Needs and challenges of optical atmospheric monitoring on the background of carbon neutrality in China

Wenqing Liu, Chengzhi Xing

PDF(2047 KB)
PDF(2047 KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (6) : 73. DOI: 10.1007/s11783-024-1833-2
REVIEW ARTICLE

Needs and challenges of optical atmospheric monitoring on the background of carbon neutrality in China

Author information +
History +

Highlights

● A system of environmental optical monitoring technology has been established.

● New optical monitoring techniques and stereoscopic system should be established.

● The focus on interdisciplinarity should be increased.

● Pay more attention on greenhouse gases monitoring and atmospheric chemistry.

Abstract

The achievement of the targets of coordinated control of PM2.5 and O3 and the carbon peaking and carbon neutrality depend on the development of pollution and greenhouse gas monitoring technologies. Optical monitoring technology, based on its technical characteristics of high scalability, high sensitivity and wide-targets detection, has obvious advantages in pollution/greenhouse gases monitoring and has become an important direction in the development of environmental monitoring technology. At present, a system of environmental optical monitoring technology with differential optical absorption spectroscopy (DOAS), cavity ring-down spectroscopy (CRDS), light detection and ranging (LIDAR), laser heterodyne spectroscopy (LHS), tunable diode laser absorption spectroscopy (TDLAS), fourier transform infrared spectroscopy (FTIR) and fluorescence assay by gas expansion (FAGE) as the main body has been established. However, with the promotion of “reduction of pollution and carbon emissions” strategy, there have been significant changes in the sources of pollution/greenhouse gases, emission components and emission concentrations, which have put forward new and higher requirements for the development of monitoring technologies. In the future, we should pay more attention to the development of new optical monitoring techniques and the construction of stereoscopic monitoring system, the interdisciplinarity (among mathematics, physics, chemistry and biology, etc.), and the monitoring of greenhouse gases and research on atmospheric chemistry.

Graphical abstract

Keywords

Pollution / Greenhouse gas / Optical atmospheric monitoring / Needs and challenges

Cite this article

Download citation ▾
Wenqing Liu, Chengzhi Xing. Needs and challenges of optical atmospheric monitoring on the background of carbon neutrality in China. Front. Environ. Sci. Eng., 2024, 18(6): 73 https://doi.org/10.1007/s11783-024-1833-2
Author Biography

Full size|PPT slide

Wenqing Liu, Professor, is the director of the academic committee of Hefei Institutes of Physical Science, Chinese Academy of Sciences, and the academic director of Anhui Institute of Optics and Fine Mechanics. He is also the vice chairman of Chinese Society for Environmental Sciences, the Vice Chairman of the Chinese Optical Society, and the Vice Chairman of China Instrument and Control Society. He is mainly engaged in the research of environmental monitoring technology and application, developed new methods of environmental optical monitoring, developed a series of environmental monitoring equipment and being industrialized, and integrated a comprehensive stereoscopic monitoring system for air pollutants. He developed a new field of environmental optical monitoring technology in China. His research achievements have won 3 times second prize of National Scientific and Technological Progress in 2007, 2011 and 2015, and 5 provincial and ministerial first-class scientific and technological awards. He was honored with the Anhui Province major scientific and technological achievement award in 2012, the science and technology achievement award by Ho Leung Ho Lee foundation in 2016, and the worker “National Advanced Worker” in 2020. He was elected as an academician of the Chinese Academy of Engineering in 2013

References

[1]
Agee M D, Atkinson S E, Crocker T D, Williams J W. (2014). Non-separable pollution control: implications for a CO2 emissions cap and trade system. Resource and Energy Economics, 36(1): 64–82
CrossRef Google scholar
[2]
Baars H, Kanitz T, Engelmann R, Althausen D, Heese B, Komppula M, Preißler J, Tesche M, Ansmann A, Wandinger U. . (2016). An overview of the first decade of PollyNET: an emerging network of qutomated Raman-polarization lidars for continuous aerosol profiling. Atmospheric Chemistry and Physics, 16(8): 5111–5137
CrossRef Google scholar
[3]
Beirle S, Dörner S, Donner S, Remmers J, Wang Y, Wagner T. (2019). The Mainz profile algorithm (MAPA). Atmospheric Measurement Techniques, 12(3): 1785–1806
CrossRef Google scholar
[4]
Bian Y, Lin J, Han H, Lin S, Li H, Chen X. (2023). Mitigation synergy and policy implications in urban transport sector: a case study of Xiamen, China. Environmental Research Letters, 18(8): 084030
CrossRef Google scholar
[5]
Bodor K, Szep R, Bodor Z. (2022). Time series analysis of the air pollution around Ploiesti oil refining complex, one of the most polluted regions in Romania. Scientific Reports, 12(1): 11817
CrossRef Google scholar
[6]
Boersma K F, Eskes H J, Veefkind J P, Brinksma E J, van der A R J, Sneep M, van den Oord G H J, Levelt P F, Stammes P, Gleason J F. . (2007). Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry and Physics, 7: 2103–2118
CrossRef Google scholar
[7]
Bösch T, Rozanov V, Richter A, Peters E, Rozanov A, Wittrock F, Merlaud A, Lampel J, Schmitt S, de Haij M. . (2018). BOREAS: a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases. Atmospheric Measurement Techniques, 11(12): 6833–6859
CrossRef Google scholar
[8]
Bottorff B, Reidy E, Mielke L, Dusanter S, Stevens P S. (2021). Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere. Atmospheric Measurement Techniques, 14(9): 6039–6056
CrossRef Google scholar
[9]
Brink C, Kroeze C, Klimont Z. (2001). Ammonia abatement and its impact on emissions of nitrous oxide and methane in Europe−Part 1: method. Atmospheric Environment, 35(36): 6299–6312
CrossRef Google scholar
[10]
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, DeBeek R, Hoogen R, Bramstedt K, Eichmann K U. . (1999). The global ozone monitoring experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151–175
CrossRef Google scholar
[11]
Bytnerowicz A, Omasa K, Paoletti E. (2007). Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environmental Pollution, 147(3): 438–445
CrossRef Google scholar
[12]
Chen J, Du Z, Sun T, Li J, Ma Y. (2019). Self-corrected frequency modulation spectroscopy immune to phase random and light intensity fluctuation. Optics Express, 27(21): 30700–30709
CrossRef Google scholar
[13]
ChengX, Liu J, XuL, XuH, JinL, ShenX, Sun Y (2022). Quantitative analysis and source of trans-boundary gas pollution in industrial park. Spectroscopy and Spectral Analysis, 42: 3762–3769 (in Chinese)
[14]
ChengX, Liu J, XuL, XuH, JinL, XueM (2021). IR spectral inversion of methane concentration and emission rate in shale gas backflow. Spectroscopy and Spectral Analysis, 41: 3717–3721 (in Chinese)
[15]
De Smedt I, Theys N, Yu H, Danckaert T, Lerot C, Compernolle S, Van Roozendael M, Richter A, Hilboll A, Peters E. . (2018). Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmospheric Measurement Techniques, 11(4): 2395–2426
CrossRef Google scholar
[16]
Deng H, Li M, He Y, Xu Z, Yao L, Chen B, Yang C, Kan R. (2020). Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO2 column absorption measurements. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 230: 118071
CrossRef Google scholar
[17]
Deng H, Li R, Liu H, He Y, Yang C, Li X, Xu Z, Kan R. (2022). Optical amplification enables a huge sensitivity improvement to laser heterodyne radiometers for high-resolution measurements of atmospheric gases. Optics Letters, 47(17): 4335–4338
CrossRef Google scholar
[18]
Deng H, Yang C, Xu Z, Li M, Huang A, Yao L, Hu M, Chen B, He Y, Kan R. . (2021). Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column. Optics Express, 230: 118071
[19]
Deng Y, Xu L, Sheng X, Sun Y, Xu H, Xu H, Wu H. (2023). Vehicle-mounted solar occultation flux fourier transform infrared spectrometer and its remote sensing application. Sensors, 23(9): 4317
CrossRef Google scholar
[20]
Dong F, Yu B, Hadachin T, Dai Y, Wang Y, Zhang S, Long R. (2018). Drivers of carbon emission inventory change in China. Resources, Conservation and Recycling, 129: 187–201
CrossRef Google scholar
[21]
Feng Y, Ning M, Lei Y, Sun Y, Liu W, Wang J. (2019). Defending blue sky in China: effectiveness of the “Air Pollution Prevention and control Action Plan” on air quality improvements from 2013 to 2017. Journal of Environmental Management, 252: 109603
CrossRef Google scholar
[22]
FujinawaT, Kuze A, SutoH, ShiomiK, KanayaY, KawashimaT, Kataoka F, MoriS, EskesH, Tanimoto H. First concurrent observations of NO2 and CO2 from power plant plumes by airborne remote sensing. Geophysical Research Letters, 2021, 48, e2021GL092685
[23]
Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hidalgo S. (2010). Network for observation of volcanic and atmospheric change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. Journal of Geophysical Research, 115(D5): 2009JD011823
CrossRef Google scholar
[24]
Gao S, Wang S, Gu C, Zhu J, Zhang R, Guo Y, Yan Y, Zhou B. (2021). Study on the measurement of isoprene by differential optical absorption spectroscopy. Atmospheric Measurement Techniques, 14(4): 2649–2657
CrossRef Google scholar
[25]
Gebhardt C, Rozanov A, Hommel R, Weber M, Bovensmann H, Burrows J P, Degenstein D, Froidevaux L, Thompson A M. (2014). Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012. Atmospheric Chemistry and Physics, 14(2): 831–846
CrossRef Google scholar
[26]
Hong Q, Zhu L, Xing C, Hu Q, Lin H, Zhang C, Zhao C, Liu T, Su W, Liu C. (2022a). Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China. Science of the Total Environment, 827: 154045
CrossRef Google scholar
[27]
Hong X, Liu C, Zhang C, Tian Y, Wu H, Yin H, Zhu Y, Cheng Y. (2023a). Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO2: a case study for megafires in the Australian ‘black summer’. Science of the Total Environment, 866: 161387
CrossRef Google scholar
[28]
Hong X, Zhang C, Tian Y, Wu H, Zhu Y, Liu C. (2023b). Quantification and evaluation of atmospheric emissions from crop residue burning constrained by satellite observations in China during 2016–2020. Science of the Total Environment, 865: 161237
CrossRef Google scholar
[29]
Hong X, Zhang P, Bi Y, Liu C, Sun Y, Wang W, Chen Z, Yin H, Zhang C, Tian Y. . (2022a). Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 60: 1–16
CrossRef Google scholar
[30]
Hu M, Chen B, Yao L, Yang C, Chen X, Kan R. (2021b). A fiber-integrated CRDS sensor for in-situ measurement of dissolved carbon dioxide in seawater. Sensors, 21(19): 6436
CrossRef Google scholar
[31]
Hu Y, Xu L, Shen X, Jin L, Xu H, Deng Y, Liu J, Liu W. (2021a). Reconstruction of a leaking gas cloud from a passive FTIR scanning remote-sensing imaging system. Applied Optics, 60(30): 9396–9403
CrossRef Google scholar
[32]
Hu Y, Xu L, Xu H, Shen X, Deng Y, Xu H, Liu J, Liu W. (2022). Three-dimensional reconstruction of a leaking gas cloud based on two scanning FTIR remote-sensing imaging systems. Optics Express, 30(14): 25581–25596
CrossRef Google scholar
[33]
Ji X, Liu C, Wang Y, Hu Q, Lin H, Zhao F, Xing C, Tang G, Zhang J, Wagner T. (2023). Ozone profiles without blind area retrieved from MAX-DOAS measurements and comprehensive validation with multi-platform observations. Remote Sensing of Environment, 284: 113339
CrossRef Google scholar
[34]
Jiang J, Ye B, Liu J. (2019). Peak of CO2 emissions in various sectors and provinces of China: recent progress and avenues for further research. Renewable & Sustainable Energy Reviews, 112: 813–833
CrossRef Google scholar
[35]
Jiang X, Li G, Fu W. (2021). Government environmental governance, structural adjustment and air quality: a quasi-natural experiment based on the Three-Year Action Plan to Win the Blue Sky Defense War. Journal of Environmental Management, 277: 111470
CrossRef Google scholar
[36]
Kanaya Y, Irie H, Takashima H, Iwabuchi H, Akimoto H, Sudo K, Gu M, Chong J, Kim Y J, Lee H. . (2014). Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations. Atmospheric Chemistry and Physics, 14(15): 7909–7927
CrossRef Google scholar
[37]
Kou X, Zhou B, Liu X, Chen H, Zhang M, Liu P. (2018). Measurement of trace NH3 concentration in atmosphere by cavity ring-down spectroscopy. Acta Optica Sinica, 38: 361–370
[38]
Kukui A, Ancellet G, Le Bras G. (2008). Chemical ionisation mass spectrometer for measurements of OH and Peroxy radical concentrations in moderately polluted atmospheres. Journal of Atmospheric Chemistry, 61(2): 133–154
CrossRef Google scholar
[39]
Lan L, Ghasemifard H, Yuan Y, Hachinger S, Zhao X, Bhattacharjee S, Bi X, Bai Y, Menzel A, Chen J. (2020). Assessment of urban CO2 measurement and source attribution in Munich based on TDLAS-WMS and trajectory analysis. Atmosphere, 11(1): 58
CrossRef Google scholar
[40]
Li J, Xue Z, Shen F, Wang J, Li Y, Wang G, Liu K, Chen W, Gao X, Tan T. (2023c). Erbium-doped fiber amplifier (EDFA)-assisted laser heterodyne radiometer (LHR) working in the short-noise-dominated regime. Optics Letters, 48(20): 5229–5232
CrossRef Google scholar
[41]
Li L, Zhang D, Hu W, Yang Y, Zhang S, Yuan R, Lv P, Zhang W, Zhang Y, Zhang Y. (2023a). Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: a case study through atmospheric measurement and emission inventory. Science of the Total Environment, 865: 161235
CrossRef Google scholar
[42]
Li M, Chen B, Ruan J, Li X, Liu Y, Xu Z, He Y, Kan R. (2020b). On-line detection of carbon dioxide in large scale offshore by laser technology. Optics and Precision Engineering, 28(7): 1424–1432
CrossRef Google scholar
[43]
Li Q, Qian Y, Luo Y, Cao L, Zhou H, Yang T, Si F, Liu W. (2023b). Diffusion height and order of sulfur dioxide and bromine monoxide plumes from the Hunga Tonga-Hunga Ha’apai volcanic eruption. Remote Sensing, 15(6): 1534
CrossRef Google scholar
[44]
Li X, Fan X, He Y, Chen B, Yao L, Hu M, Kan R. (2019). Development of a compact tunable diode laser absorption spectroscopy based system for continuous measurements of dissolved carbon dioxide in seawater. Review of Scientific Instruments, 90(6): 065110
CrossRef Google scholar
[45]
Li X, Yuan F, Hu M, Chen B, He Y, Yang C, Shi L, Kan R. (2020a). Compact open-path sensor for fast measurements of CO2 and H2O using scanned-wavelength modulation spectroscopy with 1f-Phase Method. Sensors, 20(7): 1910
CrossRef Google scholar
[46]
Li Z, Hu R, Xie P, Chen H, Wu S, Wang F, Wang Y, Ling L, Liu J, Liu W. (2018a). Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO3 and N2O5. Optics Express, 26(10): A433–A49
CrossRef Google scholar
[47]
LiZ, HuR, XieP, WangH, LuK, WangD (2018b). Intercomparison of in situ CRDS and CEAS for measurements of atmospheric N2O5 in Beijing, China. Science of the Total Environment, 613–614: 131–139 10.1016/j.scitotenv.2017.08.302
[48]
Lin C, Hu R, Xie P, Lou S, Zhang G, Tong J, Liu J, Liu W. (2022b). Nocturnal atmospheric chemistry of NO3 and N2O5 over Changzhou in the Yangtze River Delta in China. Journal of Environmental Sciences (China), 114: 376–390
CrossRef Google scholar
[49]
Lin H, Liu C, Xing C, Hu Q, Hong Q, Liu H, Li Q, Tan W, Ji X, Wang Z. . (2020). Validation of water vapor vertical distributions retrieved from MAX-DOAS over Beijing, China. Remote Sensing, 12(19): 3193
CrossRef Google scholar
[50]
LinH, XingC, HongQ, Liu C, JiX, LiuT, LinJ, LuC, TanW, LiQ, et al. (2022a). Diagnosis of ozone formation sensitivities in different height layers via MAX-DOAS observations in Guangzhou. Journal of Geophysical Research–Atmospheres, , 127, e2022JD036803
[51]
Liu C, Hu Q, Zhang C, Xia C, Yin H, Su W, Wang X, Xu Y, Zhang Z. (2022a). First Chinese ultraviolet-visible hyperspectral satellite instrument implicating global air quality during the COVID-19 pandemic in early 2020. Light, Science & Applications, 11(1): 28
CrossRef Google scholar
[52]
Liu C, Xing C, Hu Q, Li Q, Liu H, Hong Q, Tan W, Ji X, Lin H, Lu C. . (2022). Ground-based hyperspectral stereoscopic remote sensing network: a promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering, 19: 71–83
CrossRef Google scholar
[53]
Liu C, Xing C, Hu Q, Wang S, Zhao S, Gao M. (2022b). Stereoscopic hyperspectral remote sensing of the atmospheric environment: innovation and prospects. Earth-Science Reviews, 226: 103958
CrossRef Google scholar
[54]
Liu P, Zhang T, Sun X, Fan G, Xiang Y, Fu Y, Dong Y. (2020). Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source. Optics Express, 28(9): 13786–13800
CrossRef Google scholar
[55]
Lu X, Qin M, Xie P, Duan J, Fang W, Liu W. (2022). Observation of ambient NO3 radicals by LP-DOAS at a rural site in North China Plain. Science of the Total Environment, 804: 149680
CrossRef Google scholar
[56]
Lv L, Liu W, Zhang T, Chen Z, Dong Y, Fan G, Xiang Y, Yao Y, Yang N, Chu B. . (2017). Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique. Atmospheric Environment, 164: 360–369
CrossRef Google scholar
[57]
Lv L, Xiang Y, Zhang T, Chai W, Liu W. (2020). Comprehensive study of regional haze in the North China Plain with synergistic measurement from multiple mobile vehicle-based lidars and a lidar network. Science of the Total Environment, 721: 137773
CrossRef Google scholar
[58]
Maji K J, Li V O C, Lam J C K. (2020). Effects of China’s current Air Pollution Prevention and Control Action Plan on air pollution patterns, health risks and mortalities in Beijing 2014–2018. Chemosphere, 260: 127572
CrossRef Google scholar
[59]
Marc M, Tobiszewski M, Zabiegala B, Guardia M. (2015). Current air quality analytics and monitoring: a review. Analytica Chimica Acta, 853: 116–126
CrossRef Google scholar
[60]
Marno D, Ernest C, Hens K, Javed U, Klimach T, Martinez M, Rudolf M, Lelieveld J, Harder H. (2020). Calibration of an airborne HOx instrument using the all pressure altitude-based calibrator for HOx experiment (APACHE). Atmospheric Measurement Techniques, 13: 2711–2731
CrossRef Google scholar
[61]
Monforti-FerrarioF, CrippaM, PisoniE (2024). Addressing the different paces of climate and air quality combustion emissions across the world. iScience, 27, 108686.
[62]
Monjardino J, Dias L, Fortes P, Tente H, Ferreira F, Seixas J. (2021). Carbon neutrality pathways effects on air pollutant emissions: the Portuguese case. Atmosphere, 12(3): 324
CrossRef Google scholar
[63]
Motlagh N H, Lagerspetz E, Nurmi P, Li X, Varjonen S, Mineraud J, Siekkinen M, Rebeiro-Hargrave A, Hussein T, Petaja T. . (2020). Toward massive scale air quality monitoring. IEEE Communications Magazine, 58(2): 54–59
CrossRef Google scholar
[64]
Nam K M, Waugh C J, Paltsev S, Reilly J M, Karplus V J. (2013). Carbon co-benefits of tighter SO2 and NOx regulations in China. Global Environmental Change, 23(6): 1648–1661
CrossRef Google scholar
[65]
Nan J, Wang S, Guo Y, Xiang Y, Zhou B. (2017). Study on the daytime OH radical and implication for its relationship with fine particles over megacity of Shanghai China. Atmospheric Environment, 154: 167–178
CrossRef Google scholar
[66]
Prasad P, Raman M R, Ratnam M V, Ravikiran V, Madhavan B L, Bhaskara Rao S V. (2019). Nocturnal, seasonal and intra-annual variability of tropospheric aerosols observed using ground-based and space-borne lidars over a tropical location of India. Atmospheric Environment, 213: 185–198
CrossRef Google scholar
[67]
Qian Y, Luo Y, Dou K, Zhou H, Xi L, Yang T, Zhang T, Si F. (2023b). Retrieval of tropospheric ozone profiles using ground-based MAX-DOAS. Science of the Total Environment, 857: 159341
CrossRef Google scholar
[68]
Qian Y, Luo Y, Zhou H, Yang T, Xi L, Si F. (2023a). First retrieval of total ozone columns from EMI-2 using the DOAS method. Remote Sensing, 15(6): 1665
CrossRef Google scholar
[69]
Qu L, Liu J, Deng Y, Xu L, Hu K, Yang W, Jin L, Cheng X. (2019). Analysis and adjustment of positioning error of PSD system for mobile SOF-FTIR. Sensors, 19(23): 5081
CrossRef Google scholar
[70]
QuL, LiuJ, XuL, XuH, JinL, DengY, ShenX, Shu S (2021a). Vehicle exhaust detection method based on portable FTIR. Spectroscopy and Spectral Analysis, 41: 1751–1757 (in Chinese)
[71]
Qu L, Xu L, Liu J, Feng M, Liu W, Xu H, Jin L. (2021b). Numerical simulation analysis of portable high-speed FTIR rotary interferometers. Acta Optica Sinica, 41: 0907001
CrossRef Google scholar
[72]
Ren B, Xie P, Xu J, Li A, Tian X, Hu Z, Huang Y, Li X, Zhang Q, Ren H. . (2021). Use of the PSCF method to analyze the variations of potential sources and transports of NO2, SO2, and HCHO observed by MAX-DOAS in Nanjing, China during 2019. Science of the Total Environment, 782: 146865
CrossRef Google scholar
[73]
RichterA, Adukpo D, FietkauS, HeckelA, Ladstätter-Weißenmayer A, LöweA, MedekeT, OetjenH, WittrockF, Burrows J P (2002). SCIAMACHY validation using ground-based DOAS measurements of the university of Bremen BREDOM network. In: Proceedings of the ENVISAT Validation Workshop; 2002 Dec 9–13; Frascati, Italy. Frascati: ESRIN
[74]
Rodin A, Klimchuk A, Nadezhdinskiy A, Churbanov D, Spiridonov D. (2014). High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption. Optics Express, 22(11): 13825–13834
CrossRef Google scholar
[75]
Shi T, Han G, Ma X, Pei Z, Chen W, Liu J, Zhang X, Li S, Gong W. (2023). Quantifying strong point sources emissions of CO2 using spaceborne LiDAR: method development and potential analysis. Energy Conversion and Management, 292: 117346
CrossRef Google scholar
[76]
Song C, Wu L, Xie Y, He J, Chen X, Wang T, Lin Y, Jin T, Wang A, Liu Y. . (2017). Air pollution in China: status and spatiotemporal variations. Environmental Pollution, 227: 334–347
CrossRef Google scholar
[77]
Song Y, Xing C, Liu C, Lin J, Wu H, Liu T, Lin H, Zhang C, Tan W, Ji X. . (2023). Evaluation of transport processes over North China Plain and Yangtze River Delta using MAX-DOAS observations. Atmospheric Chemistry and Physics, 23(3): 1803–1824
CrossRef Google scholar
[78]
Su W, Liu C, Chan K L, Hu Q, Liu H, Ji X, Zhu Y, Liu T, Zhang C, Chen Y. . (2020). An improved TROPOMI tropospheric HCHO retrieval over China. Atmospheric Measurement Techniques, 13(11): 6271–6292
CrossRef Google scholar
[79]
Su W, Liu C, Hu Q, Zhang C, Liu H, Xia C, Zhao F, Liu T, Lin J, Chen Y. (2022a). First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: locating source of volatile organic compounds. Environmental Pollution, 297: 118691
CrossRef Google scholar
[80]
Sugimoto N, Nishizawa T, Shimizu A, Matsui I, Jin Y. (2014). Characterization of aerosols in east Asia with the Asian dust and aerosol lidar observation network (AD-Net). Lidar remote sensing for environmental monitoring XIV. SPIE, 9262: 74–82
[81]
Sun Y, Frankenberg C, Wood J D, Schimel D S, Jung M, Guanter L, Drewry D T, Verma M, Porcar-Castell A, Griffis T J. . (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358(6360): eaam5747
CrossRef Google scholar
[82]
Sun Z, Wang S, Yan Y, Zhu J, Tang G, Gao W, Dai W, Zhou B. (2023). Observationally constrained modelling of NO3 radical in different altitudes: implication to vertically resolved nocturnal chemistry. Atmospheric Research, 286: 106674
CrossRef Google scholar
[83]
TanT, CaoZ, WangG, Wang L, LiuK, HuangY, ChenW, GaoX (2015). Study on the technology of the 4.4 μm mid-infrared laser heterodyne spectrum. Spectroscopy and Spectral Analysis, 35: 1516–1519 (in Chinese)
[84]
Thompson T M, Rausch S, Saari R K, Selin N E. (2014). A systems approach to evaluating the air quality co-benefits of US carbon policies. Nature Climate Change, 4(10): 917–923
CrossRef Google scholar
[85]
Tian X, Wang Z, Xie P, Xu J, Li A, Pan Y, Hu F, Hu Z, Chen M, Zheng J. (2024). A CNN-SVR model for NO2 profile prediction based on MAX-DOAS observations: the influence of Chinese New Year overlapping the 2020 COVID-19 lockdown on vertical distributions of tropospheric NO2 in Nanjing, China. Journal of Environmental Sciences (China), 141: 151–165
CrossRef Google scholar
[86]
ToonG, Blavier J-F, WashenfelderR, WunchD, Keppel-Aleks G, WennbergP, ConnorB, Sherlock V, GriffithD, DeutscherN, et al. (2009). Total column carbon observing network (TCCON). Hyperspectral Imaging and Sensing of the Environment. Washington, DC: Optica Publishing Group
[87]
VlemmixT, Piters A J M, BerkhoutA J C, GastL F L, WangP, LeveltP F (2011). Ability of the MAX-DOAS method to derive profile information for NO2: Can the boundary layer and free troposphere be separated? Atmospheric Measurement Techniques, 4(12): 2659–2684 10.5194/amt-4-2659-2011
[88]
Wang C, Qiao J, Song Y, Yang Q, Wang D, Zhang Q, Shu Z, Xiong Q. (2022). In situ quantification of NO synthesis in a warm air glow discharge by WMS-based Mid-IR QCL absorption spectroscopy. Plasma Science & Technology, 24(4): 045503
CrossRef Google scholar
[89]
Wang F, Hu R, Chen H, Xie P, Wang Y, Li Z, Jin H, Liu J, Liu W. (2019). Development of a field system for measurement of tropospheric OH radical using laser-induced fluorescence technique. Optics Express, 27(8): A419–A435
CrossRef Google scholar
[90]
Wang H, Zhou J, Li X, Ling Q, Wei H, Gao L, He Y, Zhu M, Xiao X, Liu Y. . (2023). Review on recent progress in on-line monitoring technology for atmospheric pollution source emissions in China. Journal of Environmental Sciences (China), 123: 367–386
CrossRef Google scholar
[91]
Wang X, Zhang T, Xiang Y, Lv L, Fan G, Ou J. (2021c). Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network. Science of the Total Environment, 751: 141740
CrossRef Google scholar
[92]
Wang Y, Guo C, Chen X, Jia L, Guo X, Chen R, Zhang M, Chen Z, Wang H. (2021a). Carbon peak and carbon neutrality in China: goals, implementation path and prospects. China Geology, 4(0): 720–746
CrossRef Google scholar
[93]
Wang Y, Hu R, Xie P, Chen H, Wang F, Liu X, Liu J, Liu W. (2021d). Measurement of tropospheric HO2 radical using fluorescence assay by gas expansion with low interferences. Journal of Environmental Sciences (China), 99: 40–50
CrossRef Google scholar
[94]
WangY, Liu J, XuL, LiuW, SongQ, JinL, XuH (2021b). Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 70(7): 073201 (in Chinese) 10.7498/aps.70.20201672
[95]
Weidmann D, Hoffmann A, Macleod N, Middleton K, Kurtz J, Barraclough S, Griffin D. (2017). The methane isotopologues by solar occultation (MISO) nanosatellite mission: spectral channel optimization and early performance analysis. Remote Sensing, 9(10): 1073
CrossRef Google scholar
[96]
Weidmann D, Perrett B J, Macleod N A, Jenkins R M. (2011). Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry. Optics Express, 19(10): 9074–9085
CrossRef Google scholar
[97]
Welton E J, Stewart S A, Lewis J R, Belcher L R, Campbell J R, Lolli S. (2018). Status of the NASA micro pulse lidar network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL. EPJ Web of Conferences, 176: 09003
CrossRef Google scholar
[98]
Wilson E L, DiGregorio A J, Riot V J, Ammons M S, Bruner W W, Carter D, Mao J, Ramanathan A, Strahan S E, Oma L D. . (2017). 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat. Measurement Science & Technology, 28(3): 035902
CrossRef Google scholar
[99]
Wong C N, Hall L J. (1985). Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection. Journal of the Optical Society of America. B, Optical Physics, 2(9): 1527–1533
CrossRef Google scholar
[100]
Xi L, Si F, Jiang Y, Zhou H, Zhan K, Chang Z, Qiu X, Yang D. (2021). First high-resolution tropospheric NO2 observations from the ultraviolet visible hyperspectral imaging spectrometer (UVHIS). Atmospheric Measurement Techniques, 14(1): 435–454
CrossRef Google scholar
[101]
Xia C, Liu C, Cai Z, Duan X, Zhao F, Liu H, Ji X, Liu J. (2020). Evaluation of the accuracy of the Sentinel-5 precursor operational SO2 products over China. Science Bulletin, 65(20): 2106–2111
CrossRef Google scholar
[102]
Xia C, Liu C, Cai Z, Zhao F, Su W, Zhang C, Liu Y. (2021a). First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GaoFen-5 satellite. Science Bulletin, 66(10): 969–973
CrossRef Google scholar
[103]
Xiang Y, Zhang T, Ma C, Lv L, Liu J, Liu W, Cheng Y. (2021). Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain. Atmospheric Chemistry and Physics, 21(9): 7023–7037
CrossRef Google scholar
[104]
Xing C, Liu C, Hu Q, Fu Q, Lin H, Wang S, Su W, Wang W, Javed Z, Liu J. (2020). Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Science of the Total Environment, 715: 136258
CrossRef Google scholar
[105]
Xing C, Liu C, Li Q, Wang S, Tan W, Zou T, Wang Z, Lu C. (2024). Observations of HONO and its precursors between urban and its surrounding agricultural fields: the vertical transports, sources and contribution to OH. Science of the Total Environment, 915: 169159
CrossRef Google scholar
[106]
Xing C, Liu C, Wang S, Chan K L, Gao Y, Huang X, Su W, Zhang C, Dong Y, Fan G. . (2017). Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China. Atmospheric Chemistry and Physics, 17(23): 14275–14289
CrossRef Google scholar
[107]
Xing C, Liu C, Wang S, Hu Q, Liu H, Tan W, Zhang W, Li B, Liu J. (2019). A new method to determine the aerosol optical properties from multiple-wavelength O4 absorptions by MAX-DOAS observation. Atmospheric Measurement Techniques, 12(6): 3289–3302
CrossRef Google scholar
[108]
Xing C, Liu C, Wu H, Lin J, Wang F, Wang S, Gao M. (2021). Ground-based vertical profile observations of atmospheric composition on the Tibetan Plateau (2017–2019). Earth System Science Data, 13(10): 4897–4912
CrossRef Google scholar
[109]
Xing C, Xu S, Song Y, Liu C, Liu Y, Lu K, Tan W, Zhang C, Hu Q, Wang S. . (2023). A new insight into the vertical differences in NO2 heterogeneous reaction to produce HONO over inland and marginal seas. Atmospheric Chemistry and Physics, 23(10): 5815–5834
CrossRef Google scholar
[110]
XuB, YeX, ZhangY, Yang X, LiF (2020). Emission characteristics of VOCs from urban catering using portable FTIR technology. Journal of Atmospheric and Environmental Optics, 15: 357–364 (in Chinese)
[111]
XuL, LiuJ, GaoM, LuY, LiuW, WeiX, ZhuJ, ZhangT, ChenJ (2007a). Monitoring and analysis of CO2 and CH4 using long path FTIR spectroscopy over Beijing. Spectroscopy and Spectral Analysis, 27: 889–891 (in Chinese)
[112]
XuL, LiuJ, GaoM, LuY, WeiX, ZhangT, ZhuJ, ChenJ (2007b). Application of long open path FTIR system in ambient air monitoring. Spectroscopy and Spectral Analysis, 27: 448–451 (in Chinese)
[113]
Yan Y, Wang S, Zhu J, Guo Y, Tang G, Liu B, An X, Wang Y, Zhou B. (2021). Vertically increased NO3 radical in the nocturnal boundary layer. Science of the Total Environment, 763: 142969
CrossRef Google scholar
[114]
Yang X, Guo X, Wang Y. (2023). Characteristics of carbon emission transfer under carbon neutrality and carbon peaking background and the impact of environmental policies and regulations on it. Sustainability, 15(9): 7528
CrossRef Google scholar
[115]
Yuan F, Hu M, He Y, Chen B, Yao L, Xu Z, Kan R. (2020). Development of an in-situ analysis system for methane dissolved in seawater based on cavity ringdown spectroscopy. Review of Scientific Instruments, 91(8): 083106
CrossRef Google scholar
[116]
Zhang C, Liu C, Chan K L, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F. . (2020a). First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light, Science & Applications, 9(1): 66
CrossRef Google scholar
[117]
Zhang C, Liu C, Wang Y, Si F, Zhou H, Zhao M, Su W, Zhang W, Chan K L, Liu X. . (2018). Preflight evaluation of the performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3323–3332
CrossRef Google scholar
[118]
ZhangG, Hu R, XieP, HuC, LiuX, ZhongL, Cai H, ZhuB, XiaS, HuangX, et al. (2023). Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements. EGUsphere, 1–31
[119]
Zhang G, Hu R, Xie P, Lou S, Wang F, Wang Y, Qin M, Li X, Liu X, Wang Y. . (2022b). Observation and simulation of HOx radicals in an urban area in Shanghai, China. Science of the Total Environment, 810: 152275
CrossRef Google scholar
[120]
Zhang G, Hu R, Xie P, Lu K, Lou S, Liu X, Wang F, Wang Y, Yang X, Cai H. . (2022a). Intercomparison of OH radical measurement in a complex atmosphere in Chengdu, China. Science of the Total Environment, 838: 155924
CrossRef Google scholar
[121]
ZhangS, Wang S, XueR, ZhuJ, TanvirA, LiD, ZhouB (2022). Impact assessment of COVID-19 lockdown on vertical distributions of NO2 and HCHO from MAX-DOAS observations and machine learning models. Journal of Geophysical Research–Atmospheres, 127, e2021JD036377
[122]
Zhao F, Liu C, Cai Z, Liu X, Bak J, Kim J, Hu Q, Xia C, Zhang C, Sun Y. . (2021). Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China. Science of the Total Environment, 764: 142886
CrossRef Google scholar
[123]
ZhaoF, Liu C, HuQ, XiaC, ZhangC, SuW (2023). High spatial resolution ozone profiles retrieved from the first Chinese ultraviolet-visible hyperspectral satellite instrument. Engineering, in press, 10.1016/j.eng.2023.02.020
[124]
Zhao X, Ma X, Chen B, Shang Y, Song M. (2022). Challenges toward carbon neutrality in China: strategies and countermeasures. Resources, Conservation and Recycling, 176: 105959
CrossRef Google scholar
[125]
Zheng J, Mi Z, Coffman D, Milcheva S, Shan Y, Guan D, Wang S. (2019). Regional development and carbon emissions in China. Energy Economics, 81: 25–36
CrossRef Google scholar

Acknowledgements

The authors would like to acknowledge the financial supports for the work provided by the Strategic Research and Consulting Project of Chinese Academy of Engineering (Nos. 2023-XBZD-18, 2023-JB-05, and 2023-XZ-37).

Conflict of Interests

Wenqing Liu is an advisory board member of Frontiers of Environmental Science & Engineering. The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2024 The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(2047 KB)

Accesses

Citations

Detail

Sections
Recommended

/