Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers
Yue Yang, Ze Fu, Qi Zhang
Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers
● A protocol is proposed for simultaneous oil/water separation and electricity generation. ● Oil/water separation efficiency achieves > 99% only out of solar energy. ● A derived extra electricity power of ~0.1 W/m2 is obtained under solar radiation. ● The protocol offers a prospect of solar-driven water treatment and resource recovery.
Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar photothermal evaporation is a promising approach for the complete separation of two-phase mixtures using only solar energy. Herein, we report a carbonized wood-based absorber with Janus structure of comprising a hydrophobic top-layer and an oleophobic bottom-layer for simultaneous solar-driven oil-water separation and electricity generation. Under sunlight irradiation, the rapid evaporation of seawater will induce a separation of oil-water mixtures, and cause a high salt concentration region underlying the interface, while the bottom “bulk water” maintains in a low salt concentration, thus forming a salinity gradient. Electricity can be generated by salinity gradient power. Therefore, oil-water separation efficiency of > 99% and derived extra electricity power of ~0.1 W/m2 is achieved under solar radiation, demonstrating the feasibility of oil-water separation and electricity production synchronously directly using solar energy. This work provides a green and cost-effective path for the separation of oil-water mixtures.
Oily wastewater / Carbonized wood / Salinity gradient / Electricity generation / Solar irradiation
[1] |
Ahmad A L , Ismail S , Bhatia S . (2005). Ultrafiltration behavior in the treatment of Agro-industry effluent: pilot scale studies. Chemical Engineering Science, 60(19): 5385–5394
CrossRef
Google scholar
|
[2] |
Alias N H , Jaafar J , Samitsu S , Matsuura T , Ismail A F , Othman M H D , Rahman M A , Othman N H , Abdullah N , Paiman S H , Yusof N , Aziz F . (2019). Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chemical Engineering Journal, 360: 1437–1446
CrossRef
Google scholar
|
[3] |
Chen J , Huang Y , Zhang N N , Zou H Y , Liu R Y , Tao C Y , Fan X , Wang Z L . (2016). Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 1(10): 16138
CrossRef
Google scholar
|
[4] |
Chen M L , Zhu L , Chen J W , Yang F L , Tang C Y Y , Guiver M D , Dong Y C . (2020). Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 169: 115180
CrossRef
Google scholar
|
[5] |
Chen X J , Liu Y Q , Huang G , An C J , Feng R F , Yao Y , Huang W , Weng S Q . (2022). Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation. Frontiers of Environmental Science & Engineering, 16(12): 153
CrossRef
Google scholar
|
[6] |
Cheng X Q , Sun Z K , Yang X B , Li Z X , Zhang Y J , Wang P , Liang H , Ma J , Shao L . (2020). Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(33): 16933–16942
CrossRef
Google scholar
|
[7] |
Cheryan M , Rajagopalan N . (1998). Membrane processing of oily streams. wastewater treatment and waste reduction. Journal of Membrane Science, 151(1): 13–28
CrossRef
Google scholar
|
[8] |
ChuZ LFengY JSeegerS (2015). Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 54(8): 2328–2338 10.1002/anie.201405785
|
[9] |
Dou Y H , Tian D L , Sun Z Q , Liu Q N , Zhang N , Kim J H , Jiang L S , Dou X . (2017). Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano, 11(3): 2477–2485
CrossRef
Google scholar
|
[10] |
El Bestawy E , El-Shatby B F , Eltaweil A S . (2020). Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World Journal of Microbiology & Biotechnology, 36(9): 141
CrossRef
Google scholar
|
[11] |
Gao T , Wang Y D , Wu X , Wu P , Yang X F , Li Q , Zhang Z Z , Zhang D K , Owens G , Xu H L . (2022). More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 67(15): 1572–1580
CrossRef
Google scholar
|
[12] |
Gao T , Wu X , Wang Y D , Owens G , Xu H L . (2021). A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Solar RRL, 5(5): 2100053
CrossRef
Google scholar
|
[13] |
Ghasemi H , Ni G , Marconnet A M , Loomis J , Yerci S , Miljkovic N , Chen G . (2014). Solar steam generation by heat localization. Nature Communications, 5(1): 4449
CrossRef
Google scholar
|
[14] |
Gu Y F , Mu X J , Wang P F , Wang X Y , Liu J , Shi J Q , Wei A Y , Tian Y Z , Zhu G S , Xu H R .
CrossRef
Google scholar
|
[15] |
Guo Y H , Zhao X , Zhao F , Jiao Z H , Zhou X Y , Yu G H . (2020). Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy & Environmental Science, 13(7): 2087–2095
CrossRef
Google scholar
|
[16] |
Hou J W , Ji C , Dong G X , Xiao B W , Ye Y , Chen V . (2015). Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(33): 17032–17041
CrossRef
Google scholar
|
[17] |
Hu L , Gao S J , Ding X G , Wang D , Jiang J , Jin J , Jiang L . (2015a). Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano, 9(5): 4835–4842
CrossRef
Google scholar
|
[18] |
Hu X B , Yu Y , Zhou J E , Wang Y Q , Liang J , Zhang X Z , Chang Q B , Song L X . (2015b). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476: 200–204
CrossRef
Google scholar
|
[19] |
Jafari B , Abbasi M , Hashemifard S A , Sillanpaa M . (2020). Elaboration and characterization of novel two-layer tubular ceramic membranes by coating natural zeolite and activated carbon on mullite-alumina-zeolite support: application for oily wastewater treatment. Journal of Asian Ceramic Societies, 8(3): 848–861
CrossRef
Google scholar
|
[20] |
Kuang Y D , Chen C J , He S M , Hitz E M , Wang Y L , Gan W T , Mi R Y , Hu L B . (2019). A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 31(23): 1900498
CrossRef
Google scholar
|
[21] |
Kujawinski E B , Kido Soule M C , Valentine D L , Boysen A K , Longnecker K , Redmond M C . (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45(4): 1298–1306
CrossRef
Google scholar
|
[22] |
Li X Q , Min X Z , Li J L , Xu N , Zhu P C , Zhu B , Zhu S N , Zhu J . (2018). Storage and recycling of interfacial solar steam enthalpy. Joule, 2(11): 2477–2484
CrossRef
Google scholar
|
[23] |
Liu Y , Lou J W , Ni M T , Song C Y , Wu J B , Dasgupta N P , Tao P , Shang W , Deng T . (2016). Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 8(1): 772–779
CrossRef
Google scholar
|
[24] |
Mostefa N M , Tir M . (2004). Coupling flocculation with electroflotation for waste oil/water emulsion treatment: optimization of the operating conditions. Desalination, 161(2): 115–121
CrossRef
Google scholar
|
[25] |
Neumann O , Feronti C , Neumann A D , Dong A J , Schell K , Lu B , Kim E , Quinn M , Thompson S , Grady N .
CrossRef
Google scholar
|
[26] |
Neumann O , Neumann A D , Silva E , Ayala-Orozco C , Tian S , Nordlander P , Halas N J . (2015). Nanoparticle-mediated, light-induced phase separations. Nano Letters, 15(12): 7880–7885
CrossRef
Google scholar
|
[27] |
Neumann O , Urban A S , Day J , Lal S , Nordlander P , Halas N J . (2013b). Solar vapor generation enabled by nanoparticles. ACS Nano, 7(1): 42–49
CrossRef
Google scholar
|
[28] |
RíosGPazosCCocaJ (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 138(2–3): 383–389
|
[29] |
Scialdone O , D’Angelo A , De Lume E , Galia A . (2014). Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients. Electrochimica Acta, 137: 258–265
CrossRef
Google scholar
|
[30] |
Shirazi Y A , Carr E W , Parsons G R , Hoagland P , Ralston D K , Chen J . (2019). Increased operational costs of electricity generation in the delaware river and estuary from salinity increases due to sea-level rise and a deepened channel. Journal of Environmental Management, 244: 228–234
CrossRef
Google scholar
|
[31] |
Wang X Y , Li X Q , Liu G L , Li J L , Hu X Z , Xu N , Zhao W , Zhu B , Zhu J . (2019). An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angewandte Chemie International Edition, 58(35): 12054–12058
CrossRef
Google scholar
|
[32] |
Wang Z J , Wang Y , Liu G J . (2016). Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angewandte Chemie International Edition, 55(4): 1291–1294
CrossRef
Google scholar
|
[33] |
Wang Z X , Han M C , He F , Peng S Q , Darling S B , Li Y X . (2020). Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 74: 104886
CrossRef
Google scholar
|
[34] |
Wu Z C , Zhang C , Peng K M , Wang Q Y , Wang Z W . (2018). Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Frontiers of Environmental Science & Engineering, 12(3): 15
CrossRef
Google scholar
|
[35] |
Xu N , Li J L , Wang Y , Fang C , Li X Q , Wang Y X , Zhou L , Zhu B , Wu Z , Zhu S N , Zhu J . (2019). A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 5(7): eaaw7013
CrossRef
Google scholar
|
[36] |
Yang H C , Hou J , Chen V , Xu Z K . (2016). Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 55(43): 13398–13407
CrossRef
Google scholar
|
[37] |
Yang P H , Liu K , Chen Q , Li J , Duan J J , Xue G B , Xu Z S , Xie W K , Zhou J . (2017). Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 10(9): 1923–1927
CrossRef
Google scholar
|
[38] |
Yi G , Chen S , Quan X , Wei G L , Fan X F , Yu H T . (2018). Enhanced separation performance of carbon nanotube-polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197: 107–115
CrossRef
Google scholar
|
[39] |
Yi G , Fan X F , Quan X , Chen S , Yu H T . (2019). Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater. Frontiers of Environmental Science & Engineering, 13(2): 23
CrossRef
Google scholar
|
[40] |
Yu H M , Wang D Y , Jin H Y , Wu P , Wu X , Chu D W , Lu Y , Yang X F , Xu H L . (2023). 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Advanced Functional Materials, 33(24): 2214828
CrossRef
Google scholar
|
[41] |
Zhang L F , Fu G K , Zhang Z . (2019). Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresource Technology, 272: 105–113
CrossRef
Google scholar
|
[42] |
Zhang Z , Kong X Y , Xiao K , Xie G H , Liu Q , Tian Y , Zhang H C , Ma J , Wen L P , Jiang L . (2016). A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Advanced Materials, 28(1): 144–150
CrossRef
Google scholar
|
[43] |
Zhao F , Zhou X Y , Shi Y , Qian X , Alexander M , Zhao X P , Mendez S , Yang R G , Qu L T , Yu G H . (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 13(6): 489–495
CrossRef
Google scholar
|
[44] |
Zhao J Y , Wu X , Yu H M , Wang Y D , Wu P , Yang X F , Chu D W , Owens G , Xu H L . (2023). Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat, 5(3): e12302
CrossRef
Google scholar
|
[45] |
Zhao S S , Tao Z , Chen L W , Han M Q , Zhao B , Tian X L , Wang L , Meng F G . (2021). An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering, 15(4): 63
CrossRef
Google scholar
|
/
〈 | 〉 |