Highly active copper-intercalated weakly crystallized δ-MnO2 for low-temperature oxidation of CO in dry and humid air
Hao Zhang, Huinan Li, Pengyi Zhang, Tingxia Hu, Xianjie Wang
Highly active copper-intercalated weakly crystallized δ-MnO2 for low-temperature oxidation of CO in dry and humid air
● Copper intercalated weakly crystallized δ-MnO2 was synthesized via one-pot process.
● Intercalated copper ions greatly enhanced the adsorption of CO.
● MnO2-150Cu achieved a 100% conversion of CO even at −10 °C under dry air.
● MnO2-150Cu exhibited a high CO oxidation capacity in an inert atmosphere at 30 °C.
● MnO2-150Cu maintained a 100% conversion of CO for 35 h at 70 °C in 1.3% moisture air.
Copper intercalated birnessite MnO2 (δ-MnO2) with weak crystallinity and high specific surface area (421 m2/g) was synthesized by a one-pot redox method and investigated for low-temperature CO oxidation. The molar ratio of Cu/Mn was as high as 0.37, which greatly weakened the Mn-O bond and created a lot of low-temperature active oxygen species. In situ DRIFTS revealed strong bonding of copper ions with CO. As-synthesized MnO2-150Cu achieved 100% conversion of 250 ppm CO in normal air (3.1 ppm H2O) even at −10 °C under the weight-hourly space velocity (WHSV) of 150 L/(g·h). In addition, it showed high oxygen storage capacity to oxidize CO in inert atmosphere. Though the concurrent moisture in air significantly inhibited CO adsorption and its conversion at ambient temperature, MnO2-150Cu could stably convert CO in 1.3% moisture air at 70 °C owing to its great low-temperature activity and reduced competitive adsorption of water with increased temperature. This study discovers the excellent low-temperature activity of weakly crystallized δ-MnO2 induced by high content intercalated copper ions.
CO oxidation / Birnessite / Interlayer copper / Low-temperature / Oxygen storage capacity
[1] |
Akbari E , Alavi S M , Rezaei M , Montazeri Z . (2023). AOx−MnOx (A = Ni, Cu, Fe, or Co) nanocatalysts fabricated by the mechanochemical preparation method for lean methane catalytic combustion assisted by a DBD plasma reactor. ACS Applied Nano Materials, 6: 16189–16200
CrossRef
Google scholar
|
[2] |
Bae J , Shin D , Jeong H , Kim B S , Han J W , Lee H . (2019). Highly water-resistant La-doped Co3O4 catalyst for CO oxidation. ACS Catalysis, 9(11): 10093–10100
CrossRef
Google scholar
|
[3] |
Bakhoum E G , Cheng M H M . (2013). Miniature carbon monoxide detector based on nanotechnology. IEEE Transactions on Instrumentation and Measurement, 62(1): 240–245
CrossRef
Google scholar
|
[4] |
Beniya A , Higashi S . (2019). Towards dense single-atom catalysts for future automotive applications. Nature Catalysis, 2: 590–602
CrossRef
Google scholar
|
[5] |
Biemelt T , Wegner K , Teichert J , Lohe M R , Martin J , Grothe J , Kaskel S . (2016). Hopcalite nanoparticle catalysts with high water vapour stability for catalytic oxidation of carbon monoxide. Applied Catalysis B: Environmental, 184: 208–215
CrossRef
Google scholar
|
[6] |
Buciuman F C , Patcas F , Hahn T . (1999). A spillover approach to oxidation catalysis over copper and manganese mixed oxides. Chemical Engineering and Processing, 38: 563–569
CrossRef
Google scholar
|
[7] |
Cao L , Liu W , Luo Q , Yin R , Wang B , Weissenrieder J , Soldemo M , Yan H , Lin Y , Sun Z .
CrossRef
Google scholar
|
[8] |
Cao R , Zhang P , Liu Y , Zheng X . (2019b). Ammonium-treated birnessite-type MnO2 to increase oxygen vacancies and surface acidity for stably decomposing ozone in humid condition. Applied Surface Science, 495: 143607
CrossRef
Google scholar
|
[9] |
Dey S , Dhal G C . (2019a). The catalytic activity of cobalt nanoparticles for low-temperature oxidation of carbon monoxide. Materials Today. Chemistry, 14: 100198
CrossRef
Google scholar
|
[10] |
Dey S , Dhal G C , Mohan D , Prasad R . (2019b). Ambient temperature complete oxidation of carbon monoxide using hopcalite catalysts for fire escape mask applications. Advanced Composites and Hybrid Materials, 2(3): 501–519
CrossRef
Google scholar
|
[11] |
Feng B , Shi M , Liu J , Han X , Lan Z , Gu H , Wang X , Sun H , Zhang Q , Li H .
CrossRef
Google scholar
|
[12] |
Gao J , Jia C , Zhang L , Wang H , Yang Y , Hung S F , Hsu Y Y , Liu B . (2016). Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. Journal of Catalysis, 341: 82–90
CrossRef
Google scholar
|
[13] |
Grabchenko M V , Mamontov G V , Zaikovskii V I , La Parola V , Liotta L F , Vodyankina O V . (2020). The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Applied Catalysis B: Environmental, 260: 118148
CrossRef
Google scholar
|
[14] |
Guo Y , Zhao C , Lin J , Li C , Lu S . (2017). Facile synthesis of supported copper manganese oxides catalysts for low temperature CO oxidation in confined spaces. Catalysis Communications, 99: 1–5
CrossRef
Google scholar
|
[15] |
Hu X , Chen J , Li S , Chen Y , Qu W , Ma Z , Tang X . (2019). The promotional effect of copper in catalytic oxidation by Cu-doped α-MnO2 nanorods. Journal of Physical Chemistry C, 124(1): 701–708
|
[16] |
Hutchings G J , Mirzaei A A , Joyner R W , Siddiqui M R H , Taylor S H . (1998). Effect of preparation conditions on the catalytic performance of copper manganese oxide catalysts for CO oxidation. Applied Catalysis A, General, 166: 143–152
CrossRef
Google scholar
|
[17] |
Kale M J , Gidcumb D , Gulian F J , Miller S P , Clark C H , Christopher P . (2017). Evaluation of platinum catalysts for naval submarine pollution control. Applied Catalysis B: Environmental, 203: 533–540
CrossRef
Google scholar
|
[18] |
Kanungo S B . (1979). Physicochemical properties of MnO2 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation. Journal of Catalysis, 58: 419–435
CrossRef
Google scholar
|
[19] |
Krämer M , Schmidt T , Stöwe K , Maier W F . (2006). Structural and catalytic aspects of sol–gel derived copper manganese oxides as low-temperature CO oxidation catalyst. Applied Catalysis A, General, 302(2): 257–263
CrossRef
Google scholar
|
[20] |
Kuo C H , Li W , Song W , Luo Z , Poyraz A S , Guo Y , Ma A W , Suib S L , He J . (2014). Facile synthesis of Co3O4@CNT with high catalytic activity for CO oxidation under moisture-rich conditions. ACS Applied Materials & Interfaces, 6(14): 11311–11317
|
[21] |
Li X , Pereira-Hernandez X I , Chen Y , Xu J , Zhao J , Pao C W , Fang C Y , Zeng J , Wang Y , Gates B C .
CrossRef
Google scholar
|
[22] |
Liu B , Wu H , Li S , Xu M , Cao Y , Li Y . (2022). Solid-state construction of CuOx/Cu1.5Mn1.5O4 nanocomposite with abundant surface CuOx species and oxygen vacancies to promote CO oxidation activity. International Journal of Molecular Sciences, 23(12): 6856
CrossRef
Google scholar
|
[23] |
Liu T , Yao Y , Wei L , Shi Z , Han L , Yuan H , Li B , Dong L , Wang F , Sun C . (2017). Preparation and evaluation of copper–manganese oxide as a high-efficiency catalyst for CO oxidation and NO reduction by CO. Journal of Physical Chemistry C, 121(23): 12757–12770
CrossRef
Google scholar
|
[24] |
Liu Y , Guo Y , Peng H , Xu X , Wu Y , Peng C , Zhang N , Wang X . (2016). Modifying hopcalite catalyst by SnO2 addition: an effective way to improve its moisture tolerance and activity for low temperature CO oxidation. Applied Catalysis A, General, 525: 204–214
CrossRef
Google scholar
|
[25] |
Lou Y , Ma J , Cao X , Wang L , Dai Q , Zhao Z , Cai Y , Zhan W , Guo Y , Hu P .
CrossRef
Google scholar
|
[26] |
Lu Y , Wang J , Yu L , Kovarik L , Zhang X , Hoffman A S , Gallo A , Bare S R , Sokaras D , Kroll T .
CrossRef
Google scholar
|
[27] |
Ma C , Yang C , Wang B , Chen C , Wang F , Yao X , Song M . (2019). Effects of H2O on HCHO and CO oxidation at room-temperature catalyzed by MCo2O4 (M=Mn, Ce and Cu) materials. Applied Catalysis B: Environmental, 254: 76–85
CrossRef
Google scholar
|
[28] |
Maga M , Janik M K , Wachsmann A , Chrzastek-Janik O , Koziej M , Bajkowski M , Maga P , Tyrak K , Wojcik K , Gregorczyk-Maga I .
CrossRef
Google scholar
|
[29] |
May Y A , Wei S , Yu W Z , Wang W W , Jia C J . (2020). Highly efficient CuO/α-MnO2 catalyst for low-temperature CO oxidation. Langmuir, 36(38): 11196–11206
CrossRef
Google scholar
|
[30] |
Mobini S , Meshkani F , Rezaei M . (2017). Surfactant-assisted hydrothermal synthesis of CuCr2O4 spinel catalyst and its application in CO oxidation process. Journal of Environmental Chemical Engineering, 5: 4906–4916
CrossRef
Google scholar
|
[31] |
Nie L , Mei D , Xiong H , Peng B , Ren Z , Hernandez X , DeLaRiva A , Wang M , Engelhard M , Kovarik L .
CrossRef
Google scholar
|
[32] |
Njagi E C , Chen C H , Genuino H , Galindo H , Huang H , Suib S L . (2010). Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method. Applied Catalysis B: Environmental, 99(1–2): 103–110
|
[33] |
Qian K , Qian Z , Hua Q , Jiang Z , Huang W . (2013). Structure–activity relationship of CuO/MnO2 catalysts in CO oxidation. Applied Surface Science, 273: 357–363
CrossRef
Google scholar
|
[34] |
Qiao B , Liu J , Wang Y G , Lin Q , Liu X , Wang A , Li J , Zhang T , Liu J . (2015). Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts. ACS Catalysis, 5(11): 6249–6254
CrossRef
Google scholar
|
[35] |
Qiao B , Wang A , Yang X , Allard L F , Jiang Z , Cui Y , Liu J , Li J , Zhang T . (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8): 634–641
CrossRef
Google scholar
|
[36] |
Rong S , Li K , Zhang P , Liu F , Zhang J . (2018). Potassium associated manganese vacancy in birnessite-type manganese dioxide for airborne formaldehyde oxidation. Catalysis Science & Technology, 8(7): 1799–1812
|
[37] |
Saavedra J , Doan H A , Pursell C J , Grabow L C , Chandler B D . (2014). The critical role of water at the gold-Titania interface in catalytic CO oxidation. Science, 345: 1599–1602
CrossRef
Google scholar
|
[38] |
Sheng H , Zhang H , Song W , Ji H , Ma W , Chen C , Zhao J . (2015). Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: an in situ IR spectroscopy study. Angewandte Chemie International Edition, 54(20): 5905–5909
CrossRef
Google scholar
|
[39] |
Song W , Poyraz A S , Meng Y , Ren Z , Chen S Y , Suib S L . (2014). Mesoporous Co3O4 with controlled porosity: Inverse micelle synthesis and high-performance catalytic CO oxidation at −60 °C. Chemistry of Materials, 26(15): 4629–4639
CrossRef
Google scholar
|
[40] |
Tian F X , Li H , Zhu M , Tu W , Lin D , Han Y F . (2022). Effect of MnO2 polymorphs’ structure on low-temperature catalytic oxidation: crystalline controlled oxygen vacancy formation. ACS Applied Materials & Interfaces, 14(16): 18525–18538
|
[41] |
Wang J , Li J , Zhang P , Zhang G . (2018a). Understanding the “seesaw effect” of interlayered K+ with different structure in manganese oxides for the enhanced formaldehyde oxidation. Applied Catalysis B: Environmental, 224: 863–870
CrossRef
Google scholar
|
[42] |
Wang W W , Yu W Z , Du P P , Xu H , Jin Z , Si R , Ma C , Shi S , Jia C J , Yan C H . (2017). Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: importance of metal–support interaction. ACS Catalysis, 7(2): 1313–1329
CrossRef
Google scholar
|
[43] |
Wang X , Huo W , Xu Y , Guo Y , Jia Y . (2018b). Modified hierarchical birnessite-type manganese oxide nanomaterials for CO catalytic oxidation. New Journal of Chemistry, 42(16): 13803–13812
CrossRef
Google scholar
|
[44] |
Wu C H , Liu C , Su D , Xin H L , Fang H T , Eren B , Zhang S , Murray C B , Salmeron M B . (2018). Bimetallic synergy in cobalt–palladium nanocatalysts for CO oxidation. Nature Catalysis, 2(1): 78–85
CrossRef
Google scholar
|
[45] |
Xu L , Pan Y , Li H , Xu R , Sun Z . (2023). Highly active and water-resistant Lanthanum-doped platinum-cobalt oxide catalysts for CO oxidation. Applied Catalysis B: Environmental, 331: 122678
CrossRef
Google scholar
|
[46] |
Yang W , Wang Y , Yang W , Liu H , Li Z , Peng Y , Li J . (2021). Surface in situ doping modification over Mn2O3 for toluene and propene catalytic oxidation: the effect of isolated Cuδ+ insertion into the mezzanine of surface MnO2 cladding. ACS Applied Materials & Interfaces, 13(2): 2753–2764
|
[47] |
Zhang H , Sui S , Zheng X , Cao R , Zhang P . (2019). One-pot synthesis of atomically dispersed Pt on MnO2 for efficient catalytic decomposition of toluene at low temperatures. Applied Catalysis B: Environmental, 257: 117878
CrossRef
Google scholar
|
[48] |
Zhang J , Qin X , Chu X , Chen M , Chen X , Chen J , He H , Zhang C . (2021). Tuning metal-support interaction of Pt-CeO2 catalysts for enhanced oxidation reactivity. Environmental Science & Technology, 55(24): 16687–16698
|
[49] |
Zhang Z R , Zhang C H , Liu H , Bin F , Wei X L , Kang R N , Wu S H , Yang W M , Xu H P . (2023). Self-sustained catalytic combustion of CO enhanced by micro fluidized bed: stability operation, fluidization state and CFD simulation. Frontiers of Environmental Science & Engineering, 17(9): 109
|
/
〈 | 〉 |