Recent advances, challenges, and perspectives on carbon capture
Shihan Zhang, Yao Shen, Chenghang Zheng, Qianqian Xu, Yifang Sun, Min Huang, Lu Li, Xiongwei Yang, Hao Zhou, Heliang Ma, Zhendong Li, Yuanhang Zhang, Wenqing Liu, Xiang Gao
Recent advances, challenges, and perspectives on carbon capture
�?Recent advances in promising CCUS technologies are assessed.
�?Research status and trends in CCUS are visually analyzed.
�?Carbon capture remains a hotspot of CCUS research.
�?State-of-the-art capture technologies is summarized.
�?Perspective research of carbon capture is proposed
Carbon capture, utilization and storage (CCUS) technologies play an essential role in achieving Net Zero Emissions targets. Considering the lack of timely reviews on the recent advancements in promising CCUS technologies, it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application. To that end, this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations. Then, based on a visually bibliometric analysis, the carbon capture remains a hotspot in the CCUS development. Noting that the materials applied in the carbon capture process determines its performance. As a result, the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed. Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed, and insights into the research needs such as material design, process optimization, environmental impact, and technical and economic assessments are provided.
Carbon capture, utilization and storage / Visualization analysis / Research hotspots and trends / CO2 capture technology
Xiang Gao is a Member of the Chinese Academy of Engineering and holds Fellowships from the Institution of Engineering and Technology, the Chinese Society for Environmental Sciences, and the Chinese Society for Electrical Engineering. He currently serves as President of Zhejiang University of Technology, Director of the Institute of Carbon Neutrality at Zhejiang University, and Director of Baima Lake Laboratory. Dedicated to the research in the field of energy and the environment, his work spans fundamental theoretical research, key technology development, and engineering applications. His achievements have been recognized with numerous awards, including the First Prize and the Second Prize of the State Technological Invention Awards, the Second Prize of the State Scientific and Technological Progress Award, two Second Prizes of the National Teaching Achievement Award, the Scientific and Technological Innovation Award of Ho Leung Ho Lee Foundation, the National Award for Excellence in Innovation, and the National May Day Labor Medal, etc
[1] |
Abd A A, Naji S Z, Hashim A S, Othman M R. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous sorbents: a review. Journal of Environmental Chemical Engineering, 8(5): 104142
CrossRef
Google scholar
|
[2] |
Adánez J, Gayán P, Celaya J, De Diego L F, García-Labiano F, Abad A. (2006). Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Industrial & Engineering Chemistry Research, 45(17): 6075–6080
CrossRef
Google scholar
|
[3] |
Aghaie M, Rezaei N, Zendehboudi S. (2018). A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renewable & Sustainable Energy Reviews, 96: 502–525
CrossRef
Google scholar
|
[4] |
Ahmed R, Liu G J, Yousaf B, Abbas Q, Ullah H, Ali M U. (2020). Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation: a review. Journal of Cleaner Production, 242: 118409
CrossRef
Google scholar
|
[5] |
Al-Absi A A, Mohamedali M, Domin A, Benneker A M, Mahinpey N. (2022). Development of in situ polymerized amines into mesoporous silica for direct air CO2 capture. Chemical Engineering Journal, 447: 137465
CrossRef
Google scholar
|
[6] |
AndrusH EChiu J HThibeaultP RMillerC (2010). Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype. Morgantown: National Energy Technology Laboratory (NETL)
|
[7] |
Antzaras A N, Papalas T, Heracleous E, Kouris C. (2023). Techno-economic and environmental assessment of CO2 capture technologies in the cement industry. Journal of Cleaner Production, 428: 139330
CrossRef
Google scholar
|
[8] |
Azis M M, Jerndal E, Leion H, Mattisson T, Lyngfelt A. (2010). On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC). Chemical Engineering Research & Design, 88(11): 1505–1514
CrossRef
Google scholar
|
[9] |
Ban Y J, Li Z J, Li Y S, Peng Y, Jin H, Jiao W M, Guo A, Wang P, Yang Q Y, Zhong C L.
CrossRef
Google scholar
|
[10] |
Barbarossa V, Barzagli F, Mani F, Lai S, Stoppioni P, Vanga G. (2013). Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration. RSC Advances, 3(30): 12349–12355
CrossRef
Google scholar
|
[11] |
Bates E D, Mayton R D, Ntai I, Davis J H. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124(6): 926–927
CrossRef
Google scholar
|
[12] |
Baylin-SternABerghoutN (2021). Is carbon capture too expensive? Paris: IEA
|
[13] |
Bera N, Sardar P, Samanta A N, Sarkar N. (2024). Arginine-based ionic liquid in a water–DMSO binary mixture for highly efficient CO2 capture from open air. Energy & Fuels, 38(2): 1281–1287
CrossRef
Google scholar
|
[14] |
Berguerand N, Lyngfelt A. (2009). Chemical-looping combustion of petroleum coke using ilmenite in a 10 kWh unit-high-temperature operation. Energy & Fuels, 23(10): 5257–5268
CrossRef
Google scholar
|
[15] |
Berguerand N, Lyngfelt A. (2008). The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor. International Journal of Greenhouse Gas Control, 2(2): 169–179
CrossRef
Google scholar
|
[16] |
Bistline J E T, Blanford G J. (2021). Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector. Nature Communications, 12(1): 3732
CrossRef
Google scholar
|
[17] |
Blanchard L A, Hancu D, Beckman E J, Brennecke J F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731): 28–29
CrossRef
Google scholar
|
[18] |
Bose S, Sengupta D, Malliakas C D, Idrees K B, Xie H M, Wang X L, Barsoum M L, Barker N M, Dravid V P, Islamoglu T.
CrossRef
Google scholar
|
[19] |
Bougie F, Fan X F. (2018). Microwave regeneration of monoethanolamine aqueous solutions used for CO2 capture. International Journal of Greenhouse Gas Control, 79: 165–172
CrossRef
Google scholar
|
[20] |
Boyd P G, Chidambaram A, García-Díez E, Ireland C P, Daff T D, Bounds R, Gladysiak A, Schouwink P, Moosavi S M, Maroto-Valer M M.
CrossRef
Google scholar
|
[21] |
Brethomé F M, Williams N J, Seipp C A, Kidder M K, Custelcean R. (2018). Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nature Energy, 3(7): 553–559
CrossRef
Google scholar
|
[22] |
Brúder P, Grimstvedt A, Mejdell T, Svendsen H F. (2011). CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 66(23): 6193–6198
CrossRef
Google scholar
|
[23] |
Cai T, Chen X, Tang H, Zhou W, Wu Y, Zhao C. (2021). Unraveling the disparity of CO2 sorption on alkali carbonates under high humidity. Journal of CO2 Utilization, 53: 101737
CrossRef
Google scholar
|
[24] |
Cai T Y, Chen X P, Zhong J, Wu Y, Ma J L, Liu D Y, Liang C. (2020). Understanding the morphology of supported Na2CO3/γ-AlOOH solid sorbent and its CO2 sorption performance. Chemical Engineering Journal, 395: 124139
CrossRef
Google scholar
|
[25] |
Chakraborty A K, Astarita G, Bischoff K B. (1986). CO2 absorption in aqueous solutions of hindered amines. Chemical Engineering Science, 41(4): 997–1003
CrossRef
Google scholar
|
[26] |
Chatterjee S, Huang K W. (2020). Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways. Nature Communications, 11(1): 3287
CrossRef
Google scholar
|
[27] |
Chen C M, Yu J X, Song G S, Che K. (2023a). Desorption performance of commercial zeolites for temperature-swing CO2 capture. Journal of Environmental Chemical Engineering, 11(3): 110253
CrossRef
Google scholar
|
[28] |
Chen H H, Zheng Y Z, Li J L, Li L Y, Wang X A. (2023b). AI for nanomaterials development in clean energy and carbon capture, utilization and storage (CCUS). ACS Nano, 17(11): 9763–9792
CrossRef
Google scholar
|
[29] |
Chen L Y, Bao J H, Kong L, Combs M, Nikolic H S, Fan Z, Liu K L. (2017). Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion. Applied Energy, 197: 40–51
CrossRef
Google scholar
|
[30] |
Chen X X, Xiong Z, Qin Y D, Gong B G, Tian C, Zhao Y C, Zhang J Y, Zheng C G. (2016). High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents. International Journal of Hydrogen Energy, 41(30): 13077–13085
CrossRef
Google scholar
|
[31] |
Cheng L H, Fu Y J, Liao K S, Chen J T, Hu C C, Hung W S, Lee K R, Lai J Y. (2014). A high-permeance supported carbon molecular sieve membrane fabricated by plasma-enhanced chemical vapor deposition followed by carbonization for CO2 capture. Journal of Membrane Science, 460: 1–8
CrossRef
Google scholar
|
[32] |
Cruz T T, Perrella Balestieri J A, de Toledo Silva J M, Vilanova M R N, Oliveira O J, Ávila I. (2021). Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities. International Journal of Greenhouse Gas Control, 108: 103309
CrossRef
Google scholar
|
[33] |
Custelcean R, Williams N J, Garrabrant K A, Agullo P, Brethome F M, Martin H J, Kidder M K. (2019). Direct air capture of CO2 with aqueous amino acids and solid bis-iminoguanidines (BIGs). Industrial & Engineering Chemistry Research, 58(51): 23338–23346
CrossRef
Google scholar
|
[34] |
Dasgupta S, Rajasekaran M, Roy P K, Thakkar F M, Pathak A D, Ayappa K G, Maiti P K. (2022). Influence of chain length on structural properties of carbon molecular sieving membranes and their effects on CO2, CH4 and N2 adsorption: a molecular simulation study. Journal of Membrane Science, 664: 121044
CrossRef
Google scholar
|
[35] |
Datta S, Henry M P, Lin Y J, Fracaro A T, Millard C S, Snyder S W, Stiles R L, Shah J, Yuan J W, Wesoloski L.
CrossRef
Google scholar
|
[36] |
de Diego L F, Garcı´a-Labiano F, Gayán P, Celaya J, Palacios J M, Adánez J. (2007). Operation of a 10 kWth chemical-looping combustor during 200h with a CuO-Al2O3 oxygen carrier. Fuel, 86(7–8): 1036–1045
CrossRef
Google scholar
|
[37] |
de Lannoy C F, Eisaman M D, Jose A, Karnitz S D, Devaul R W, Hannun K, Rivest J L B. (2018). Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology. International Journal of Greenhouse Gas Control, 70: 243–253
CrossRef
Google scholar
|
[38] |
DimascioFWillauer H DHardyD RLewisM KWilliamsF W (2010). Extraction of Carbon Dioxide from Seawater by an Electrochemical Acidification Cell. Part 1. Initial Feasibility Studies. Washington, DC: Naval Research Laboratory
|
[39] |
Ding J, Yu C, Lu J F, Wei X L, Wang W L, Pan G C Q. (2020). Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates. Applied Energy, 263: 114681
CrossRef
Google scholar
|
[40] |
Dong H, Li L H, Feng Z, Wang Q N, Luan P, Li J, Li C. (2023). Amine-functionalized quasi-MOF for direct air capture of CO2. ACS Materials Letters, 5(10): 2656–2664
CrossRef
Google scholar
|
[41] |
Dubey A, Arora A. (2022). Advancements in carbon capture technologies: a review. Journal of Cleaner Production, 373: 133932
CrossRef
Google scholar
|
[42] |
Eisaman M D, Alvarado L, Larner D, Wang P, Garg B, Littau K A. (2011a). CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 4(4): 1319–1328
CrossRef
Google scholar
|
[43] |
Eisaman M D, Alvarado L, Larner D, Wang P, Littau K A. (2011b). CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 4(10): 4031–4037
CrossRef
Google scholar
|
[44] |
Eisaman M D, Parajuly K, Tuganov A, Eldershaw C, Chang N, Littau K A. (2012). CO2 extraction from seawater using bipolar membrane electrodialysis. Energy & Environmental Science, 5(6): 7346–7352
CrossRef
Google scholar
|
[45] |
Eisaman M D, Schwartz D E, Amic S, Larner D, Zesch J, Torres F, Littau K (2009). Energy-efficient electrochemical CO2 capture from the atmosphere. In: Technical proceedings of the clean technology conference and trade show. Houston: CRC Press–Taylor & Francis Group, 175–178
|
[46] |
Fan L S, Li F X. (2010). Chemical looping technology and its fossil energy conversion applications. Industrial & Engineering Chemistry Research, 49(21): 10200–10211
CrossRef
Google scholar
|
[47] |
Fan W Q, Zhang T Y, Musyoka N M, Huang L, Li H L, Wang L D, Wang Q. (2023). Fabrication of structurally improved KNaTiO3 pellets derived from cheap rutile sand for high-temperature CO2 capture. Fuel, 354(15): 129322
CrossRef
Google scholar
|
[48] |
Fateminia Z, Chiniforoshan H, Ghafarinia V. (2023). Novel core/Shell nylon 6,6/La-TMA MOF electrospun nanocomposite membrane and CO2 capture assessments of the membrane and pure La-TMA MOF. ACS Omega, 8(25): 22742–22751
CrossRef
Google scholar
|
[49] |
Fatima S S, Borhan A, Ayoub M, Abd Ghani N. (2021). Development and progress of functionalized silica-based sorbents for CO2 capture. Journal of Molecular Liquids, 338(15): 116913
CrossRef
Google scholar
|
[50] |
Feng L L, Yin X C, Tan S Y, Li C, Gong X Y, Fang X, Pan Y J. (2021). Ammonium bicarbonate significantly accelerates the microdroplet reactions of amines with carbon dioxide. Analytical Chemistry, 93(47): 15775–15784
CrossRef
Google scholar
|
[51] |
Fernández J R. (2023). An overview of advances in CO2 capture technologies. Energies, 16(3): 1413
CrossRef
Google scholar
|
[52] |
Flyvbjerg B. (2014). What you should know about megaprojects and why: an overview. Project Management Journal, 45(2): 6–19
CrossRef
Google scholar
|
[53] |
Fu H M, Shen Y B, Li Z H, Zhang H, Chen H P, Gao D. (2023a). CO2 capture using superhydrophobic ceramic membrane: Preparation and performance analysis. Energy, 282(1): 128873
CrossRef
Google scholar
|
[54] |
Fu H M, Xue K L, Yang J H, Li Z H, Zhang H, Gao D, Chen H P. (2023b). CO2 capture based on Al2O3 ceramic membrane with hydrophobic modification. Journal of the European Ceramic Society, 43(8): 3427–3436
CrossRef
Google scholar
|
[55] |
Galán-Martín A, Vázquez D, Cobo S, Mac Dowell N, Caballero J A, Guillén-Gosálbez G. (2021). Delaying carbon dioxide removal in the European Union puts climate targets at risk. Nature Communications, 12(1): 6490
CrossRef
Google scholar
|
[56] |
Gao W L, Vasiliades M A, Damaskinos C M, Zhao M, Fan W Q, Wang Q, Reina T R, Efstathiou A M. (2021). Molten salt-promoted MgO sorbents for CO2 capture: transient kinetic studies. Environmental Science & Technology, 55(8): 4513–4521
CrossRef
Google scholar
|
[57] |
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe C Y, Zhu X, Wang J.
CrossRef
Google scholar
|
[58] |
Gardas R L, Coutinho J A P. (2008). A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria, 266(1–2): 195–201
CrossRef
Google scholar
|
[59] |
Ghaffari S, Gutierrez M F, Seidel-Morgenstern A, Lorenz H, Schulze P. (2023). Sodium hydroxide-based CO2 direct air capture for soda ash production─fundamentals for process engineering. Industrial & Engineering Chemistry Research, 62(19): 7566–7579
CrossRef
Google scholar
|
[60] |
GlobalCCS Institute (2020). Global Status of CCS 2020. Washington, DC: The Global CCS Institute
|
[61] |
GlobalCCS Institute (2022). Global Status of CCS 2022. Washington, DC: The global CCS Institute
|
[62] |
Gelles T, Lawson S, Rownaghi A A, Rezaei F. (2020). Recent advances in development of amine functionalized sorbents for CO2 capture. Adsorption, 26(1): 5–50
CrossRef
Google scholar
|
[63] |
Geng Y, Guo Y, Fan B, Cheng F, Cheng H. (2021). Research progress of calcium-based sorbents for CO2 capture and anti-sintering modification. Journal of Fuel Chemistry & Technology, 49(7): 998–1013
CrossRef
Google scholar
|
[64] |
Ghaedi H, Kalhor P, Zhao M, Clough P T, Anthony E J, Fennell P S. (2022). Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO2 absorption: characterizations and DFT analysis. Frontiers of Environmental Science & Engineering, 16(7): 92
CrossRef
Google scholar
|
[65] |
Gkotsis P, Peleka E, Zouboulis A. (2023). Membrane-based technologies for post-combustion CO2 capture from flue gases: Recent progress in commonly employed membrane materials. Membranes, 13(12): 898
CrossRef
Google scholar
|
[66] |
Gregg S J, Ramsay J D. (1970). Adsorption of carbon dioxide by magnesia studied by use of infrared and isotherm measurements. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 17: 2784–2787
CrossRef
Google scholar
|
[67] |
Gu H M, Shen L H, Xiao J, Zhang S W, Song T. (2011). Chemical looping combustion of biomass/coal with natural Iron ore as oxygen carrier in a continuous reactor. Energy & Fuels, 25(1): 446–455
CrossRef
Google scholar
|
[68] |
Hallett J P, Welton T. (2011). Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chemical Reviews, 111(5): 3508–3576
CrossRef
Google scholar
|
[69] |
Harada T, Simeon F, Hamad E Z, Hatton T A. (2015). Alkali metal nitrate-promoted high-capacity MgO adsorbents for regenerable CO2 capture at moderate temperatures. Chemistry of Materials, 27(6): 1943–1949
CrossRef
Google scholar
|
[70] |
Hernández-Palomares A, Alcántar-Vázquez B, Ramírez-Zamora R M, Coutino-Gonzalez E, Espejel-Ayala F. (2023). CO2 capture using lithium-based sorbents prepared with construction and demolition wastes as raw materials. Materials Today Sustainability, 24: 100491
CrossRef
Google scholar
|
[71] |
Holmes H E, Ghosh S, Li C Y, Kalyanaraman J, Realff M J, Weston S C, Lively R P. (2023). Optimum relative humidity enhances CO2 uptake in diamine-appended M2(dobpdc). Chemical Engineering Journal, 477(1): 147119
CrossRef
Google scholar
|
[72] |
Hospital-Benito D, Moya C, Gazzani M, Palomar J. (2023). Direct air capture based on ionic liquids: From molecular design to process assessment. Chemical Engineering Journal, 468: 143630
CrossRef
Google scholar
|
[73] |
Hu L, Wu W, Jiang L, Hu M, Zhu H, Gong L, Yang J, Lin D, Yang K. (2023). Methyl-functionalized Al-based MOF ZJU-620 (Al): A potential physisorbent for carbon dioxide capture. ACS Applied Materials & Interfaces, 15(37): 43925–43932
CrossRef
Google scholar
|
[74] |
Huang C L, Liu C J, Wu K J, Yue H R, Tang S Y, Lu H F, Liang B. (2019). CO2 capture from flue gas using an electrochemically reversible hydroquinone/quinone solution. Energy & Fuels, 33(4): 3380–3389
CrossRef
Google scholar
|
[75] |
IEA
|
[76] |
IEA
|
[77] |
IEA
|
[78] |
Iizuka A, Hashimoto K, Nagasawa H, Kumagai K, Yanagisawa Y, Yamasaki A. (2012). Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis. Separation and Purification Technology, 101: 49–59
CrossRef
Google scholar
|
[79] |
IPCC
|
[80] |
IPCC
|
[81] |
IPCC
|
[82] |
IPCC
|
[83] |
Jahandar Lashaki M, Ziaei-Azad H, Sayari A. (2022). Unprecedented improvement of the hydrothermal stability of amine-grafted MCM-41 silica for CO2 capture via aluminum incorporation. Chemical Engineering Journal, 450(4): 138393
CrossRef
Google scholar
|
[84] |
Jiang K, Ashworth P. (2021). The development of carbon capture utilization and storage (CCUS) research in China: A bibliometric perspective. Renewable & Sustainable Energy Reviews, 138: 110521
CrossRef
Google scholar
|
[85] |
Jing G H, Qian Y H, Zhou X B, Lv B H, Zhou Z M. (2018). Designing and screening of multi-amino-functionalized ionic liquid solution for CO2 capture by quantum chemical simulation. ACS Sustainable Chemistry & Engineering, 6(1): 1182–1191
CrossRef
Google scholar
|
[86] |
Kang M K, Jeon S B, Cho J H, Kim J S, Oh K J. (2017). Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions. International Journal of Greenhouse Gas Control, 63: 281–288
CrossRef
Google scholar
|
[87] |
Keller M, Oka H, Otomo J. (2019). Reactivity improvement of ilmenite by calcium nitrate melt infiltration for chemical looping combustion of biomass. Carbon Resources Conversion, 2(1): 51–58
CrossRef
Google scholar
|
[88] |
Khakpoor N, Mostafavi E, Mahinpey N, De la Hoz Siegler H. (2019). Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion. Energy, 169: 329–337
CrossRef
Google scholar
|
[89] |
Kikkawa S, Amamoto K, Fujiki Y, Hirayama J, Kato G, Miura H, Shishido T, Yamazoe S. (2022). Direct air capture of CO2 using a liquid amine-solid carbamic acid phase-separation system using diamines bearing an aminocyclohexyl group. ACS Environmental Au, 2(4): 354–362
CrossRef
Google scholar
|
[90] |
Kim S, Jeon S G, Lee K B. (2016). High-temperature CO2 sorption on hydrotalcite having a high Mg/Al molar ratio. ACS applied materials & interfaces, 8(9): 5763–5767
CrossRef
Google scholar
|
[91] |
Kim S, Lee K B. (2019). Impregnation of hydrotalcite with NaNO3 for enhanced high-temperature CO2 sorption uptake. Chemical Engineering Journal, 356: 964–972
CrossRef
Google scholar
|
[92] |
Kim S, Yoon H J, Lee C H, Lee K B. (2023). Effects of alkali-metal nitrate salts on hydrotalcite-based sorbents for enhanced cyclic CO2 capture at high temperatures. Journal of CO2 Utilization, 77: 102610
CrossRef
Google scholar
|
[93] |
Knuutila H K, Nannestad Å. (2017). Effect of the concentration of MAPA on the heat of absorption of CO2 and on the cyclic capacity in DEEA-MAPA blends. International Journal of Greenhouse Gas Control, 61: 94–103
CrossRef
Google scholar
|
[94] |
Kolbitsch P, Bolhàr-Nordenkampf J, Pröll T, Hofbauer H. (2009). Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation. Industrial & Engineering Chemistry Research, 48(11): 5542–5547
CrossRef
Google scholar
|
[95] |
Kolbitsch P, Bolhàr-Nordenkampf J, Pröll T, Hofbauer H. (2010). Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Energy Procedia, 1(1): 1465–1472
CrossRef
Google scholar
|
[96] |
Kortunov P V, Siskin M, Baugh L S, Calabro D C. (2015). In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems: new insights on carbon capture reaction pathways. Energy & Fuels, 29(9): 5919–5939
CrossRef
Google scholar
|
[97] |
Krödel M, Landuyt A, Abdala P M, Müller C R. (2020). Mechanistic understanding of CaO-based sorbents for high-temperature CO2 capture: Advanced characterization and prospects. ChemSusChem, 13(23): 6259–6272
CrossRef
Google scholar
|
[98] |
Ku H C, Miao Y H, Wang Y Z, Chen X, Zhu X C, Lu H L, Li J, Yu L J. (2023). Frontier science and challenges on offshore carbon storage. Frontiers of Environmental Science & Engineering, 17(7): 80
CrossRef
Google scholar
|
[99] |
Kumar D R, Rosu C, Sujan A R, Sakwa-Novak M A, Ping E W, Jones C W. (2020). Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture. ACS Sustainable Chemistry & Engineering, 8(29): 10971–10982
CrossRef
Google scholar
|
[100] |
Kumar R, Bandyopadhyay M, Pandey M, Tsunoji N. (2022). Amine-impregnated nanoarchitectonics of mesoporous silica for capturing dry and humid 400 ppm carbon dioxide: A comparative study. Microporous and Mesoporous Materials, 338: 111956
CrossRef
Google scholar
|
[101] |
Kumar R, Ohtani S, Tsunoji N. (2023). Direct air capture on amine-impregnated FAU zeolites: Exploring for high adsorption capacity and low-temperature regeneration. Microporous and Mesoporous Materials, 360: 112714
CrossRef
Google scholar
|
[102] |
Lai Q H, Toan S, Assiri M A, Cheng H G, Russell A G, Adidharma H, Radosz M, Fan M H. (2018). Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nature Communications, 9(1): 2672
CrossRef
Google scholar
|
[103] |
Lawal O, Bello A, Idem R. (2005). The role of methyl diethanolamine (MDEA) in preventing the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA)-MDEA blends during CO2 absorption from flue gases. Industrial & Engineering Chemistry Research, 44(6): 1874–1896
CrossRef
Google scholar
|
[104] |
Le Quéré C, Peters G P, Friedlingstein P, Andrew R M, Canadell J G, Davis S J, Jackson R B, Jones M W. (2021). Fossil CO2 emissions in the post-COVID-19 era. Nature Climate Change, 11(3): 197–199
CrossRef
Google scholar
|
[105] |
Lee W H, Zhang X, Banerjee S, Jones C W, Realff M J, Lively R P. (2023). Sorbent-coated carbon fibers for direct air capture using electrically driven temperature swing adsorption. Joule, 7(6): 1241–1259
CrossRef
Google scholar
|
[106] |
Legrand L, Shu Q, Tedesco M, Dykstra J E, Hamelers H V M. (2020). Role of ion exchange membranes and capacitive electrodes in membrane capacitive deionization (MCDI) for CO2 capture. Journal of Colloid and Interface Science, 564: 478–490
CrossRef
Google scholar
|
[107] |
Lei L, Cheng Y, Chen C W, Kosari M, Jiang Z Y, He C. (2022). Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. Journal of Colloid and Interface Science, 612: 132–145
CrossRef
Google scholar
|
[108] |
Leion H, Mattisson T, Lyngfelt A. (2009). Use of ores and industrial products As oxygen carriers in chemical-looping combustion. Energy & Fuels, 23(4): 2307–2315
CrossRef
Google scholar
|
[109] |
Li J X, Li Y, Li C, Tu R, Xie P F, He Y, Shi Y. (2022a). CO2 absorption and microwave regeneration with high-concentration TETA nonaqueous absorbents. Greenhouse Gases: Science and Technology, 12(3): 362–375
CrossRef
Google scholar
|
[110] |
Li Q, Liu G, Li X, Chen Z A. (2022b). Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective. Advanced Engineering Sciences, 54(1): 157–166
|
[111] |
Li W, Goh K L, Chuah C Y, Bae T H. (2019). Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements. Journal of Membrane Science, 588: 117220
CrossRef
Google scholar
|
[112] |
Li X L, Zhou X B, Wei J W, Fan Y M, Liao L, Wang H Q. (2021). Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent. Separation and Purification Technology, 265: 118481
CrossRef
Google scholar
|
[113] |
Li X, Jiao C, Zhang X, Li X, Song X, Zhao Y, Jiang H. (2023). Dual-modulated polyamide membranes based on vapor-liquid interfacial polymerization for CO2 separation. Chemistry of Materials, 36(1): 461–470
CrossRef
Google scholar
|
[114] |
Li X, Zhao X H, Liu Y Y, Hatton T A, Liu Y Y. (2022c). Redox-tunable Lewis bases for electrochemical carbon dioxide capture. Nature Energy, 7(11): 1065–1075
CrossRef
Google scholar
|
[115] |
Li Y, Gao J Z, Li J X, Li Y N, Bernards M T, Tao M N, He Y, Shi Y. (2020). Screening and performance evaluation of triethylenetetramine nonaqueous solutions for CO2 capture with microwave regeneration. Energy & Fuels, 34(9): 11270–11281
CrossRef
Google scholar
|
[116] |
Liao X, Wang B, Yin R Q, Ren W G, Li J, Gan H T, Lv P, Bao W R, Wang J C, Chang L P.
CrossRef
Google scholar
|
[117] |
Lin J B, Nguyen T T T, Vaidhyanathan R, Burner J, Taylor J M, Durekova H, Akhtar F, Mah R K, Ghaffari-Nik O, Marx S.
CrossRef
Google scholar
|
[118] |
Lin L, Meng Y, Ju T Y, Han S Y, Meng F Z, Li J L, Du Y F, Song M Z, Lan T, Jiang J G. (2023). Characteristics, application and modeling of solid amine sorbents for CO2 capture: a review. Journal of Environmental Management, 325(A): 116438
|
[119] |
Linderholm C, Abad A, Mattisson T, Lyngfelt A. (2008). 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. International Journal of Greenhouse Gas Control, 2(4): 520–530
CrossRef
Google scholar
|
[120] |
Linderholm C, Mattisson T, Lyngfelt A. (2009). Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel. Fuel, 88(11): 2083–2096
CrossRef
Google scholar
|
[121] |
Liu A H, Li J J, Ren B H, Lu X B. (2019). Development of high-capacity and water-lean CO2 absorbents by a concise molecular design strategy through viscosity control. ChemSusChem, 12(23): 5164–5171
CrossRef
Google scholar
|
[122] |
Liu F, Jing G H, Zhou X B, Lv B H, Zhou Z M. (2018). Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture. ACS Sustainable Chemistry & Engineering, 6(1): 1352–1361
CrossRef
Google scholar
|
[123] |
Liu G, Cai B, Li Q, Zhang X, Ouyang T. (2022a). China’s pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060. Carbon Management, 13(1): 435–449
CrossRef
Google scholar
|
[124] |
Liu K, Zhao B S, Wu Y, Li F, Li Q, Zhang J B. (2020a). Bubbling synthesis and high-temperature CO2 adsorption performance of CaO-based sorbents from carbide slag. Fuel, 269: 117481
CrossRef
Google scholar
|
[125] |
Liu L, Li Z S, Wang L J, Zhao Z H, Li Y, Cai N S. (2020b). MgO-kaolin-supported manganese ores as oxygen carriers for chemical looping combustion. Industrial & Engineering Chemistry Research, 59(15): 7238–7246
CrossRef
Google scholar
|
[126] |
Liu Y H, Guan Y, Lin X L, Wang B, Lyu Q. (2022b). Research progress and perspectives of solid fuels chemical looping reaction with Fe-based oxygen carriers. Energy & Fuels, 36(23): 13956–13984
CrossRef
Google scholar
|
[127] |
Liu Y Y, Ye H Z, Diederichsen K M, Van Voorhis T, Hatton T A. (2020c). Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nature Communications, 11(1): 2278
CrossRef
Google scholar
|
[128] |
Liu Z X, Lu Y L, Wang C F, Zhang Y, Jin X D, Wu J W, Wang Y H, Zeng J B, Yan Z F, Sun H M.
CrossRef
Google scholar
|
[129] |
Lu P, Yan X, Ye L, Chen D, Chen D, Huang J, Cen C. (2024). Performance and mechanism of CO2 absorption during the simultaneous removal of SO2 and NOx by wet scrubbing process. Journal of Environmental Sciences (China), 135: 534–545
CrossRef
Google scholar
|
[130] |
Lv B H, Yang K X, Zhou X B, Zhou Z M, Jing G H. (2020). 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture. Applied Energy, 264: 114703
CrossRef
Google scholar
|
[131] |
Lyngfelt A. (2011). Oxygen carriers for chemical looping combustion-4000 h of operational experience. Oil & Gas Science and Technology-Revue D IFP Energies Nouvelles, 66(2): 161–172
|
[132] |
McQueen N, Kelemen P, Dipple G, Renforth P, Wilcox J. (2020). Ambient weathering of magnesium oxide for CO2 removal from air. Nature Communications, 11(1): 3299
CrossRef
Google scholar
|
[133] |
Meckling J, Biber E. (2021). A policy roadmap for negative emissions using direct air capture. Nature Communications, 12(1): 2051
CrossRef
Google scholar
|
[134] |
Milad B, Moghanloo R G, Hayman N W. (2024). Assessing CO2 geological storage in arbuckle group in northeast oklahoma. Fuel, 356: 129323
CrossRef
Google scholar
|
[135] |
Morita M, Horiuchi Y, Matsuoka M, Ogawa M. (2022). Preparation of titanium-containing layered alkali silicates. Crystal Growth & Design, 22(3): 1638–1644
CrossRef
Google scholar
|
[136] |
Muldoon M J, Aki S, Anderson J L, Dixon J K, Brennecke J F. (2007). Improving carbon dioxide solubility in ionic liquids. Journal of Physical Chemistry B, 111(30): 9001–9009
CrossRef
Google scholar
|
[137] |
Müller L J, Kätelhön A, Bringezu S, Mccoy S, Suh S, Edwards R, Sick V, Kaiser S, Cuéllar-Franca R, El Khamlichi A.
CrossRef
Google scholar
|
[138] |
NEA
|
[139] |
NikO GChen X YKaliaguineS (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 413-414: 48-61
|
[140] |
Noorani N, Mehrdad A. (2020). CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies. Fluid Phase Equilibria, 517: 112591
CrossRef
Google scholar
|
[141] |
Noorani N, Mehrdad A. (2022). Cholinium-amino acid ionic liquids as biocompatible agents for carbon dioxide absorption. Journal of Molecular Liquids, 357: 119078
CrossRef
Google scholar
|
[142] |
Noorani N, Mehrdad A, Ahadzadeh I. (2021). CO2 absorption in amino acid-based ionic liquids: Experimental and theoretical studies. Fluid Phase Equilibria, 547: 113185
CrossRef
Google scholar
|
[143] |
Orujov A, Coddington K, Aryana S A. (2023). A review of CCUS in the context of foams, regulatory frameworks and monitoring. Energies, 16(7): 3284
CrossRef
Google scholar
|
[144] |
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. (2017). Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
CrossRef
Google scholar
|
[145] |
Pröll T, Kolbitsch P, Bolhàr-Nordenkampf J, Hofbauer H. (2009a). A novel dual circulating fluidized bed system for chemical looping processes. AIChE Journal. American Institute of Chemical Engineers, 55(12): 3255–3266
CrossRef
Google scholar
|
[146] |
Pröll T, Mayer K, Bolhàr-Nordenkampf J, Kolbitsch P, Mattisson T, Lyngfelt A, Hofbauer H. (2009b). Natural minerals as oxygen carriers for chemical looping combustion in a dual circulating fluidized bed system. Energy Procedia, 1(1): 27–34
CrossRef
Google scholar
|
[147] |
Qi G, Wang S. (2017). Thermodynamic modeling of NH3-CO2-SO2-K2SO4-H2O system for combined CO2 and SO2 capture using aqueous NH3. Applied Energy, 191(1): 549–558
CrossRef
Google scholar
|
[148] |
Qiu L, Peng L, Moitra D, Liu H, Fu Y, Dong Z, Hu W, Lei M, Jiang D E, Lin H.
CrossRef
Google scholar
|
[149] |
Qiu Y, Lamers P, Daioglou V, McQueen N, de Boer H S, Harmsen M, Wilcox J, Bardow A, Suh S. (2022). Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100. Nature Communications, 13(1): 3635
CrossRef
Google scholar
|
[150] |
RajendranASubraveti S GPaiK NPrasadVLiZ (2023). How can (or why should) process engineering aid the screening and discovery of solid sorbents for CO2 capture? Accounts of Chemical Research, 56(17): 2354–2365
|
[151] |
Rau G H. (2008). Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environmental Science & Technology, 42(23): 8935–8940
CrossRef
Google scholar
|
[152] |
Realmonte G, Drouet L, Gambhir A, Glynn J, Hawkes A, Köberle A C, Tavoni M. (2019). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 10(1): 3277
CrossRef
Google scholar
|
[153] |
Rochelle G T. (2024). Air pollution impacts of amine scrubbing for CO2 capture. Carbon Capture Science & Technology, 11: 100192
CrossRef
Google scholar
|
[154] |
Sanyal O, Hays S S, León N E, Guta Y A, Itta A K, Lively R P, Koros W J. (2020). A self-consistent model for sorption and transport in polyimide-derived carbon molecular sieve gas separation membranes. Angewandte Chemie International Edition, 59(46): 20343–20347
CrossRef
Google scholar
|
[155] |
Schmitz M, Linderholm C, Hallberg P, Sundqvist S, Lyngfelt A. (2016). Chemical-looping combustion of solid fuels using manganese ores as oxygen carriers. Energy & Fuels, 30(2): 1204–1216
CrossRef
Google scholar
|
[156] |
Sedighi M, Talaie M R, Sabzyan H, Aghamiri S F. (2023). A computational investigation on the roles of binding affinity and pore size on CO2/N2 overall adsorption process performance of MOFs through modifying MIL-101 structure. Sustainable Materials and Technologies, 38: e00701
CrossRef
Google scholar
|
[157] |
Sekizkardes A K, Kusuma V A, Culp J T, Muldoon P, Hoffman J, Steckel J A, Hopkinson D. (2023). Single polymer sorbent fibers for high performance and rapid direct air capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 11(22): 11670–11674
CrossRef
Google scholar
|
[158] |
Shan K Y, Lin Y L, Chu P S, Yu X P, Song F F. (2023). Seasonal advance of intense tropical cyclones in a warming climate. Nature, 623(7985): 83–89
CrossRef
Google scholar
|
[159] |
Shen L H, Wu J H, Gao Z P, Xiao J. (2009a). Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor. Combustion and Flame, 156(7): 1377–1385
CrossRef
Google scholar
|
[160] |
Shen L H, Wu J H, Xiao J, Song Q L, Xiao R. (2009b). Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide As an oxygen carrier. Energy & Fuels, 23(5): 2498–2505
CrossRef
Google scholar
|
[161] |
Shen Q, Song X H, Mao F, Sun N N, Wen X, Wei W. (2020). Carbon reduction potential and cost evaluation of different mitigation approaches in China’s coal to olefin Industry. Journal of Environmental Sciences, 90: 352–363
CrossRef
Google scholar
|
[162] |
Shen Y, Liu F, Wang X Y, Shao P J, He Z, Zhang S H, Chen L, Li S J, Li W, Wang L D.
CrossRef
Google scholar
|
[163] |
Shi J S, Cui H M, Xu J G, Yan N F, You S Y. (2022). Synthesis of N-doped hierarchically ordered micro-mesoporous carbons for CO2 adsorption. Journal of CO2 Utilization, 62: 102081
CrossRef
Google scholar
|
[164] |
Siegelman R L, Kim E J, Long J R. (2021). Porous materials for carbon dioxide separations. Nature Materials, 20(8): 1060–1072
CrossRef
Google scholar
|
[165] |
Song C F, Fan Z C, Li R, Liu Q L, Sun Y W, Kitamura Y. (2018). Intensification of CO2 separation performance via cryogenic and membrane hybrid process—comparison of polyimide and polysulfone hollow fiber membrane. Chemical Engineering and Processing - Process Intensification, 133: 83–89
CrossRef
Google scholar
|
[166] |
Sridhar D, Tong A, Kim H, Zeng L, Li F, Fan L S. (2012). Syngas chemical looping process: design and construction of a 25 kWh subpilot unit. Energy & Fuels, 26(4): 2292–2302
CrossRef
Google scholar
|
[167] |
Stefanelli E, Vitolo S, Puccini M. (2022). Single-step fabrication of templated Li4SiO4-based pellets for CO2 capture at high temperature. Journal of Environmental Chemical Engineering, 10(5): 108389
CrossRef
Google scholar
|
[168] |
Storrs K, Lyhne I, Drustrup R. (2023). A comprehensive framework for feasibility of CCUS deployment: a meta-review of literature on factors impacting CCUS deployment. International Journal of Greenhouse Gas Control, 125: 103878
CrossRef
Google scholar
|
[169] |
Stucki S, Schuler A, Constantinescu M. (1995). Coupled CO2 recovery from the atmosphere and water electrolysis: feasibility of a new process for hydrogen storage. International Journal of Hydrogen Energy, 20(8): 653–663
CrossRef
Google scholar
|
[170] |
Sun Z Y, Shao B, Zhang Y, Gao Z H, Wang M H, Liu H L, Hu J. (2023). Integrated CO2 capture and methanation from the intermediate-temperature flue gas on dual functional hybrids of AMS/CaMgO. NixCoy. Separation and Purification Technology, 307: 122680
CrossRef
Google scholar
|
[171] |
Sundqvist S, Arjmand M, Mattisson T, Rydén M, Lyngfelt A. (2015). Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 43: 179–188
CrossRef
Google scholar
|
[172] |
Szcześniak B, Choma J. (2020). Graphene-containing microporous composites for selective CO2 adsorption. Microporous and Mesoporous Materials, 292: 109761
CrossRef
Google scholar
|
[173] |
Tao M N, Gao J Z, Zhang W, Li Y, He Y, Shi Y. (2018). A novel phase-changing nonaqueous solution for CO2 capture with high capacity, thermostability, and regeneration efficiency. Industrial & Engineering Chemistry Research, 57(28): 9305–9312
CrossRef
Google scholar
|
[174] |
Tian H J, Siriwardane R, Simonyi T, Poston J. (2013). Natural ores as oxygen carriers in chemical looping combustion. Energy & Fuels, 27(8): 4108–4118
CrossRef
Google scholar
|
[175] |
Tian W, Ma K, Ji J Y, Tang S Y, Zhong S, Liu C J, Yue H R, Liang B. (2021). Nonaqueous MEA/PEG200 absorbent with high efficiency and low energy consumption for CO2 capture. Industrial & Engineering Chemistry Research, 60(10): 3871–3880
CrossRef
Google scholar
|
[176] |
Tian X, Zhao H B, Wang K, Ma J C, Zheng C G. (2015). Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling. International Journal of Greenhouse Gas Control, 41: 210–218
CrossRef
Google scholar
|
[177] |
Tong D, Zhang Q, Zheng Y X, Caldeira K, Shearer C, Hong C P, Qin Y, Davis S J. (2019). Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 572(7769): 373
CrossRef
Google scholar
|
[178] |
Wang H, Yang Z Y, Zhou Y Q, Cui H J, Cheng Z M, Zhou Z M. (2023a). Direct air capture of CO2 with metal nitrate-doped, tetraethylenepentamine-functionalized SBA-15 sorbents. Industrial & Engineering Chemistry Research, 62(41): 16579–16588
CrossRef
Google scholar
|
[179] |
Wang L D, Zhang Y F, Wang R J, Li Q W, Zhang S H, Li M, Liu J, Chen B. (2018). Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture. Environmental Science & Technology, 52(24): 14556–14563
CrossRef
Google scholar
|
[180] |
Wang L, Lin C, Boldog I, Yang J, Janiak C, Li J. (2023b). Inverse adsorption separation of N2O/CO2 in AgZK-5 zeolite. Angewandte Chemie International Edition, 63(4): e202317435
CrossRef
Google scholar
|
[181] |
Wang R. (2024). Status and perspectives on CCUS clusters and hubs. Unconventional Resources, 4: 100065
CrossRef
Google scholar
|
[182] |
Wang R J, Jiang L, Li Q W, Gao G, Zhang S H, Wang L D. (2020). Energy-saving CO2 capture using sulfolane-regulated biphasic solvent. Energy, 211: 118667
CrossRef
Google scholar
|
[183] |
Wang Y H, Wang K X, Zhang X R, Li J P. (2023c). Co@NC@ZIF-8-hybridized carbon molecular sieve membranes for highly efficient gas separation. Journal of Membrane Science, 682: 121781
CrossRef
Google scholar
|
[184] |
Wang Y Y, Tang X D, XinWei S J, Gao L, Jiang Y. (2024). Study of CO2 adsorption on carbon aerogel fibers prepared by electrospinning. Journal of Environmental Management, 349: 119432
CrossRef
Google scholar
|
[185] |
Waqas Anjum M, de Clippel F, Didden J, Laeeq Khan A, Couck S, Baron G V, Denayer J F M, Sels B F, Vankelecom I F J. (2015). Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillers. Journal of Membrane Science, 495: 121–129
CrossRef
Google scholar
|
[186] |
Wen Y Y, Li Z S, Xu L, Cai N S. (2012). Experimental study of natural Cu ore particles as oxygen carriers in chemical looping with oxygen uncoupling (CLOU). Energy & Fuels, 26(6): 3919–3927
CrossRef
Google scholar
|
[187] |
Wijesiri R P, Knowles G P, Yeasmin H, Hoadley A F A, Chaffee A L. (2019). CO2 capture from air using pelletized polyethylenimine impregnated MCF silica. Industrial & Engineering Chemistry Research, 58(8): 3293–3303
CrossRef
Google scholar
|
[188] |
WillauerH DDimascio FHardyD R (2017). Extraction of carbon dioxide and hydrogen from seawater by an electrolytic cation exchange module (E-CEM) part 5: E-CEM effluent discharge composition as a function of electrode water composition. Washington DC: Naval research laboratory
|
[189] |
Willauer H D, Dimascio F, Hardy D R, Lewis M K, Williams F W. (2011). Development of an electrochemical acidification cell for the recovery of CO2 and H2 from seawater. Industrial & Engineering Chemistry Research, 50(17): 9876–9882
CrossRef
Google scholar
|
[190] |
Willauer H D, Dimascio F, Hardy D R, Williams F W. (2014). Feasibility of CO2 extraction from seawater and simultaneous hydrogen gas generation using a novel and robust electrolytic cation exchange module based on continuous electrodeionization technology. Industrial & Engineering Chemistry Research, 53(31): 12192–12200
CrossRef
Google scholar
|
[191] |
WMO
|
[192] |
Wu B Z, Liu F Q, Luo S W, Zhang L Q, Zou F X. (2021). Carbonaceous materials-supported polyethylenimine with high thermal conductivity: A promising adsorbent for CO2 capture. Composites Science and Technology, 208: 108781
CrossRef
Google scholar
|
[193] |
Wu K, Peng S, Ye G, Chen Z, Wu D. (2023). Self-Assembled core–shell structure MgO@ TiO2 as a K2CO3 support with superior performance for direct air capture CO2. ACS Applied Materials & Interfaces, 15(51): 59561–59572
CrossRef
Google scholar
|
[194] |
Xia C, Xia Y, Zhu P, Fan L, Wang H T. (2019). Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science, 366(6462): 226–231
CrossRef
Google scholar
|
[195] |
Xiao M, Liu H L, Gao H X, Olson W, Liang Z W. (2019). CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Applied Energy, 235: 311–319
CrossRef
Google scholar
|
[196] |
Xiao R, Song Q L, Zhang S A, Zheng W G, Yang Y C. (2010). Pressurized chemical-looping combustion of chinese bituminous coal: cyclic performance and characterization of iron ore-based oxygen carrier. Energy & Fuels, 24(2): 1449–1463
CrossRef
Google scholar
|
[197] |
Xie H, Jiang W, Liu T, Wu Y, Wang Y, Chen B, Niu D, Liang B. (2020). Low-energy electrochemical carbon dioxide capture based on a biological redox proton carrier. Cell Reports. Physical Science, 1(5): 100046
CrossRef
Google scholar
|
[198] |
Xie Y, Zhong H, Weng Z X, Guo X B, Kim S E, Wu S W. (2023). PM2.5 concentration declining saves health expenditure in China. Frontiers of Environmental Science & Engineering, 17(7): 90
CrossRef
Google scholar
|
[199] |
Xie W, Jiao Y, Cai Z L, Liu H Y, Gong L L, Lai W, Shan L L, Luo S J. (2022). Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure- and mixed-gas CO2/CH4 separation. Separation and Purification Technology, 282(B): 120091
|
[200] |
Xu L, Sun H M, Li Z S, Cai N S. (2016). Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Applied Energy, 162: 940–947
CrossRef
Google scholar
|
[201] |
Yan H Y, Zhang G J, Xu Y, Zhang Q Q, Liu J, Li G Q, Zhao Y Q, Wang Y, Zhang Y F. (2022). High CO2 adsorption on amine-functionalized improved macro-/mesoporous multimodal pore silica. Fuel, 315: 123195
CrossRef
Google scholar
|
[202] |
Yan Y L, Borhani T N, Subraveti S G, Pai K N, Prasad V, Rajendran A, Nkulikiyinka P, Asibor J O, Zhang Z E, Shao D.
CrossRef
Google scholar
|
[203] |
Yang H, Huang X J, Hu J L, Thompson J R, Flower R J. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
CrossRef
Google scholar
|
[204] |
Yang Z Y, Soriano A N, Caparanga A R, Li M H. (2010). Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-1-propanol+piperazine+water). Journal of Chemical Thermodynamics, 42(5): 659–665
CrossRef
Google scholar
|
[205] |
Yang Z, Chen B, Chen H, Li H. (2023). A critical review on machine-learning-assisted screening and design of effective sorbents for carbon dioxide (CO2) capture. Frontiers in Energy Research, 10: 1043064
CrossRef
Google scholar
|
[206] |
Yao B, Wang Y Q, Fang Z, Hu Y, Ye Z Z, Peng X S. (2023a). Electrodepositing MOFs into laminated graphene oxide membrane for CO2 capture. Microporous and Mesoporous Materials, 361: 112758
CrossRef
Google scholar
|
[207] |
Yao J, Han H, Yang Y, Song Y, Li G. (2023b). A review of recent progress of carbon capture, utilization, and storage (CCUS) in China. Applied Sciences, 13(2): 1169
CrossRef
Google scholar
|
[208] |
Youn M H, Park K T, Lee Y H, Kang S P, Lee S M, Kim S S, Kim Y E, Ko Y N, Jeong S K, Lee W. (2019). Carbon dioxide sequestration process for the cement industry. Journal of CO2 Utilization, 34: 325–334
CrossRef
Google scholar
|
[209] |
Younas M, Rezakazemi M, Daud M, Wazir M B, Ahmad S, Ullah N, Inamuddin S. (2020). Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 80: 100849
CrossRef
Google scholar
|
[210] |
Yu Y, Mao J F, Wullschleger S D, Chen A P, Shi X Y, Wang Y P, Hoffman F M, Zhang Y L, Pierce E. (2022). Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 13(1): 1250
CrossRef
Google scholar
|
[211] |
Zhan G X, Yuan B L, Duan Y M, Bai Y F, Chen J J, Chen Z, Li J H. (2023). Simulation and optimization of carbon dioxide capture using Water-Lean solvent from industrial flue gas. Chemical Engineering Journal, 474: 145773
CrossRef
Google scholar
|
[212] |
Zhan X H, Lv B H, Yang K X, Jing G H, Zhou Z M. (2020). Dual-functionalized ionic liquid biphasic solvent for carbon dioxide capture: High-efficiency and energy saving. Environmental Science & Technology, 54(10): 6281–6288
CrossRef
Google scholar
|
[213] |
Zhang C, Zhang J F, Yu Y S, Zhang Z X, Wang G G X. (2021a). Adsorption mechanism of CO2 on the single atom doped or promoted Li4SiO4(010) surface from first principles. Computational & Theoretical Chemistry, 1205: 113424
CrossRef
Google scholar
|
[214] |
Zhang C, Zhang X Q, Su T Y, Zhang Y H, Wang L W, Zhu X C. (2023a). Modification schemes of efficient sorbents for trace CO2 capture. Renewable & Sustainable Energy Reviews, 184: 113473
CrossRef
Google scholar
|
[215] |
Zhang K X, Wu J S, Yoo H, Lee Y J. (2021b). Machine learning-based approach for tailor-made design of ionic liquids: application to CO2 capture. Separation and Purification Technology, 275: 119117
CrossRef
Google scholar
|
[216] |
Zhang R, Liu R X, Barzagli F, Sanku M G, Li C, Xiao M. (2023b). CO2 absorption in blended amine solvent: speciation, equilibrium solubility and excessive property. Chemical Engineering Journal, 466: 143279
CrossRef
Google scholar
|
[217] |
Zhang R, Zhang X W, Yang Q, Yu H, Liang Z W, Luo X. (2017). Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC). Applied Energy, 205: 1002–1011
CrossRef
Google scholar
|
[218] |
Zhang S H, Shen Y, Shao P J, Chen J M, Wang L D. (2018). Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas. Environmental Science & Technology, 52(6): 3660–3668
CrossRef
Google scholar
|
[219] |
Zhang S Q, Chen C, Ahn W S. (2019). Recent progress on CO2 capture using amine-functionalized silica. Current Opinion in Green and Sustainable Chemistry, 16: 26–32
CrossRef
Google scholar
|
[220] |
Zhang Y Y, Sun M Y, Li L, Xu R S, Pan Y Q, Wang T H. (2022). Carbon molecular sieve/ZSM-5 mixed matrix membranes with enhanced gas separation performance and the performance recovery of the aging membranes. Journal of Membrane Science, 660: 120869
CrossRef
Google scholar
|
[221] |
Zhao H B, Wang K, Fang Y F, Ma J C, Mei D F, Zheng C G. (2014). Characterization of natural copper ore as oxygen carrier in chemical-looping with oxygen uncoupling of anthracite. International Journal of Greenhouse Gas Control, 22: 154–164
CrossRef
Google scholar
|
[222] |
Zhao Y Y, Wang J H, Ji Z Y, Liu J, Guo X F, Yuan J S. (2020). A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer. Chemical Engineering Journal, 381: 122542
CrossRef
Google scholar
|
[223] |
Zhao Z Q, Zhang H, Jiao C, Wang Q F, Lin X L. (2021). Review on global CCUS technology and application. Modern Chemical Industry, 41(4): 5–10
|
[224] |
Zheng B, Ciais P, Chevallier F, Yang H, Canadell J G, Chen Y, Van Der Velde I R, Aben I, Chuvieco E, Davis S J.
CrossRef
Google scholar
|
[225] |
Zheng Q W, Huang L, Zhong Z Y, Louis B, Wang Q. (2020). Development of KNaTiO3 as a novel high-temperature CO2 capturing material with fast sorption rate and high reversible sorption capacity. Chemical Engineering Journal, 380: 122444
CrossRef
Google scholar
|
[226] |
Zhou X B, Li X L, Wei J W, Fan Y M, Liao L, Wang H Q. (2020). Novel nonaqueous liquid-liquid biphasic solvent for energy-efficient carbon dioxide capture with low corrosivity. Environmental Science & Technology, 54(24): 16138–16146
CrossRef
Google scholar
|
[227] |
Zhou X B, Liu C, Zhang J, Fan Y M, Zhu Y N, Zhang L H, Tang S, Mo S P, Zhu H X, Zhu Z Q. (2023). Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator. Energy, 270: 126930
CrossRef
Google scholar
|
[228] |
Zhou Y, Zhang J L, Wang L, Cui X L, Liu X L, Wong S S, An H, Yan N, Xie J Y, Yu C.
CrossRef
Google scholar
|
[229] |
Zhu P, Wu Z Y, Elgazzar A, Dong C X, Wi T U, Chen F Y, Xia Y, Feng Y G, Shakouri M, Kim J Y.
CrossRef
Google scholar
|
/
〈 | 〉 |