New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management

Zhiqiang Zuo , Min Zheng , Tao Liu , Yongzhen Peng , Zhiguo Yuan

Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 26

PDF (2180KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 26 DOI: 10.1007/s11783-024-1786-5
PERSPECTIVES
PERSPECTIVES

New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management

Author information +
History +
PDF (2180KB)

Abstract

● The historical development of free nitrous acid (FNA) technologies is reviewed.

● The roles of novel acid-tolerant ammonia oxidizers are highlighted.

● Acid-tolerant ammonia oxidizers can self-sustain high-level FNA production.

● The next-generation in situ FNA-based technologies are discussed.

The biocidal effects of free nitrous acid (FNA) have found applications in multiple units in an urban wastewater system, including sewer networks, wastewater treatment processes, and sludge treatment processes. However, these applications are associated with chemical costs as both nitrite and acid are needed to produce FNA at the required levels. The recent discovery of novel acid-tolerant ammonia oxidizers offers the possibility to produce FNA from domestic wastewater, enabling the development of next-generation FNA-based technologies capable of achieving self-sustaining FNA production. In this study, we focus on the concept of in situ FNA generation facilitated by acid-tolerant ammonia oxidizers and highlight the multiple benefits it creates, after a brief review of the historical development of FNA-based technologies. We will discuss how wastewater systems can be made more energy-efficient and sustainable by leveraging the potential of acid-tolerant ammonia oxidizers.

Graphical abstract

Keywords

Free nitrous acid / Acid-tolerant ammonia oxidizer / In situ generation / Wastewater management

Cite this article

Download citation ▾
Zhiqiang Zuo, Min Zheng, Tao Liu, Yongzhen Peng, Zhiguo Yuan. New perspectives in free nitrous acid (FNA) uses for sustainable wastewater management. Front. Environ. Sci. Eng., 2024, 18(2): 26 DOI:10.1007/s11783-024-1786-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ab Hamid N H , Ye L , Wang D K , Smart S , Filloux E , Lebouteiller T , Zhang X . (2018). Evaluating the membrane fouling formation and chemical cleaning strategy in forward osmosis membrane filtration treating domestic sewage. Environmental Science: Water Research & Technology, 4(12): 2092–2103

[2]

Abbew A W , Amadu A A , Qiu S , Champagne P , Adebayo I , Anifowose P O , Ge S . (2022). Understanding the influence of free nitrous acid on microalgal-bacterial consortium in wastewater treatment: a critical review. Bioresource Technology, 363: 127916

[3]

Anthonisen A C , Loehr R C , Prakasam T B S , Srinath E G . (1976). Inhibition of nitrification by ammonia and nitrous acid. Journal–Water Pollution Control Federation, 48(5): 835–852

[4]

Bai X , Ghasemi Naghdi F , Ye L , Lant P , Pratt S . (2014). Enhanced lipid extraction from algae using free nitrous acid pretreatment. Bioresource Technology, 159: 36–40

[5]

Calderon A G , Duan H , Meng J , Zhao J , Song Y , Yu W , Hu Z , Xu K , Cheng X , Hu S . . (2021). An integrated strategy to enhance performance of anaerobic digestion of waste activated sludge. Water Research, 195: 116977

[6]

Cheng Z , Zuo Z , Yang S , Yuan Z , Huang X , Liu Y . (2021). Study of free nitrous acid (FNA)-based elimination of sulfamethoxazole: kinetics, transformation pathways, and toxicity assessment. Water Research, 189: 116629

[7]

Chislett M , Guo J , Bond P L , Wang Y , Donose B C , Yuan Z . (2022b). Reactive nitrogen species from free nitrous acid (FNA) cause cell lysis. Water Research, 217: 118401

[8]

Chislett M , Yu Z , Donose B C , Guo J , Yuan Z . (2022a). Understanding the effect of free nitrous acid on biofilms. Environmental Science & Technology, 56(16): 11625–11634

[9]

Czuba K , Pacyna-Iwanicka K , Bastrzyk A , Kabsch-Korbutowicz M , Dawiec-Liśniewska A , Chrobot P , Shavandi A , Podstawczyk D . (2022). Towards the circular economy—Sustainable fouling mitigation strategies in ultrafiltration of secondary effluent. Desalination, 532: 115731

[10]

Duan H , Gao S , Li X , Ab Hamid N H , Jiang G , Zheng M , Bai X , Bond P L , Lu X , Chislett M M . . (2020). Improving wastewater management using free nitrous acid (FNA). Water Research, 171: 115382

[11]

Filloux E , Wang J , Pidou M , Gernjak W , Yuan Z . (2015). Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent. Journal of Membrane Science, 495: 276–283

[12]

Fumasoli A , Bürgmann H , Weissbrodt D G , Wells G F , Beck K , Mohn J , Morgenroth E , Udert K M . (2017). Growth of Nitrosococcus-related ammonia oxidizing bacteria coincides with extremely low pH values in wastewater with high ammonia content. Environmental Science & Technology, 51(12): 6857–6866

[13]

Fumasoli A , Etter B , Sterkele B , Morgenroth E , Udert K M . (2016). Operating a pilot-scale nitrification/distillation plant for complete nutrient recovery from urine. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 73(1): 215–222

[14]

Fumasoli A , Morgenroth E , Udert K M . (2015). Modeling the low pH limit of Nitrosomonas eutropha in high-strength nitrogen wastewaters. Water Research, 83: 161–170

[15]

Hayatsu M , Tago K , Uchiyama I , Toyoda A , Wang Y , Shimomura Y , Okubo T , Kurisu F , Hirono Y , Nonaka K . . (2017). An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil. ISME Journal, 11(5): 1130–1141

[16]

Hellinga C , Van Loosdrecht M C M , Heijnen J J . (1999). Model based design of a novel process for nitrogen removal from concentrated flows. Mathematical and Computer Modelling of Dynamical Systems, 5(4): 351–371

[17]

Hu Z , Liu T , Wang Z , Meng J , Zheng M . (2023). Toward energy neutrality: novel wastewater treatment incorporating acidophilic ammonia oxidation. Environmental Science & Technology, 57(11): 4522–4532

[18]

Jiang G , Gutierrez O , Yuan Z . (2011). The strong biocidal effect of free nitrous acid on anaerobic sewer biofilms. Water Research, 45(12): 3735–3743

[19]

Jiang G , Keating A , Corrie S , O’Halloran K , Nguyen L , Yuan Z . (2013). Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia. Water Research, 47(13): 4331–4339

[20]

Law Y , Ye L , Wang Q , Hu S , Pijuan M , Yuan Z . (2015). Producing free nitrous acid–A green and renewable biocidal agent—From anaerobic digester liquor. Chemical Engineering Journal, 259: 62–69

[21]

Li J , Hua Z S , Liu T , Wang C , Li J , Bai G , Lücker S , Jetten M S , Zheng M , Guo J . (2021). Selective enrichment and metagenomic analysis of three novel comammox Nitrospira in a urine-fed membrane bioreactor. ISME Communications, 1(1): 7

[22]

Li J , Xu K , Liu T , Bai G , Liu Y , Wang C , Zheng M . (2020). Achieving stable partial nitritation in an acidic nitrifying bioreactor. Environmental Science & Technology, 54(1): 456–463

[23]

Valladares Linares R, Yangali-Quintanilla V, Li Z, Amy G (2012). NOM and TEP fouling of a forward osmosis (FO) membrane: foulant identification and cleaning. Journal of Membrane Science, 421422: 217–224

[24]

Liu T , Hu S , Guo J . (2019). Enhancing mainstream nitrogen removal by employing nitrate/nitrite-dependent anaerobic methane oxidation processes. Critical Reviews in Biotechnology, 39(5): 732–745

[25]

Liu W , Li J , Li X , Tian Y , Meng J , Zheng M , Yuan Z . (2022). Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Journal of Hazardous Materials, 438: 129535

[26]

Lu Y , Liu T , Niu C , Duan H , Zheng M , Hu S , Yuan Z , Wang H , Guo J . (2023a). Challenges of suppressing nitrite-oxidizing bacteria in membrane aerated biofilm reactors by low dissolved oxygen control. Water Research, 247: 120754

[27]

Lu X , Wang Z , Duan H , Wu Z , Hu S , Ye L , Yuan Z , Zheng M . (2023b). Significant production of nitric oxide by aerobic nitrite reduction at acidic pH. Water Research, 230: 119542

[28]

Meng J , Hu Z , Wang Z , Hu S , Liu Y , Guo H , Li J , Yuan Z , Zheng M . (2022). Determining factors for nitrite accumulation in an acidic nitrifying system: influent ammonium concentration, operational pH, and ammonia-oxidizing community. Environmental Science & Technology, 56(16): 11578–11588

[29]

Murthy S , Higgins M , Chen Y C , Peot C , Toffey W . (2006). High-solids centrifuge is a boon and a curse for managing anaerobically digested biosolids. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 53(3): 245–253

[30]

Pijuan M , Wang Q , Ye L , Yuan Z . (2012). Improving secondary sludge biodegradability using free nitrous acid treatment. Bioresource Technology, 116: 92–98

[31]

Rake J B , Eagon R G . (1980). Inhibition, but not uncoupling, of respiratory energy coupling of three bacterial species by nitrite. Journal of Bacteriology, 144(3): 975–982

[32]

Saito T , Brdjanovic D , van Loosdrecht M C M . (2004). Effect of nitrite on phosphate uptake by phosphate accumulating organisms. Water Research, 38(17): 3760–3768

[33]

Strous M , Kuenen J G , Jetten M S . (1999). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7): 3248–3250

[34]

Su Z , Liu T , Guo J , Zheng M . (2023). Nitrite oxidation in wastewater treatment: microbial adaptation and suppression challenges. Environmental Science & Technology, 57(34): 12557–12570

[35]

Udert K M , Larsen T A , Gujer W . (2005). Chemical nitrite oxidation in acid solutions as a consequence of microbial ammonium oxidation. Environmental Science & Technology, 39(11): 4066–4075

[36]

Wald C . (2022). The urine revolution: how recycling pee could help to save the world. Nature, 602(7896): 202–206

[37]

Wang Q , Ye L , Jiang G , Hu S , Yuan Z . (2014). Side-stream sludge treatment using free nitrous acid selectively eliminates nitrite oxidizing bacteria and achieves the nitrite pathway. Water Research, 55: 245–255

[38]

Wang Q , Ye L , Jiang G , Jensen P D , Batstone D J , Yuan Z . (2013b). Free nitrous acid (FNA)-based pretreatment enhances methane production from waste activated sludge. Environmental Science & Technology, 47(20): 11897–11904

[39]

Wang Q , Ye L , Jiang G , Yuan Z . (2013a). A free nitrous acid (FNA)-based technology for reducing sludge production. Water Research, 47(11): 3663–3672

[40]

Wang Z , Ni G , Maulani N , Xia J , De Clippeleir H , Hu S , Yuan Z , Zheng M . (2021b). Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer ‘Candidatus nitrosoglobus’. Water Research, 196: 117026

[41]

Wang Z , Ni G , Xia J , Song Y , Hu S , Yuan Z , Zheng M . (2021a). Bioleaching of toxic metals from anaerobically digested sludge without external chemical addition. Water Research, 200: 117211

[42]

Wang Z , Zheng M , Duan H , Hu S , Yuan Z . (2022b). Re-configuring mainstream anammox. Chemical Engineering Journal, 445: 136817

[43]

Wang Z , Zheng M , Duan H , Ni G , Yu W , Liu Y , Yuan Z , Hu S . (2021e). Acidic aerobic digestion of anaerobically-digested sludge enabled by a novel ammonia-oxidizing bacterium. Water Research, 194: 116962

[44]

Wang Z , Zheng M , Duan H , Yuan Z , Hu S . (2022a). A 20-year journey of partial nitritation and anammox (PN/A): from sidestream toward mainstream. Environmental Science & Technology, 56(12): 7522–7531

[45]

Wang Z , Zheng M , Hu Z , Duan H , De Clippeleir H , Al-Omari A , Hu S , Yuan Z . (2021d). Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: mechanisms and counter-strategies. Water Research, 200: 117239

[46]

Wang Z , Zheng M , Meng J , Hu Z , Ni G , Guerrero Calderon A , Li H , De Clippeleir H , Al-Omari A , Hu S . . (2021c). Robust nitritation sustained by acid-tolerant ammonia-oxidizing bacteria. Environmental Science & Technology, 55(3): 2048–2056

[47]

Wei W , Wang Q , Zhang L , Laloo A , Duan H , Batstone D J , Yuan Z . (2018). Free nitrous acid pre-treatment of waste activated sludge enhances volatile solids destruction and improves sludge dewaterability in continuous anaerobic digestion. Water Research, 130: 13–19

[48]

Zahedi S , Icaran P , Yuan Z , Pijuan M . (2016). Assessment of free nitrous acid pre-treatment on a mixture of primary sludge and waste activated sludge: effect of exposure time and concentration. Bioresource Technology, 216: 870–875

[49]

Zhang T , Wang Q , Ye L , Yuan Z . (2016). Effect of free nitrous acid pre-treatment on primary sludge biodegradability and its implications. Chemical Engineering Journal, 290: 31–36

[50]

Zheng M , Li H , Duan H , Liu T , Wang Z , Zhao J , Hu Z , Watts S , Meng J , Liu P . . (2023). One-year stable pilot-scale operation demonstrates high flexibility of mainstream anammox application. Water Research X, 19: 100166

[51]

Zheng M , Wu S , Zuo Z , Wang Z , Qiu Y , Liu Y , Huang X , Yuan Z . (2018). Predictions of the influent and operational conditions for partial nitritation with a model incorporating pH dynamics. Environmental Science & Technology, 52(11): 6457–6465

[52]

Zheng M , Zuo Z , Zhang Y , Cui Y , Dong Q , Liu Y , Huang X , Yuan Z . (2017). Nitrite production from urine for sulfide control in sewers. Water Research, 122: 447–454

[53]

Zhou Y , Oehmen A , Lim M , Vadivelu V , Ng W J . (2011). The role of nitrite and free nitrous acid (FNA) in wastewater treatment plants. Water Research, 45(15): 4672–4682

[54]

Zuo Z , Chen Y , Xing Y , Li S , Yang S , Jiang G , Liu T , Zheng M , Huang X , Liu Y . (2023). The advantage of a two-stage nitrification method for fertilizer recovery from human urine. Water Research, 235: 119932

[55]

Zuo Z , Liu T , Zheng M , Xing Y , Ren D , Li H , Yang S , Liu Y , Yuan Z , Huang X . (2023b). Recovery of ammonium nitrate solution from urine wastewater via novel free nitrous acid (FNA)-mediated two-stage processes. Chemical Engineering Journal, 440: 135826

[56]

Zuo Z, Xing Y, Duan H, Ren D, Zheng M, Liu Y, Huang X (2023a). Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing. Water Research, 234: 119820

[57]

Zuo Z , Zheng M , Chang J , Ren D , Huang X , Yuan Z , Liu Y . (2020). Free nitrous acid-based suppression of sulfide production in sewer sediments: in-situ effect mechanism. The Science of the Total Environment, 715: 136871

RIGHTS & PERMISSIONS

The Author(s) 2024. This article is published with open access at link.springer.com and journal.hep. com.cn

AI Summary AI Mindmap
PDF (2180KB)

11860

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/