Electroactivity of the magnetotactic bacteria Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1
Mathias Fessler, Qingxian Su, Marlene Mark Jensen, Yifeng Zhang
Electroactivity of the magnetotactic bacteria Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1
● The first study of electrochemically active magnetotactic bacteria.
● Two magnetotactic species are able to generate current in microbial fuel cells.
● Electron shuttle resazurin enables both species to reduce the crystalline Fe2O3.
● M. magneticum can reduce poorly crystalline iron oxide (FeOOH).
● Electroactivity might be common for magnetotactic bacteria.
Magnetotactic bacteria reside in sediments and stratified water columns. They are named after their ability to synthesize internal magnetic particles that allow them to align and swim along the Earth’s magnetic field lines. Here, we show that two magnetotactic species, Magnetospirillum magneticum strain AMB-1 and Magnetospirillum gryphiswaldense strain MSR-1, are electroactive. Both M. magneticum and M. gryphiswaldense were able to generate current in microbial fuel cells with maximum power densities of 27 and 11 µW/m2, respectively. In the presence of the electron shuttle resazurin both species were able to reduce the crystalline iron oxide hematite (Fe2O3). In addition, M. magneticum could reduce poorly crystalline iron oxide (FeOOH). Our study adds M. magneticum and M. gryphiswaldense to the growing list of known electroactive bacteria, and implies that electroactivity might be common for bacteria within the Magnetospirillum genus.
Magnetotactic bacteria / Magnetospirillum magneticum / Magnetospirillum gryphiswaldense / Extracellular electron transfer / Microbial fuel cells
[1] |
Amor M, Mathon F P, Monteil C L, Busigny V, Lefevre C T. (2020). Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples. Environmental Microbiology, 22(9): 3611–3632
CrossRef
Google scholar
|
[2] |
Coursolle D, Baron D B, Bond D R, Gralnick J A. (2010). The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of Bacteriology, 192(2): 467–474
CrossRef
Google scholar
|
[3] |
Fathey R, Gomaa O M, Ali A E H, El Kareem H A, Zaid M A. (2016). Neutral red as a mediator for the enhancement of electricity production using a domestic wastewater double chamber microbial fuel cell. Annals of Microbiology, 66(2): 695–702
CrossRef
Google scholar
|
[4] |
Fernando E Y, Keshavarz T, Kyazze G. (2019). The use of bioelectrochemical systems in environmental remediation of xenobiotics: a review. Journal of Chemical Technology and Biotechnology, 94(7): 2070–2080
CrossRef
Google scholar
|
[5] |
Fessler M, Madsen J S, Zhang Y. (2022). Microbial interactions in electroactive biofilms for environmental engineering applications: a role for nonexoelectrogens. Environmental Science & Technology, 56(22): 15273–15279
CrossRef
Google scholar
|
[6] |
Fessler M, Madsen J S, Zhang Y. (2023). Conjugative plasmids inhibit extracellular electron transfer in Geobacter sulfurreducens. Frontiers in Microbiology, 14: 1150091
CrossRef
Google scholar
|
[7] |
Filman D J, Marino S F, Ward J E, Yang L, Mester Z, Bullitt E, Lovley D R, Strauss M. (2019). Cryo-EM reveals the structural basis of long-range electron transport in a cytochrome-based bacterial nanowire. Communications Biology, 2(1): 219
CrossRef
Google scholar
|
[8] |
Glasser N R, Saunders S H, Newman D K. (2017). The colorful world of extracellular electron shuttles. Annual Review of Microbiology, 71(1): 731–751
CrossRef
Google scholar
|
[9] |
Gu Y, Srikanth V, Salazar-Morales A I, Jain R, O’Brien J P, Yi S M, Soni R K, Samatey F A, Yalcin S E, Malvankar N S. (2021). Structure of Geobacter pili reveals secretory rather than nanowire behaviour. Nature, 597(7876): 430–434
CrossRef
Google scholar
|
[10] |
Hirose A, Kasai T, Aoki M, Umemura T, Watanabe K, Kouzuma A. (2018). Electrochemically active bacteria sense electrode potentials for regulating catabolic pathways. Nature Communications, 9(1): 1083
CrossRef
Google scholar
|
[11] |
Holmes D E, Dang Y, Walker D J F, Lovley D R. (2016). The electrically conductive pili of Geobacter species are a recently evolved feature for extracellular electron transfer. Microbial Genomics, 2(8): e000072
CrossRef
Google scholar
|
[12] |
Jiang Z, Liu Q, Dekkers M J, Barron V, Torrent J, Roberts A P. (2016). Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite. Scientific Reports, 6(1): 30395
CrossRef
Google scholar
|
[13] |
KochC, Harnisch F (2016). Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem, 3(9): 1282–1295 10.1002/celc.201600079
|
[14] |
Lanas V, Logan B E. (2013). Evaluation of multi-brush anode systems in microbial fuel cells. Bioresource Technology, 148: 379–385
CrossRef
Google scholar
|
[15] |
Le NagardL, Morillo-López V, FradinC, BazylinskiD A (2018). Growing magnetotactic bacteria of the genus magnetospirillum: strains MSR-1, AMB-1 and MS-1. Journal of Visualized Experiments: JoVE
|
[16] |
Lefèvre C T, Bennet M, Landau L, Vach P, Pignol D, Bazylinski D A, Frankel R B, Klumpp S, Faivre D. (2014). Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophysical Journal, 107(2): 527–538
CrossRef
Google scholar
|
[17] |
LevarC E, Hoffman C L, DunsheeA J, TonerB M, BondD R (2017). Redox potential as a master variable controlling pathways of metal reduction by Geobacter sulfurreducens. bioRxiv 043059; doi: https://doi.org/10.1101/043059
|
[18] |
Li M, Yu X L, Li Y W, Han W, Yu P F, Lun Yeung K, Mo C H, Zhou S Q. (2022). Investigating the electron shuttling characteristics of resazurin in enhancing bio-electricity generation in microbial fuel cell. Chemical Engineering Journal, 428: 130924
CrossRef
Google scholar
|
[19] |
LiS L,Wang Y J,Chen Y C, Liu S M,Yu C P (2019). Chemical characteristics of electron shuttles affect extracellular electron transfer: shewanella decolorationis NTOU1 simultaneously exploiting acetate and mediators. Frontiers in Microbiology, 10.
|
[20] |
Lin W, Zhang W, Zhao X, Roberts A P, Paterson G A, Bazylinski D A, Pan Y. (2018). Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME Journal, 12(6): 1508–1519
CrossRef
Google scholar
|
[21] |
Logan B E, Rossi R, Ragab A, Saikaly P E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews. Microbiology, 17(5): 307–319
CrossRef
Google scholar
|
[22] |
Lovley D R, Phillips E J. (1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology, 51(4): 683–689
CrossRef
Google scholar
|
[23] |
Lovley D R, Walker D J F. (2019). Geobacter protein nanowires. Frontiers in Microbiology, 10: 2078
CrossRef
Google scholar
|
[24] |
Marsili E, Baron D B, Shikhare I D, Coursolle D, Gralnick J A, Bond D R. (2008). Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America, 105(10): 3968–3973
CrossRef
Google scholar
|
[25] |
Matsunaga T, Okamura Y, Fukuda Y, Wahyudi A T, Murase Y, Takeyama H. (2005). Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA research: an international journal for rapid publication of reports on genes and genomes, 12: 157–166
CrossRef
Google scholar
|
[26] |
Matsunaga T, Sakaguchi T, Tadakoro F. (1991). Magnetite formation by a magnetic bacterium capable of growing aerobically. Applied Microbiology and Biotechnology, 35(5): 651–655
CrossRef
Google scholar
|
[27] |
Moisescu C, Ardelean I, Benning L. (2014). The effect and role of environmental conditions on magnetosome synthesis. Frontiers in Microbiology, 5(49): 1–12
CrossRef
Google scholar
|
[28] |
Reguera G, McCarthy K D, Mehta T, Nicoll J S, Tuominen M T, Lovley D R. (2005). Extracellular electron transfer via microbial nanowires. Nature, 435(7045): 1098–1101
CrossRef
Google scholar
|
[29] |
Schüler D, Köhler M. (1992). The isolation of a new magnetic spirillum. Zentralblatt für Mikrobiologie, 147(1–2): 150–151
CrossRef
Google scholar
|
[30] |
Smit B A, Van Zyl E, Joubert J J, Meyer W, Prévéral S, Lefèvre C T, Venter S N. (2018). Magnetotactic bacteria used to generate electricity based on Faraday’s law of electromagnetic induction. Letters in Applied Microbiology, 66(5): 362–367
CrossRef
Google scholar
|
[31] |
Straub K L, Benz M, Schink B. (2001). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiology Ecology, 34(3): 181–186
CrossRef
Google scholar
|
[32] |
StookeyL L (1970). Ferrozine: a new spectrophotometric reagent for iron. Analytical Chemistry 42(7): 779–781. 10.1021/ac60289a016
|
[33] |
Su Q, Bazylinski D A, Jensen M M. (2023). Effect of oxic and anoxic conditions on intracellular storage of polyhydroxyalkanoate and polyphosphate in Magnetospirillum magneticum strain AMB-1. Frontiers in Microbiology, 14: 1203805
CrossRef
Google scholar
|
[34] |
Sun W, Lin Z, Yu Q, Cheng S, Gao H. (2021). Promoting extracellular electron transfer of Shewanella oneidensis MR-1 by optimizing the periplasmic cytochrome c network. Frontiers in Microbiology, 12: 727709
CrossRef
Google scholar
|
[35] |
Sund C J, McMasters S, Crittenden S R, Harrell L E, Sumner J J. (2007). Effect of electron mediators on current generation and fermentation in a microbial fuel cell. Applied Microbiology and Biotechnology, 76(3): 561–568
CrossRef
Google scholar
|
[36] |
Uebe R, Schüler D. (2016). Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews. Microbiology, 14(10): 621–637
CrossRef
Google scholar
|
[37] |
Voordeckers J W, Kim B C, Izallalen M, Lovley D R. (2010). Role of Geobacter sulfurreducens outer surface c-type cytochromes in reduction of soil humic acid and anthraquinone-2,6-disulfonate. Applied and Environmental Microbiology, 76(7): 2371–2375
CrossRef
Google scholar
|
[38] |
Wang H, Ren Z J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8): 1796–1807
CrossRef
Google scholar
|
[39] |
Wang X, Li Y, Zhao J, Yao H, Chu S, Song Z, He Z, Zhang W. (2020). Magnetotactic bacteria: characteristics and environmental applications. Frontiers of Environmental Science & Engineering, 14(4): 56
CrossRef
Google scholar
|
[40] |
Wessel A K, Arshad T A, Fitzpatrick M, Connell J L, Bonnecaze R T, Shear J B, Whiteley M. (2014). Oxygen limitation within a bacterial aggregate. mBio, 5(2): e00992–14
CrossRef
Google scholar
|
[41] |
Yalcin S E, O’Brien J P, Gu Y, Reiss K, Yi S M, Jain R, Srikanth V, Dahl P J, Huynh W, Vu D, Acharya A, Chaudhuri S, Varga T, Batista V S, Malvankar N S. (2020). Electric field stimulates production of highly conductive microbial OmcZ nanowires. Nature Chemical Biology, 16(10): 1136–1142
CrossRef
Google scholar
|
[42] |
Yamasaki R, Maeda T, Wood T K. (2018). Electron carriers increase electricity production in methane microbial fuel cells that reverse methanogenesis. Biotechnology for Biofuels, 11(1): 211
CrossRef
Google scholar
|
[43] |
YeeM OJoerg DAlfredSRotaruA E (2020). Cultivating electroactive microbes: from field to bench. Nanotechnology, 31(17), 174003
|
[44] |
Yu N Y, Laird M R, Spencer C, Brinkman F S L. (2011). PSORTdb: an expanded, auto-updated, user-friendly protein subcellular localization database for Bacteria and Archaea. Nucleic Acids Research, 39(Database): D241–D244
CrossRef
Google scholar
|
[45] |
Zou L, Zhu F, Long Z, Huang Y. (2021). Bacterial extracellular electron transfer: a powerful route to the green biosynthesis of inorganic nanomaterials for multifunctional applications. Journal of Nanobiotechnology, 19(1): 120
CrossRef
Google scholar
|
/
〈 | 〉 |