New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management
Zhiqiang Zuo , Min Zheng , Tao Liu , Yongzhen Peng , Zhiguo Yuan
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 26
New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management
● The historical development of free nitrous acid (FNA) technologies is reviewed. ● The roles of novel acid-tolerant ammonia oxidizers are highlighted. ● Acid-tolerant ammonia oxidizers can self-sustain high-level FNA production. ● The next-generation in situ FNA-based technologies are discussed.
The biocidal effects of free nitrous acid (FNA) have found applications in multiple units in an urban wastewater system, including sewer networks, wastewater treatment processes, and sludge treatment processes. However, these applications are associated with chemical costs as both nitrite and acid are needed to produce FNA at the required levels. The recent discovery of novel acid-tolerant ammonia oxidizers offers the possibility to produce FNA from domestic wastewater, enabling the development of next-generation FNA-based technologies capable of achieving self-sustaining FNA production. In this study, we focus on the concept of in situ FNA generation facilitated by acid-tolerant ammonia oxidizers and highlight the multiple benefits it creates, after a brief review of the historical development of FNA-based technologies. We will discuss how wastewater systems can be made more energy-efficient and sustainable by leveraging the potential of acid-tolerant ammonia oxidizers.
Free nitrous acid / Acid-tolerant ammonia oxidizer / In situ generation / Wastewater management
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
Zuo Z, Xing Y, Duan H, Ren D, Zheng M, Liu Y, Huang X (2023a). Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing. Water Research, 234: 119820 |
| [57] |
|
The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep. com.cn
/
| 〈 |
|
〉 |