Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers

Yue Yang, Ze Fu, Qi Zhang

PDF(5441 KB)
PDF(5441 KB)
Front. Environ. Sci. Eng. ›› 2024, Vol. 18 ›› Issue (2) : 15. DOI: 10.1007/s11783-024-1775-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers

Author information +
History +

Highlights

● A protocol is proposed for simultaneous oil/water separation and electricity generation.

● Oil/water separation efficiency achieves > 99% only out of solar energy.

● A derived extra electricity power of ~0.1 W/m2 is obtained under solar radiation.

● The protocol offers a prospect of solar-driven water treatment and resource recovery.

Abstract

Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar photothermal evaporation is a promising approach for the complete separation of two-phase mixtures using only solar energy. Herein, we report a carbonized wood-based absorber with Janus structure of comprising a hydrophobic top-layer and an oleophobic bottom-layer for simultaneous solar-driven oil-water separation and electricity generation. Under sunlight irradiation, the rapid evaporation of seawater will induce a separation of oil-water mixtures, and cause a high salt concentration region underlying the interface, while the bottom “bulk water” maintains in a low salt concentration, thus forming a salinity gradient. Electricity can be generated by salinity gradient power. Therefore, oil-water separation efficiency of > 99% and derived extra electricity power of ~0.1 W/m2 is achieved under solar radiation, demonstrating the feasibility of oil-water separation and electricity production synchronously directly using solar energy. This work provides a green and cost-effective path for the separation of oil-water mixtures.

Graphical abstract

Keywords

Oily wastewater / Carbonized wood / Salinity gradient / Electricity generation / Solar irradiation

Cite this article

Download citation ▾
Yue Yang, Ze Fu, Qi Zhang. Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers. Front. Environ. Sci. Eng., 2024, 18(2): 15 https://doi.org/10.1007/s11783-024-1775-8

References

[1]
Ahmad A L , Ismail S , Bhatia S . (2005). Ultrafiltration behavior in the treatment of Agro-industry effluent: pilot scale studies. Chemical Engineering Science, 60(19): 5385–5394
CrossRef Google scholar
[2]
Alias N H , Jaafar J , Samitsu S , Matsuura T , Ismail A F , Othman M H D , Rahman M A , Othman N H , Abdullah N , Paiman S H , Yusof N , Aziz F . (2019). Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chemical Engineering Journal, 360: 1437–1446
CrossRef Google scholar
[3]
Chen J , Huang Y , Zhang N N , Zou H Y , Liu R Y , Tao C Y , Fan X , Wang Z L . (2016). Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nature Energy, 1(10): 16138
CrossRef Google scholar
[4]
Chen M L , Zhu L , Chen J W , Yang F L , Tang C Y Y , Guiver M D , Dong Y C . (2020). Spinel-based ceramic membranes coupling solid sludge recycling with oily wastewater treatment. Water Research, 169: 115180
CrossRef Google scholar
[5]
Chen X J , Liu Y Q , Huang G , An C J , Feng R F , Yao Y , Huang W , Weng S Q . (2022). Functional flax fiber with UV-induced switchable wettability for multipurpose oil-water separation. Frontiers of Environmental Science & Engineering, 16(12): 153
CrossRef Google scholar
[6]
Cheng X Q , Sun Z K , Yang X B , Li Z X , Zhang Y J , Wang P , Liang H , Ma J , Shao L . (2020). Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil-water emulsion separation. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 8(33): 16933–16942
CrossRef Google scholar
[7]
Cheryan M , Rajagopalan N . (1998). Membrane processing of oily streams. wastewater treatment and waste reduction. Journal of Membrane Science, 151(1): 13–28
CrossRef Google scholar
[8]
ChuZ LFengY JSeegerS (2015). Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 54(8): 2328–2338 10.1002/anie.201405785
[9]
Dou Y H , Tian D L , Sun Z Q , Liu Q N , Zhang N , Kim J H , Jiang L S , Dou X . (2017). Fish gill inspired crossflow for efficient and continuous collection of spilled oil. ACS Nano, 11(3): 2477–2485
CrossRef Google scholar
[10]
El Bestawy E , El-Shatby B F , Eltaweil A S . (2020). Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World Journal of Microbiology & Biotechnology, 36(9): 141
CrossRef Google scholar
[11]
Gao T , Wang Y D , Wu X , Wu P , Yang X F , Li Q , Zhang Z Z , Zhang D K , Owens G , Xu H L . (2022). More from less: improving solar steam generation by selectively removing a portion of evaporation surface. Science Bulletin, 67(15): 1572–1580
CrossRef Google scholar
[12]
Gao T , Wu X , Wang Y D , Owens G , Xu H L . (2021). A hollow and compressible 3D photothermal evaporator for highly efficient solar steam generation without energy loss. Solar RRL, 5(5): 2100053
CrossRef Google scholar
[13]
Ghasemi H , Ni G , Marconnet A M , Loomis J , Yerci S , Miljkovic N , Chen G . (2014). Solar steam generation by heat localization. Nature Communications, 5(1): 4449
CrossRef Google scholar
[14]
Gu Y F , Mu X J , Wang P F , Wang X Y , Liu J , Shi J Q , Wei A Y , Tian Y Z , Zhu G S , Xu H R . . (2020). Integrated photothermal aerogels with ultrahigh-performance solar steam generation. Nano Energy, 74: 104857
CrossRef Google scholar
[15]
Guo Y H , Zhao X , Zhao F , Jiao Z H , Zhou X Y , Yu G H . (2020). Tailoring surface wetting states for ultrafast solar-driven water evaporation. Energy & Environmental Science, 13(7): 2087–2095
CrossRef Google scholar
[16]
Hou J W , Ji C , Dong G X , Xiao B W , Ye Y , Chen V . (2015). Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(33): 17032–17041
CrossRef Google scholar
[17]
Hu L , Gao S J , Ding X G , Wang D , Jiang J , Jin J , Jiang L . (2015a). Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano, 9(5): 4835–4842
CrossRef Google scholar
[18]
Hu X B , Yu Y , Zhou J E , Wang Y Q , Liang J , Zhang X Z , Chang Q B , Song L X . (2015b). The improved oil/water separation performance of graphene oxide modified Al2O3 microfiltration membrane. Journal of Membrane Science, 476: 200–204
CrossRef Google scholar
[19]
Jafari B , Abbasi M , Hashemifard S A , Sillanpaa M . (2020). Elaboration and characterization of novel two-layer tubular ceramic membranes by coating natural zeolite and activated carbon on mullite-alumina-zeolite support: application for oily wastewater treatment. Journal of Asian Ceramic Societies, 8(3): 848–861
CrossRef Google scholar
[20]
Kuang Y D , Chen C J , He S M , Hitz E M , Wang Y L , Gan W T , Mi R Y , Hu L B . (2019). A high-performance self-regenerating solar evaporator for continuous water desalination. Advanced Materials, 31(23): 1900498
CrossRef Google scholar
[21]
Kujawinski E B , Kido Soule M C , Valentine D L , Boysen A K , Longnecker K , Redmond M C . (2011). Fate of dispersants associated with the deepwater horizon oil spill. Environmental Science & Technology, 45(4): 1298–1306
CrossRef Google scholar
[22]
Li X Q , Min X Z , Li J L , Xu N , Zhu P C , Zhu B , Zhu S N , Zhu J . (2018). Storage and recycling of interfacial solar steam enthalpy. Joule, 2(11): 2477–2484
CrossRef Google scholar
[23]
Liu Y , Lou J W , Ni M T , Song C Y , Wu J B , Dasgupta N P , Tao P , Shang W , Deng T . (2016). Bioinspired bifunctional membrane for efficient clean water generation. ACS Applied Materials & Interfaces, 8(1): 772–779
CrossRef Google scholar
[24]
Mostefa N M , Tir M . (2004). Coupling flocculation with electroflotation for waste oil/water emulsion treatment: optimization of the operating conditions. Desalination, 161(2): 115–121
CrossRef Google scholar
[25]
Neumann O , Feronti C , Neumann A D , Dong A J , Schell K , Lu B , Kim E , Quinn M , Thompson S , Grady N . . (2013a). Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 110(29): 11677–11681
CrossRef Google scholar
[26]
Neumann O , Neumann A D , Silva E , Ayala-Orozco C , Tian S , Nordlander P , Halas N J . (2015). Nanoparticle-mediated, light-induced phase separations. Nano Letters, 15(12): 7880–7885
CrossRef Google scholar
[27]
Neumann O , Urban A S , Day J , Lal S , Nordlander P , Halas N J . (2013b). Solar vapor generation enabled by nanoparticles. ACS Nano, 7(1): 42–49
CrossRef Google scholar
[28]
RíosGPazosCCocaJ (1998). Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 138(2–3): 383–389
[29]
Scialdone O , D’Angelo A , De Lume E , Galia A . (2014). Cathodic reduction of hexavalent chromium coupled with electricity generation achieved by reverse-electrodialysis processes using salinity gradients. Electrochimica Acta, 137: 258–265
CrossRef Google scholar
[30]
Shirazi Y A , Carr E W , Parsons G R , Hoagland P , Ralston D K , Chen J . (2019). Increased operational costs of electricity generation in the delaware river and estuary from salinity increases due to sea-level rise and a deepened channel. Journal of Environmental Management, 244: 228–234
CrossRef Google scholar
[31]
Wang X Y , Li X Q , Liu G L , Li J L , Hu X Z , Xu N , Zhao W , Zhu B , Zhu J . (2019). An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angewandte Chemie International Edition, 58(35): 12054–12058
CrossRef Google scholar
[32]
Wang Z J , Wang Y , Liu G J . (2016). Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric. Angewandte Chemie International Edition, 55(4): 1291–1294
CrossRef Google scholar
[33]
Wang Z X , Han M C , He F , Peng S Q , Darling S B , Li Y X . (2020). Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 74: 104886
CrossRef Google scholar
[34]
Wu Z C , Zhang C , Peng K M , Wang Q Y , Wang Z W . (2018). Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Frontiers of Environmental Science & Engineering, 12(3): 15
CrossRef Google scholar
[35]
Xu N , Li J L , Wang Y , Fang C , Li X Q , Wang Y X , Zhou L , Zhu B , Wu Z , Zhu S N , Zhu J . (2019). A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 5(7): eaaw7013
CrossRef Google scholar
[36]
Yang H C , Hou J , Chen V , Xu Z K . (2016). Janus membranes: exploring duality for advanced separation. Angewandte Chemie International Edition, 55(43): 13398–13407
CrossRef Google scholar
[37]
Yang P H , Liu K , Chen Q , Li J , Duan J J , Xue G B , Xu Z S , Xie W K , Zhou J . (2017). Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 10(9): 1923–1927
CrossRef Google scholar
[38]
Yi G , Chen S , Quan X , Wei G L , Fan X F , Yu H T . (2018). Enhanced separation performance of carbon nanotube-polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197: 107–115
CrossRef Google scholar
[39]
Yi G , Fan X F , Quan X , Chen S , Yu H T . (2019). Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater. Frontiers of Environmental Science & Engineering, 13(2): 23
CrossRef Google scholar
[40]
Yu H M , Wang D Y , Jin H Y , Wu P , Wu X , Chu D W , Lu Y , Yang X F , Xu H L . (2023). 2D MoN1.2-rGO stacked heterostructures enabled water state modification for highly efficient interfacial solar evaporation. Advanced Functional Materials, 33(24): 2214828
CrossRef Google scholar
[41]
Zhang L F , Fu G K , Zhang Z . (2019). Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment. Bioresource Technology, 272: 105–113
CrossRef Google scholar
[42]
Zhang Z , Kong X Y , Xiao K , Xie G H , Liu Q , Tian Y , Zhang H C , Ma J , Wen L P , Jiang L . (2016). A bioinspired multifunctional heterogeneous membrane with ultrahigh ionic rectification and highly efficient selective ionic gating. Advanced Materials, 28(1): 144–150
CrossRef Google scholar
[43]
Zhao F , Zhou X Y , Shi Y , Qian X , Alexander M , Zhao X P , Mendez S , Yang R G , Qu L T , Yu G H . (2018). Highly efficient solar vapour generation via hierarchically nanostructured gels. Nature Nanotechnology, 13(6): 489–495
CrossRef Google scholar
[44]
Zhao J Y , Wu X , Yu H M , Wang Y D , Wu P , Yang X F , Chu D W , Owens G , Xu H L . (2023). Regenerable aerogel-based thermogalvanic cells for efficient low-grade heat harvesting from solar radiation and interfacial solar evaporation systems. EcoMat, 5(3): e12302
CrossRef Google scholar
[45]
Zhao S S , Tao Z , Chen L W , Han M Q , Zhao B , Tian X L , Wang L , Meng F G . (2021). An antifouling catechol/chitosan-modified polyvinylidene fluoride membrane for sustainable oil-in-water emulsions separation. Frontiers of Environmental Science & Engineering, 15(4): 63
CrossRef Google scholar

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (No. 22106016) and the Fellowship of China Postdoctoral Science Foundation (No. 2022M721556).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-024-1775-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5441 KB)

Accesses

Citations

Detail

Sections
Recommended

/