Cleaner Production, 428: 139330

[8]

Azis M M, Jerndal E, Leion H, Mattisson T, Lyngfelt A. (2010). On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC). Chemical Engineering Research & Design, 88(11): 1505–1514

[9]

Ban Y J, Li Z J, Li Y S, Peng Y, Jin H, Jiao W M, Guo A, Wang P, Yang Q Y, Zhong C L. . (2015). Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angewandte Chemie International Edition, 54(51): 15483–15487

[10]

Barbarossa V, Barzagli F, Mani F, Lai S, Stoppioni P, Vanga G. (2013). Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration. RSC Advances, 3(30): 12349–12355

[11]

Bates E D, Mayton R D, Ntai I, Davis J H. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124(6): 926–927

[12]

Baylin-SternABerghoutN (2021). Is carbon capture too expensive? Paris: IEA

[13]

Bera N, Sardar P, Samanta A N, Sarkar N. (2024). Arginine-based ionic liquid in a water–DMSO binary mixture for highly efficient CO2 capture from open air. Energy & Fuels, 38(2): 1281–1287

[14]

Berguerand N, Lyngfelt A. (2009). Chemical-looping combustion of petroleum coke using ilmenite in a 10 kWh unit-high-temperature operation. Energy & Fuels, 23(10): 5257–5268

[15]

Berguerand N, Lyngfelt A. (2008). The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor. International Journal of Greenhouse Gas Control, 2(2): 169–179

[16]

Bistline J E T, Blanford G J. (2021). Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector. Nature Communications, 12(1): 3732

[17]

Blanchard L A, Hancu D, Beckman E J, Brennecke J F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731): 28–29

[18]

Bose S, Sengupta D, Malliakas C D, Idrees K B, Xie H M, Wang X L, Barsoum M L, Barker N M, Dravid V P, Islamoglu T. . (2023). Suitability of a diamine functionalized metal-organic framework for direct air capture. Chemical Science, 14(35): 9380–9388

[19]

Bougie F, Fan X F. (2018). Microwave regeneration of monoethanolamine aqueous solutions used for CO2 capture. International Journal of Greenhouse Gas Control, 79: 165–172

[20]

Boyd P G, Chidambaram A, García-Díez E, Ireland C P, Daff T D, Bounds R, Gladysiak A, Schouwink P, Moosavi S M, Maroto-Valer M M. . (2019). Data-driven design of metal-organic frameworks for wet flue gas CO2 capture. Nature, 576(7786): 253–256

[21]

Brethomé F M, Williams N J, Seipp C A, Kidder M K, Custelcean R. (2018). Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nature Energy, 3(7): 553–559

[22]

Brúder P, Grimstvedt A, Mejdell T, Svendsen H F. (2011). CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 66(23): 6193–6198

[23]

Cai T, Chen X, Tang H, Zhou W, Wu Y, Zhao C. (2021). Unraveling the disparity of CO2 sorption on alkali carbonates under high humidity. Journal of CO2 Utilization, 53: 101737

[24]

Cai T Y, Chen X P, Zhong J, Wu Y, Ma J L, Liu D Y, Liang C. (2020). Understanding the morphology of supported Na2CO3/γ-AlOOH solid sorbent and its CO2 sorption performance. Chemical Engineering Journal, 395: 124139

[25]

Chakraborty A K, Astarita G, Bischoff K B. (1986). CO2 absorption in aqueous solutions of hindered amines. Chemical Engineering Science, 41(4): 997–1003

[26]

Chatterjee S, Huang K W. (2020). Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways. Nature Communications, 11(1): 3287

[27]

Chen C M, Yu J X, Song G S, Che K. (2023a). Desorption performance of commercial zeolites for temperature-swing CO2 capture. Journal of Environmental Chemical Engineering, 11(3): 110253

[28]

Chen H H, Zheng Y Z, Li J L, Li L Y, Wang X A. (2023b). AI for nanomaterials development in clean energy and carbon capture, utilization and storage (CCUS). ACS Nano, 17(11): 9763–9792

[29]

Chen L Y, Bao J H, Kong L, Combs M, Nikolic H S, Fan Z, Liu K L. (2017). Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion. Applied Energy, 197: 40–51

[30]

Chen X X, Xiong Z, Qin Y D, Gong B G, Tian C, Zhao Y C, Zhang J Y, Zheng C G. (2016). High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents. International Journal of Hydrogen Energy, 41(30): 13077–13085

[31]

Cheng L H, Fu Y J, Liao K S, Chen J T, Hu C C, Hung W S, Lee K R, Lai J Y. (2014). A high-permeance supported carbon molecular sieve membrane fabricated by plasma-enhanced chemical vapor deposition followed by carbonization for CO2 capture. Journal of Membrane Science, 460: 1–8

[32]

Cruz T T, Perrella Balestieri J A, de Toledo Silva J M, Vilanova M R N, Oliveira O J, Ávila I. (2021). Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities. International Journal of Greenhouse Gas Control, 108: 103309

[33]

Custelcean R, Williams N J, Garrabrant K A, Agullo P, Brethome F M, Martin H J, Kidder M K. (2019). Direct air capture of CO2 with aqueous amino acids and solid bis-iminoguanidines (BIGs). Industrial & Engineering Chemistry Research, 58(51): 23338–23346

[34]

Dasgupta S, Rajasekaran M, Roy P K, Thakkar F M, Pathak A D, Ayappa K G, Maiti P K. (2022). Influence of chain length on structural properties of carbon molecular sieving membranes and their effects on CO2, CH4 and N2 adsorption: a molecular simulation study. Journal of Membrane Science, 664: 121044

[35]

Datta S, Henry M P, Lin Y J, Fracaro A T, Millard C S, Snyder S W, Stiles R L, Shah J, Yuan J W, Wesoloski L. . (2013). Electrochemical CO2 capture using resin-wafer electrodeionization. Industrial & Engineering Chemistry Research, 52(43): 15177–15186

[36]

de Diego L F, Garcı´a-Labiano F, Gayán P, Celaya J, Palacios J M, Adánez J. (2007). Operation of a 10 kWth chemical-looping combustor during 200h with a CuO-Al2O3 oxygen carrier. Fuel, 86(7–8): 1036–1045

[37]

de Lannoy C F, Eisaman M D, Jose A, Karnitz S D, Devaul R W, Hannun K, Rivest J L B. (2018). Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology. International Journal of Greenhouse Gas Control, 70: 243–253

[38]

DimascioFWillauer H DHardyD RLewisM KWilliamsF W (2010). Extraction of Carbon Dioxide from Seawater by an Electrochemical Acidification Cell. Part 1. Initial Feasibility Studies. Washington, DC: Naval Research Laboratory

[39]

Ding J, Yu C, Lu J F, Wei X L, Wang W L, Pan G C Q. (2020). Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates. Applied Energy, 263: 114681

[40]

Dong H, Li L H, Feng Z, Wang Q N, Luan P, Li J, Li C. (2023). Amine-functionalized quasi-MOF for direct air capture of CO2. ACS Materials Letters, 5(10): 2656–2664

[41]

Dubey A, Arora A. (2022). Advancements in carbon capture technologies: a review. Journal of Cleaner Production, 373: 133932

[42]

Eisaman M D, Alvarado L, Larner D, Wang P, Garg B, Littau K A. (2011a). CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 4(4): 1319–1328

[43]

Eisaman M D, Alvarado L, Larner D, Wang P, Littau K A. (2011b). CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 4(10): 4031–4037

[44]

Eisaman M D, Parajuly K, Tuganov A, Eldershaw C, Chang N, Littau K A. (2012). CO2 extraction from seawater using bipolar membrane electrodialysis. Energy & Environmental Science, 5(6): 7346–7352

[45]

Eisaman M D, Schwartz D E, Amic S, Larner D, Zesch J, Torres F, Littau K (2009). Energy-efficient electrochemical CO2 capture from the atmosphere. In: Technical proceedings of the clean technology conference and trade show. Houston: CRC Press–Taylor & Francis Group, 175–178

[46]

Fan L S, Li F X. (2010). Chemical looping technology and its fossil energy conversion applications. Industrial & Engineering Chemistry Research, 49(21): 10200–10211

[47]

Fan W Q, Zhang T Y, Musyoka N M, Huang L, Li H L, Wang L D, Wang Q. (2023). Fabrication of structurally improved KNaTiO3 pellets derived from cheap rutile sand for high-temperature CO2 capture. Fuel, 354(15): 129322

[48]

Fateminia Z, Chiniforoshan H, Ghafarinia V. (2023). Novel core/Shell nylon 6,6/La-TMA MOF electrospun nanocomposite membrane and CO2 capture assessments of the membrane and pure La-TMA MOF. ACS Omega, 8(25): 22742–22751

[49]

Fatima S S, Borhan A, Ayoub M, Abd Ghani N. (2021). Development and progress of functionalized silica-based sorbents for CO2 capture. Journal of Molecular Liquids, 338(15): 116913

[50]

Feng L L, Yin X C, Tan S Y, Li C, Gong X Y, Fang X, Pan Y J. (2021). Ammonium bicarbonate significantly accelerates the microdroplet reactions of amines with carbon dioxide. Analytical Chemistry, 93(47): 15775–15784

[51]

Fernández J R. (2023). An overview of advances in CO2 capture technologies. Energies, 16(3): 1413

[52]

Flyvbjerg B. (2014). What you should know about megaprojects and why: an overview. Project Management Journal, 45(2): 6–19

[53]

Fu H M, Shen Y B, Li Z H, Zhang H, Chen H P, Gao D. (2023a). CO2 capture using superhydrophobic ceramic membrane: Preparation and performance analysis. Energy, 282(1): 128873

[54]

Fu H M, Xue K L, Yang J H, Li Z H, Zhang H, Gao D, Chen H P. (2023b). CO2 capture based on Al2O3 ceramic membrane with hydrophobic modification. Journal of the European Ceramic Society, 43(8): 3427–3436

[55]

Galán-Martín A, Vázquez D, Cobo S, Mac Dowell N, Caballero J A, Guillén-Gosálbez G. (2021). Delaying carbon dioxide removal in the European Union puts climate targets at risk. Nature Communications, 12(1): 6490

[56]

Gao W L, Vasiliades M A, Damaskinos C M, Zhao M, Fan W Q, Wang Q, Reina T R, Efstathiou A M. (2021). Molten salt-promoted MgO sorbents for CO2 capture: transient kinetic studies. Environmental Science & Technology, 55(8): 4513–4521

[57]

Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe C Y, Zhu X, Wang J. . (2020). Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 49(23): 8584–8686

[58]

Gardas R L, Coutinho J A P. (2008). A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria, 266(1–2): 195–201

[59]

Ghaffari S, Gutierrez M F, Seidel-Morgenstern A, Lorenz H, Schulze P. (2023). Sodium hydroxide-based CO2 direct air capture for soda ash production─fundamentals for process engineering. Industrial & Engineering Chemistry Research, 62(19): 7566–7579

[60]

GlobalCCS Institute (2020). Global Status of CCS 2020. Washington, DC: The Global CCS Institute

[61]

GlobalCCS Institute (2022). Global Status of CCS 2022. Washington, DC: The global CCS Institute

[62]

Gelles T, Lawson S, Rownaghi A A, Rezaei F. (2020). Recent advances in development of amine functionalized sorbents for CO2 capture. Adsorption, 26(1): 5–50

[63]

Geng Y, Guo Y, Fan B, Cheng F, Cheng H. (2021). Research progress of calcium-based sorbents for CO2 capture and anti-sintering modification. Journal of Fuel Chemistry & Technology, 49(7): 998–1013

[64]

Ghaedi H, Kalhor P, Zhao M, Clough P T, Anthony E J, Fennell P S. (2022). Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO2 absorption: characterizations and DFT analysis. Frontiers of Environmental Science & Engineering, 16(7): 92

[65]

Gkotsis P, Peleka E, Zouboulis A. (2023). Membrane-based technologies for post-combustion CO2 capture from flue gases: Recent progress in commonly employed membrane materials. Membranes, 13(12): 898

[66]

Gregg S J, Ramsay J D. (1970). Adsorption of carbon dioxide by magnesia studied by use of infrared and isotherm measurements. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 17: 2784–2787

[67]

Gu H M, Shen L H, Xiao J, Zhang S W, Song T. (2011). Chemical looping combustion of biomass/coal with natural Iron ore as oxygen carrier in a continuous reactor. Energy & Fuels, 25(1): 446–455

[68]

Hallett J P, Welton T. (2011). Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chemical Reviews, 111(5): 3508–3576

[69]

Harada T, Simeon F, Hamad E Z, Hatton T A. (2015). Alkali metal nitrate-promoted high-capacity MgO adsorbents for regenerable CO2 capture at moderate temperatures. Chemistry of Materials, 27(6): 1943–1949

[70]

Hernández-Palomares A, Alcántar-Vázquez B, Ramírez-Zamora R M, Coutino-Gonzalez E, Espejel-Ayala F. (2023). CO2 capture using lithium-based sorbents prepared with construction and demolition wastes as raw materials. Materials Today Sustainability, 24: 100491

[71]

Holmes H E, Ghosh S, Li C Y, Kalyanaraman J, Realff M J, Weston S C, Lively R P. (2023). Optimum relative humidity enhances CO2 uptake in diamine-appended M2(dobpdc). Chemical Engineering Journal, 477(1): 147119

[72]

Hospital-Benito D, Moya C, Gazzani M, Palomar J. (2023). Direct air capture based on ionic liquids: From molecular design to process assessment. Chemical Engineering Journal, 468: 143630

[73]

Hu L, Wu W, Jiang L, Hu M, Zhu H, Gong L, Yang J, Lin D, Yang K. (2023). Methyl-functionalized Al-based MOF ZJU-620 (Al): A potential physisorbent for carbon dioxide capture. ACS Applied Materials & Interfaces, 15(37): 43925–43932

[74]

Huang C L, Liu C J, Wu K J, Yue H R, Tang S Y, Lu H F, Liang B. (2019). CO2 capture from flue gas using an electrochemically reversible hydroquinone/quinone solution. Energy & Fuels, 33(4): 3380–3389

[75]

IEA (2013). Technology roadmap: carbon capture and storage 2013 edition. Paris: International Energy Agency (IEA)

[76]

IEA (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. Paris, France: International Energy Agency (IEA)

[77]

IEA (2022). Global Energy Review: CO2 Emissions in 2021, Global emission rebound sharply to higheat ever level. Paris, France: International Energy Agency (IEA)

[78]

Iizuka A, Hashimoto K, Nagasawa H, Kumagai K, Yanagisawa Y, Yamasaki A. (2012). Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis. Separation and Purification Technology, 101: 49–59

[79]

IPCC (2001). Climatic Change 2001: Synthesis Report. Cambridge, United Kingdom: Cambridge University Press

[80]

IPCC (2014). Climatic Change 2014: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change (IPCC)

[81]

IPCC (2018). Global Warming of 1.5 °C. Geneva, Switzerland: Intergovernmental Panel on Climate Change (IPCC)

[82]

IPCC (2023). Climate Change 2023: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change(IPCC)

[83]

Jahandar Lashaki M, Ziaei-Azad H, Sayari A. (2022). Unprecedented improvement of the hydrothermal stability of amine-grafted MCM-41 silica for CO2 capture via aluminum incorporation. Chemical Engineering Journal, 450(4): 138393

[84]

Jiang K, Ashworth P. (2021). The development of carbon capture utilization and storage (CCUS) research in China: A bibliometric perspective. Renewable & Sustainable Energy Reviews, 138: 110521

[85]

Jing G H, Qian Y H, Zhou X B, Lv B H, Zhou Z M. (2018). Designing and screening of multi-amino-functionalized ionic liquid solution for CO2 capture by quantum chemical simulation. ACS Sustainable Chemistry & Engineering, 6(1): 1182–1191

[86]

Kang M K, Jeon S B, Cho J H, Kim J S, Oh K J. (2017). Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions. International Journal of Greenhouse Gas Control, 63: 281–288

[87]

Keller M, Oka H, Otomo J. (2019). Reactivity improvement of ilmenite by calcium nitrate melt infiltration for chemical looping combustion of biomass. Carbon Resources Conversion, 2(1): 51–58

[88]

Khakpoor N, Mostafavi E, Mahinpey N, De la Hoz Siegler H. (2019). Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion. Energy, 169: 329–337

[89]

Kikkawa S, Amamoto K, Fujiki Y, Hirayama J, Kato G, Miura H, Shishido T, Yamazoe S. (2022). Direct air capture of CO2 using a liquid amine-solid carbamic acid phase-separation system using diamines bearing an aminocyclohexyl group. ACS Environmental Au, 2(4): 354–362

[90]

Kim S, Jeon S G, Lee K B. (2016). High-temperature CO2 sorption on hydrotalcite having a high Mg/Al molar ratio. ACS applied materials & interfaces, 8(9): 5763–5767

[91]

Kim S, Lee K B. (2019). Impregnation of hydrotalcite with NaNO3 for enhanced high-temperature CO2 sorption uptake. Chemical Engineering Journal, 356: 964–972

[92]

Kim S, Yoon H J, Lee C H, Lee K B. (2023). Effects of alkali-metal nitrate salts on hydrotalcite-based sorbents for enhanced cyclic CO2 capture at high temperatures. Journal of CO2 Utilization, 77: 102610

[93]

Knuutila H K, Nannestad Å. (2017). Effect of the concentration of MAPA on the heat of absorption of CO2 and on the cyclic capacity in DEEA-MAPA blends. International Journal of Greenhouse Gas Control, 61: 94–103

[94]

Kolbitsch P, Bolhàr-Nordenkampf J, Pröll T, Hofbauer H. (2009). Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation. Industrial & Engineering Chemistry Research, 48(11): 5542–5547

[95]

Kolbitsch P, Bolhàr-Nordenkampf J, Pröll T, Hofbauer H. (2010). Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Energy Procedia, 1(1): 1465–1472

[96]

Kortunov P V, Siskin M, Baugh L S, Calabro D C. (2015). In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems: new insights on carbon capture reaction pathways. Energy & Fuels, 29(9): 5919–5939

[97]

Krödel M, Landuyt A, Abdala P M, Müller C R. (2020). Mechanistic understanding of CaO-based sorbents for high-temperature CO2 capture: Advanced characterization and prospects. ChemSusChem, 13(23): 6259–6272

[98]

Ku H C, Miao Y H, Wang Y Z, Chen X, Zhu X C, Lu H L, Li J, Yu L J. (2023). Frontier science and challenges on offshore carbon storage. Frontiers of Environmental Science & Engineering, 17(7): 80

[99]

Kumar D R, Rosu C, Sujan A R, Sakwa-Novak M A, Ping E W, Jones C W. (2020). Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture. ACS Sustainable Chemistry & Engineering, 8(29): 10971–10982

[100]

Kumar R, Bandyopadhyay M, Pandey M, Tsunoji N. (2022). Amine-impregnated nanoarchitectonics of mesoporous silica for capturing dry and humid 400 ppm carbon dioxide: A comparative study. Microporous and Mesoporous Materials, 338: 111956

[101]

Kumar R, Ohtani S, Tsunoji N. (2023). Direct air capture on amine-impregnated FAU zeolites: Exploring for high adsorption capacity and low-temperature regeneration. Microporous and Mesoporous Materials, 360: 112714

[102]

Lai Q H, Toan S, Assiri M A, Cheng H G, Russell A G, Adidharma H, Radosz M, Fan M H. (2018). Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nature Communications, 9(1): 2672

[103]

Lawal O, Bello A, Idem R. (2005). The role of methyl diethanolamine (MDEA) in preventing the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA)-MDEA blends during CO2 absorption from flue gases. Industrial & Engineering Chemistry Research, 44(6): 1874–1896

[104]

Le Quéré C, Peters G P, Friedlingstein P, Andrew R M, Canadell J G, Davis S J, Jackson R B, Jones M W. (2021). Fossil CO2 emissions in the post-COVID-19 era. Nature Climate Change, 11(3): 197–199

[105]

Lee W H, Zhang X, Banerjee S, Jones C W, Realff M J, Lively R P. (2023). Sorbent-coated carbon fibers for direct air capture using electrically driven temperature swing adsorption. Joule, 7(6): 1241–1259

[106]

Legrand L, Shu Q, Tedesco M, Dykstra J E, Hamelers H V M. (2020). Role of ion exchange membranes and capacitive electrodes in membrane capacitive deionization (MCDI) for CO2 capture. Journal of Colloid and Interface Science, 564: 478–490

[107]

Lei L, Cheng Y, Chen C W, Kosari M, Jiang Z Y, He C. (2022). Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. Journal of Colloid and Interface Science, 612: 132–145

[108]

Leion H, Mattisson T, Lyngfelt A. (2009). Use of ores and industrial products As oxygen carriers in chemical-looping combustion. Energy & Fuels, 23(4): 2307–2315

[109]

Li J X, Li Y, Li C, Tu R, Xie P F, He Y, Shi Y. (2022a). CO2 absorption and microwave regeneration with high-concentration TETA nonaqueous absorbents. Greenhouse Gases: Science and Technology, 12(3): 362–375

[110]

Li Q, Liu G, Li X, Chen Z A. (2022b). Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective. Advanced Engineering Sciences, 54(1): 157–166

[111]

Li W, Goh K L, Chuah C Y, Bae T H. (2019). Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements. Journal of Membrane Science, 588: 117220

[112]

Li X L, Zhou X B, Wei J W, Fan Y M, Liao L, Wang H Q. (2021). Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent. Separation and Purification Technology, 265: 118481

[113]

Li X, Jiao C, Zhang X, Li X, Song X, Zhao Y, Jiang H. (2023). Dual-modulated polyamide membranes based on vapor-liquid interfacial polymerization for CO2 separation. Chemistry of Materials, 36(1): 461–470

[114]

Li X, Zhao X H, Liu Y Y, Hatton T A, Liu Y Y. (2022c). Redox-tunable Lewis bases for electrochemical carbon dioxide capture. Nature Energy, 7(11): 1065–1075

[115]

Li Y, Gao J Z, Li J X, Li Y N, Bernards M T, Tao M N, He Y, Shi Y. (2020). Screening and performance evaluation of triethylenetetramine nonaqueous solutions for CO2 capture with microwave regeneration. Energy & Fuels, 34(9): 11270–11281

[116]

Liao X, Wang B, Yin R Q, Ren W G, Li J, Gan H T, Lv P, Bao W R, Wang J C, Chang L P. . (2023). Manipulation of the crystallization of SSZ-13 transformed from coal fly ash-derived analcime. Journal of Solid State Chemistry, 323: 124024

[117]

Lin J B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S. . (2021). A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 374(6574): 1464–1469

[118]

Lin L, Meng Y, Ju T Y, Han S Y, Meng F Z, Li J L, Du Y F, Song M Z, Lan T, Jiang J G. (2023). Characteristics, application and modeling of solid amine sorbents for CO2 capture: a review. Journal of Environmental Management, 325(A): 116438

[119]

Linderholm C, Abad A, Mattisson T, Lyngfelt A. (2008). 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. International Journal of Greenhouse Gas Control, 2(4): 520–530

[120]

Linderholm C, Mattisson T, Lyngfelt A. (2009). Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel. Fuel, 88(11): 2083–2096

[121]

Liu A H, Li J J, Ren B H, Lu X B. (2019). Development of high-capacity and water-lean CO2 absorbents by a concise molecular design strategy through viscosity control. ChemSusChem, 12(23): 5164–5171

[122]

Liu F, Jing G H, Zhou X B, Lv B H, Zhou Z M. (2018). Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture. ACS Sustainable Chemistry & Engineering, 6(1): 1352–1361

[123]

Liu G, Cai B, Li Q, Zhang X, Ouyang T. (2022a). China’s pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060. Carbon Management, 13(1): 435–449

[124]

Liu K, Zhao B S, Wu Y, Li F, Li Q, Zhang J B. (2020a). Bubbling synthesis and high-temperature CO2 adsorption performance of CaO-based sorbents from carbide slag. Fuel, 269: 117481

[125]

Liu L, Li Z S, Wang L J, Zhao Z H, Li Y, Cai N S. (2020b). MgO-kaolin-supported manganese ores as oxygen carriers for chemical looping combustion. Industrial & Engineering Chemistry Research, 59(15): 7238–7246

[126]

Liu Y H, Guan Y, Lin X L, Wang B, Lyu Q. (2022b). Research progress and perspectives of solid fuels chemical looping reaction with Fe-based oxygen carriers. Energy & Fuels, 36(23): 13956–13984

[127]

Liu Y Y, Ye H Z, Diederichsen K M, Van Voorhis T, Hatton T A. (2020c). Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nature Communications, 11(1): 2278

[128]

Liu Z X, Lu Y L, Wang C F, Zhang Y, Jin X D, Wu J W, Wang Y H, Zeng J B, Yan Z F, Sun H M. . (2023). MOF-derived nano CaO for highly efficient CO2 fast adsorption. Fuel, 340: 127476

[129]

Lu P, Yan X, Ye L, Chen D, Chen D, Huang J, Cen C. (2024). Performance and mechanism of CO2 absorption during the simultaneous removal of SO2 and NOx by wet scrubbing process. Journal of Environmental Sciences (China), 135: 534–545

[130]

Lv B H, Yang K X, Zhou X B, Zhou Z M, Jing G H. (2020). 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture. Applied Energy, 264: 114703

[131]

Lyngfelt A. (2011). Oxygen carriers for chemical looping combustion-4000 h of operational experience. Oil & Gas Science and Technology-Revue D IFP Energies Nouvelles, 66(2): 161–172

[132]

McQueen N, Kelemen P, Dipple G, Renforth P, Wilcox J. (2020). Ambient weathering of magnesium oxide for CO2 removal from air. Nature Communications, 11(1): 3299

[133]

Meckling J, Biber E. (2021). A policy roadmap for negative emissions using direct air capture. Nature Communications, 12(1): 2051

[134]

Milad B, Moghanloo R G, Hayman N W. (2024). Assessing CO2 geological storage in arbuckle group in northeast oklahoma. Fuel, 356: 129323

[135]

Morita M, Horiuchi Y, Matsuoka M, Ogawa M. (2022). Preparation of titanium-containing layered alkali silicates. Crystal Growth & Design, 22(3): 1638–1644

[136]

Muldoon M J, Aki S, Anderson J L, Dixon J K, Brennecke J F. (2007). Improving carbon dioxide solubility in ionic liquids. Journal of Physical Chemistry B, 111(30): 9001–9009

[137]

Müller L J, Kätelhön A, Bringezu S, Mccoy S, Suh S, Edwards R, Sick V, Kaiser S, Cuéllar-Franca R, El Khamlichi A. . (2020). The carbon footprint of the carbon feedstock CO2. Energy & Environmental Science, 13(9): 2979–2992

[138]

NEA (2023). China Carbon Capture, Utilization and Storage (CCUS) Annual Report (2023). Beijing: National Energy Administration (in Chinese)

[139]

NikO GChen X YKaliaguineS (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 413-414: 48-61

[140]

Noorani N, Mehrdad A. (2020). CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies. Fluid Phase Equilibria, 517: 112591

[141]

Noorani N, Mehrdad A. (2022). Cholinium-amino acid ionic liquids as biocompatible agents for carbon dioxide absorption. Journal of Molecular Liquids, 357: 119078

[142]

Noorani N, Mehrdad A, Ahadzadeh I. (2021). CO2 absorption in amino acid-based ionic liquids: Experimental and theoretical studies. Fluid Phase Equilibria, 547: 113185

[143]

Orujov A, Coddington K, Aryana S A. (2023). A review of CCUS in the context of foams, regulatory frameworks and monitoring. Energies, 16(7): 3284

[144]

Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. (2017). Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530

[145]

Pröll T, Kolbitsch P, Bolhàr-Nordenkampf J, Hofbauer H. (2009a). A novel dual circulating fluidized bed system for chemical looping processes. AIChE Journal. American Institute of Chemical Engineers, 55(12): 3255–3266

[146]

Pröll T, Mayer K, Bolhàr-Nordenkampf J, Kolbitsch P, Mattisson T, Lyngfelt A, Hofbauer H. (2009b). Natural minerals as oxygen carriers for chemical looping combustion in a dual circulating fluidized bed system. Energy Procedia, 1(1): 27–34

[147]

Qi G, Wang S. (2017). Thermodynamic modeling of NH3-CO2-SO2-K2SO4-H2O system for combined CO2 and SO2 capture using aqueous NH3. Applied Energy, 191(1): 549–558

[148]

Qiu L, Peng L, Moitra D, Liu H, Fu Y, Dong Z, Hu W, Lei M, Jiang D E, Lin H. . (2023). Harnessing the hybridization of a metal-organic framework and superbase-derived ionic liquid for high-performance direct air capture of CO2. Small, 19(41): 2302708

[149]

Qiu Y, Lamers P, Daioglou V, McQueen N, de Boer H S, Harmsen M, Wilcox J, Bardow A, Suh S. (2022). Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100. Nature Communications, 13(1): 3635

[150]

RajendranASubraveti S GPaiK NPrasadVLiZ (2023). How can (or why should) process engineering aid the screening and discovery of solid sorbents for CO2 capture? Accounts of Chemical Research, 56(17): 2354–2365

[151]

Rau G H. (2008). Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environmental Science & Technology, 42(23): 8935–8940

[152]

Realmonte G, Drouet L, Gambhir A, Glynn J, Hawkes A, Köberle A C, Tavoni M. (2019). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 10(1): 3277

[153]

Rochelle G T. (2024). Air pollution impacts of amine scrubbing for CO2 capture. Carbon Capture Science & Technology, 11: 100192

[154]

Sanyal O, Hays S S, León N E, Guta Y A, Itta A K, Lively R P, Koros W J. (2020). A self-consistent model for sorption and transport in polyimide-derived carbon molecular sieve gas separation membranes. Angewandte Chemie International Edition, 59(46): 20343–20347

[155]

Schmitz M, Linderholm C, Hallberg P, Sundqvist S, Lyngfelt A. (2016). Chemical-looping combustion of solid fuels using manganese ores as oxygen carriers. Energy & Fuels, 30(2): 1204–1216

[156]

Sedighi M, Talaie M R, Sabzyan H, Aghamiri S F. (2023). A computational investigation on the roles of binding affinity and pore size on CO2/N2 overall adsorption process performance of MOFs through modifying MIL-101 structure. Sustainable Materials and Technologies, 38: e00701

[157]

Sekizkardes A K, Kusuma V A, Culp J T, Muldoon P, Hoffman J, Steckel J A, Hopkinson D. (2023). Single polymer sorbent fibers for high performance and rapid direct air capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 11(22): 11670–11674

[158]

Shan K Y, Lin Y L, Chu P S, Yu X P, Song F F. (2023). Seasonal advance of intense tropical cyclones in a warming climate. Nature, 623(7985): 83–89

[159]

Shen L H, Wu J H, Gao Z P, Xiao J. (2009a). Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor. Combustion and Flame, 156(7): 1377–1385

[160]

Shen L H, Wu J H, Xiao J, Song Q L, Xiao R. (2009b). Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide As an oxygen carrier. Energy & Fuels, 23(5): 2498–2505

[161]

Shen Q, Song X H, Mao F, Sun N N, Wen X, Wei W. (2020). Carbon reduction potential and cost evaluation of different mitigation approaches in China’s coal to olefin Industry. Journal of Environmental Sciences, 90: 352–363

[162]

Shen Y, Liu F, Wang X Y, Shao P J, He Z, Zhang S H, Chen L, Li S J, Li W, Wang L D. . (2022). A pore matching amine-functionalized strategy for efficient CO2 physisorption with low energy penalty. Chemical Engineering Journal, 432: 134403

[163]

Shi J S, Cui H M, Xu J G, Yan N F, You S Y. (2022). Synthesis of N-doped hierarchically ordered micro-mesoporous carbons for CO2 adsorption. Journal of CO2 Utilization, 62: 102081

[164]

Siegelman R L, Kim E J, Long J R. (2021). Porous materials for carbon dioxide separations. Nature Materials, 20(8): 1060–1072

[165]

Song C F, Fan Z C, Li R, Liu Q L, Sun Y W, Kitamura Y. (2018). Intensification of CO2 separation performance via cryogenic and membrane hybrid process—comparison of polyimide and polysulfone hollow fiber membrane. Chemical Engineering and Processing - Process Intensification, 133: 83–89

[166]

Sridhar D, Tong A, Kim H, Zeng L, Li F, Fan L S. (2012). Syngas chemical looping process: design and construction of a 25 kWh subpilot unit. Energy & Fuels, 26(4): 2292–2302

[167]

Stefanelli E, Vitolo S, Puccini M. (2022). Single-step fabrication of templated Li4SiO4-based pellets for CO2 capture at high temperature. Journal of Environmental Chemical Engineering, 10(5): 108389

[168]

Storrs K, Lyhne I, Drustrup R. (2023). A comprehensive framework for feasibility of CCUS deployment: a meta-review of literature on factors impacting CCUS deployment. International Journal of Greenhouse Gas Control, 125: 103878

[169]

Stucki S, Schuler A, Constantinescu M. (1995). Coupled CO2 recovery from the atmosphere and water electrolysis: feasibility of a new process for hydrogen storage. International Journal of Hydrogen Energy, 20(8): 653–663

[170]

Sun Z Y, Shao B, Zhang Y, Gao Z H, Wang M H, Liu H L, Hu J. (2023). Integrated CO2 capture and methanation from the intermediate-temperature flue gas on dual functional hybrids of AMS/CaMgO. NixCoy. Separation and Purification Technology, 307: 122680

[171]

Sundqvist S, Arjmand M, Mattisson T, Rydén M, Lyngfelt A. (2015). Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 43: 179–188

[172]

Szcześniak B, Choma J. (2020). Graphene-containing microporous composites for selective CO2 adsorption. Microporous and Mesoporous Materials, 292: 109761

[173]

Tao M N, Gao J Z, Zhang W, Li Y, He Y, Shi Y. (2018). A novel phase-changing nonaqueous solution for CO2 capture with high capacity, thermostability, and regeneration efficiency. Industrial & Engineering Chemistry Research, 57(28): 9305–9312

[174]

Tian H J, Siriwardane R, Simonyi T, Poston J. (2013). Natural ores as oxygen carriers in chemical looping combustion. Energy & Fuels, 27(8): 4108–4118

[175]

Tian W, Ma K, Ji J Y, Tang S Y, Zhong S, Liu C J, Yue H R, Liang B. (2021). Nonaqueous MEA/PEG200 absorbent with high efficiency and low energy consumption for CO2 capture. Industrial & Engineering Chemistry Research, 60(10): 3871–3880

[176]

Tian X, Zhao H B, Wang K, Ma J C, Zheng C G. (2015). Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling. International Journal of Greenhouse Gas Control, 41: 210–218

[177]

Tong D, Zhang Q, Zheng Y X, Caldeira K, Shearer C, Hong C P, Qin Y, Davis S J. (2019). Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 572(7769): 373

[178]

Wang H, Yang Z Y, Zhou Y Q, Cui H J, Cheng Z M, Zhou Z M. (2023a). Direct air capture of CO2 with metal nitrate-doped, tetraethylenepentamine-functionalized SBA-15 sorbents. Industrial & Engineering Chemistry Research, 62(41): 16579–16588

[179]

Wang L D, Zhang Y F, Wang R J, Li Q W, Zhang S H, Li M, Liu J, Chen B. (2018). Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture. Environmental Science & Technology, 52(24): 14556–14563

[180]

Wang L, Lin C, Boldog I, Yang J, Janiak C, Li J. (2023b). Inverse adsorption separation of N2O/CO2 in AgZK-5 zeolite. Angewandte Chemie International Edition, 63(4): e202317435

[181]

Wang R. (2024). Status and perspectives on CCUS clusters and hubs. Unconventional Resources, 4: 100065

[182]

Wang R J, Jiang L, Li Q W, Gao G, Zhang S H, Wang L D. (2020). Energy-saving CO2 capture using sulfolane-regulated biphasic solvent. Energy, 211: 118667

[183]

Wang Y H, Wang K X, Zhang X R, Li J P. (2023c). Co@NC@ZIF-8-hybridized carbon molecular sieve membranes for highly efficient gas separation. Journal of Membrane Science, 682: 121781

[184]

Wang Y Y, Tang X D, XinWei S J, Gao L, Jiang Y. (2024). Study of CO2 adsorption on carbon aerogel fibers prepared by electrospinning. Journal of Environmental Management, 349: 119432

[185]

Waqas Anjum M, de Clippel F, Didden J, Laeeq Khan A, Couck S, Baron G V, Denayer J F M, Sels B F, Vankelecom I F J. (2015). Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillers. Journal of Membrane Science, 495: 121–129

[186]

Wen Y Y, Li Z S, Xu L, Cai N S. (2012). Experimental study of natural Cu ore particles as oxygen carriers in chemical looping with oxygen uncoupling (CLOU). Energy & Fuels, 26(6): 3919–3927

[187]

Wijesiri R P, Knowles G P, Yeasmin H, Hoadley A F A, Chaffee A L. (2019). CO2 capture from air using pelletized polyethylenimine impregnated MCF silica. Industrial & Engineering Chemistry Research, 58(8): 3293–3303

[188]

WillauerH DDimascio FHardyD R (2017). Extraction of carbon dioxide and hydrogen from seawater by an electrolytic cation exchange module (E-CEM) part 5: E-CEM effluent discharge composition as a function of electrode water composition. Washington DC: Naval research laboratory

[189]

Willauer H D, Dimascio F, Hardy D R, Lewis M K, Williams F W. (2011). Development of an electrochemical acidification cell for the recovery of CO2 and H2 from seawater. Industrial & Engineering Chemistry Research, 50(17): 9876–9882

[190]

Willauer H D, Dimascio F, Hardy D R, Williams F W. (2014). Feasibility of CO2 extraction from seawater and simultaneous hydrogen gas generation using a novel and robust electrolytic cation exchange module based on continuous electrodeionization technology. Industrial & Engineering Chemistry Research, 53(31): 12192–12200

[191]

WMO (2023). Provisional state of the global climate 2023. Geneva, Switzerland: World Meteorological Organization

[192]

Wu B Z, Liu F Q, Luo S W, Zhang L Q, Zou F X. (2021). Carbonaceous materials-supported polyethylenimine with high thermal conductivity: A promising adsorbent for CO2 capture. Composites Science and Technology, 208: 108781

[193]

Wu K, Peng S, Ye G, Chen Z, Wu D. (2023). Self-Assembled core–shell structure MgO@ TiO2 as a K2CO3 support with superior performance for direct air capture CO2. ACS Applied Materials & Interfaces, 15(51): 59561–59572

[194]

Xia C, Xia Y, Zhu P, Fan L, Wang H T. (2019). Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science, 366(6462): 226–231

[195]

Xiao M, Liu H L, Gao H X, Olson W, Liang Z W. (2019). CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Applied Energy, 235: 311–319

[196]

Xiao R, Song Q L, Zhang S A, Zheng W G, Yang Y C. (2010). Pressurized chemical-looping combustion of chinese bituminous coal: cyclic performance and characterization of iron ore-based oxygen carrier. Energy & Fuels, 24(2): 1449–1463

[197]

Xie H, Jiang W, Liu T, Wu Y, Wang Y, Chen B, Niu D, Liang B. (2020). Low-energy electrochemical carbon dioxide capture based on a biological redox proton carrier. Cell Reports. Physical Science, 1(5): 100046

[198]

Xie Y, Zhong H, Weng Z X, Guo X B, Kim S E, Wu S W. (2023). PM2.5 concentration declining saves health expenditure in China. Frontiers of Environmental Science & Engineering, 17(7): 90

[199]

Xie W, Jiao Y, Cai Z L, Liu H Y, Gong L L, Lai W, Shan L L, Luo S J. (2022). Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure- and mixed-gas CO2/CH4 separation. Separation and Purification Technology, 282(B): 120091

[200]

Xu L, Sun H M, Li Z S, Cai N S. (2016). Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Applied Energy, 162: 940–947

[201]

Yan H Y, Zhang G J, Xu Y, Zhang Q Q, Liu J, Li G Q, Zhao Y Q, Wang Y, Zhang Y F. (2022). High CO2 adsorption on amine-functionalized improved macro-/mesoporous multimodal pore silica. Fuel, 315: 123195

[202]

Yan Y L, Borhani T N, Subraveti S G, Pai K N, Prasad V, Rajendran A, Nkulikiyinka P, Asibor J O, Zhang Z E, Shao D. . (2021). Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS): a state-of-the-art review. Energy & Environmental Science, 14(12): 6122–6157

[203]

Yang H, Huang X J, Hu J L, Thompson J R, Flower R J. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111

[204]

Yang Z Y, Soriano A N, Caparanga A R, Li M H. (2010). Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-1-propanol+piperazine+water). Journal of Chemical Thermodynamics, 42(5): 659–665

[205]

Yang Z, Chen B, Chen H, Li H. (2023). A critical review on machine-learning-assisted screening and design of effective sorbents for carbon dioxide (CO2) capture. Frontiers in Energy Research, 10: 1043064

[206]

Yao B, Wang Y Q, Fang Z, Hu Y, Ye Z Z, Peng X S. (2023a). Electrodepositing MOFs into laminated graphene oxide membrane for CO2 capture. Microporous and Mesoporous Materials, 361: 112758

[207]

Yao J, Han H, Yang Y, Song Y, Li G. (2023b). A review of recent progress of carbon capture, utilization, and storage (CCUS) in China. Applied Sciences, 13(2): 1169

[208]

Youn M H, Park K T, Lee Y H, Kang S P, Lee S M, Kim S S, Kim Y E, Ko Y N, Jeong S K, Lee W. (2019). Carbon dioxide sequestration process for the cement industry. Journal of CO2 Utilization, 34: 325–334

[209]

Younas M, Rezakazemi M, Daud M, Wazir M B, Ahmad S, Ullah N, Inamuddin S. (2020). Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 80: 100849

[210]

Yu Y, Mao J F, Wullschleger S D, Chen A P, Shi X Y, Wang Y P, Hoffman F M, Zhang Y L, Pierce E. (2022). Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 13(1): 1250

[211]

Zhan G X, Yuan B L, Duan Y M, Bai Y F, Chen J J, Chen Z, Li J H. (2023). Simulation and optimization of carbon dioxide capture using Water-Lean solvent from industrial flue gas. Chemical Engineering Journal, 474: 145773

[212]

Zhan X H, Lv B H, Yang K X, Jing G H, Zhou Z M. (2020). Dual-functionalized ionic liquid biphasic solvent for carbon dioxide capture: High-efficiency and energy saving. Environmental Science & Technology, 54(10): 6281–6288

[213]

Zhang C, Zhang J F, Yu Y S, Zhang Z X, Wang G G X. (2021a). Adsorption mechanism of CO2 on the single atom doped or promoted Li4SiO4(010) surface from first principles. Computational & Theoretical Chemistry, 1205: 113424

[214]

Zhang C, Zhang X Q, Su T Y, Zhang Y H, Wang L W, Zhu X C. (2023a). Modification schemes of efficient sorbents for trace CO2 capture. Renewable & Sustainable Energy Reviews, 184: 113473

[215]

Zhang K X, Wu J S, Yoo H, Lee Y J. (2021b). Machine learning-based approach for tailor-made design of ionic liquids: application to CO2 capture. Separation and Purification Technology, 275: 119117

[216]

Zhang R, Liu R X, Barzagli F, Sanku M G, Li C, Xiao M. (2023b). CO2 absorption in blended amine solvent: speciation, equilibrium solubility and excessive property. Chemical Engineering Journal, 466: 143279

[217]

Zhang R, Zhang X W, Yang Q, Yu H, Liang Z W, Luo X. (2017). Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC). Applied Energy, 205: 1002–1011

[218]

Zhang S H, Shen Y, Shao P J, Chen J M, Wang L D. (2018). Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas. Environmental Science & Technology, 52(6): 3660–3668

[219]

Zhang S Q, Chen C, Ahn W S. (2019). Recent progress on CO2 capture using amine-functionalized silica. Current Opinion in Green and Sustainable Chemistry, 16: 26–32

[220]

Zhang Y Y, Sun M Y, Li L, Xu R S, Pan Y Q, Wang T H. (2022). Carbon molecular sieve/ZSM-5 mixed matrix membranes with enhanced gas separation performance and the performance recovery of the aging membranes. Journal of Membrane Science, 660: 120869

[221]

Zhao H B, Wang K, Fang Y F, Ma J C, Mei D F, Zheng C G. (2014). Characterization of natural copper ore as oxygen carrier in chemical-looping with oxygen uncoupling of anthracite. International Journal of Greenhouse Gas Control, 22: 154–164

[222]

Zhao Y Y, Wang J H, Ji Z Y, Liu J, Guo X F, Yuan J S. (2020). A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer. Chemical Engineering Journal, 381: 122542

[223]

Zhao Z Q, Zhang H, Jiao C, Wang Q F, Lin X L. (2021). Review on global CCUS technology and application. Modern Chemical Industry, 41(4): 5–10

[224]

Zheng B, Ciais P, Chevallier F, Yang H, Canadell J G, Chen Y, Van Der Velde I R, Aben I, Chuvieco E, Davis S J. . (2023). Record-high CO2 emissions from boreal fires in 2021. Science, 379(6635): 912–917

[225]

Zheng Q W, Huang L, Zhong Z Y, Louis B, Wang Q. (2020). Development of KNaTiO3 as a novel high-temperature CO2 capturing material with fast sorption rate and high reversible sorption capacity. Chemical Engineering Journal, 380: 122444

[226]

Zhou X B, Li X L, Wei J W, Fan Y M, Liao L, Wang H Q. (2020). Novel nonaqueous liquid-liquid biphasic solvent for energy-efficient carbon dioxide capture with low corrosivity. Environmental Science & Technology, 54(24): 16138–16146

[227]

Zhou X B, Liu C, Zhang J, Fan Y M, Zhu Y N, Zhang L H, Tang S, Mo S P, Zhu H X, Zhu Z Q. (2023). Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator. Energy, 270: 126930

[228]

Zhou Y, Zhang J L, Wang L, Cui X L, Liu X L, Wong S S, An H, Yan N, Xie J Y, Yu C. . (2021). Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 373(6552): 315

[229]

Zhu P, Wu Z Y, Elgazzar A, Dong C X, Wi T U, Chen F Y, Xia Y, Feng Y G, Shakouri M, Kim J Y. . (2023). Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature, 618(7967): 959–966

RIGHTS & PERMISSIONS

The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (11128KB)

8513

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/