A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning

Min Cheng , Zhiyuan Zhang , Shihui Wang , Kexin Bi , Kong-qiu Hu , Zhongde Dai , Yiyang Dai , Chong Liu , Li Zhou , Xu Ji , Wei-qun Shi

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (12) : 148

PDF (7078KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (12) : 148 DOI: 10.1007/s11783-023-1748-3
RESEARCH ARTICLE
RESEARCH ARTICLE

A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning

Author information +
History +
PDF (7078KB)

Abstract

● Screened 8862 metal-organic frameworks for I2 capture via molecular simulation.

● Ranked metal-organic frameworks on predicted I2 uptake and identified Top 10.

● Established quantitative structure-property relationships via machine learning.

We performed large-scale molecular simulation to screen and identify metal-organic framework materials for gaseous iodine capture, as part of our ongoing effort in addressing management and handling issues of various radionuclides in the grand scheme of spent nuclear fuel reprocessing. Starting from the computation-ready experimental (CoRE) metal-organic frameworks (MOFs) database, grand canonical Monte Carlo simulation was employed to predict the iodine uptake values of the MOFs. A ranking list of MOFs based on their iodine uptake capabilities was generated, with the Top 10 candidates identified and their respective adsorption sites visualized. Subsequently, machine learning was used to establish structure-property relationships to correlate MOFs’ various structural and chemical features with their corresponding performances in iodine capture, yielding interpretable common features and design rules for viable MOF adsorbents. The research strategy and framework of the present study could aid the development of high-performing MOF adsorbents for capture and recovery of radioactive iodine, and moreover, other volatile environmentally hazardous species.

Graphical abstract

Keywords

Iodine capture / Metal-organic framework / Large-scale screening / Molecular simulation / Machine learning

Cite this article

Download citation ▾
Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi. A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning. Front. Environ. Sci. Eng., 2023, 17(12): 148 DOI:10.1007/s11783-023-1748-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altintas C, Altundal O F, Keskin S, Yildirim R. (2021). Machine learning meets with metal organic frameworks for gas storage and separation. Journal of Chemical Information and Modeling, 61(5): 2131–2146

[2]

Altintas C, Erucar I, Keskin S. (2018). High-throughput computational screening of the metal organic framework database for CH4/H2 separations. ACS Applied Materials & Interfaces, 10(4): 3668–3679

[3]

Audi G, Bersillon O, Blachot J, Wapstra A H. (2003). The Nubase evaluation of nuclear and decay properties. Nuclear Physics. A, 729(1): 3–128

[4]

BifarinO O (2022). Interpretable machine learning with tree-based shapley additive explanations: application to metabolomics datasets for binary classification. bioRxiv: 2022.2009.2019.508550

[5]

Breiman L. (2001). Random forests. Machine Learning, 45(1): 5–32

[6]

Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R. . (2020). A mobile robotic chemist. Nature, 583(7815): 237–241

[7]

Cai J, Luo J, Wang S, Yang S. (2018). Feature selection in machine learning: a new perspective. Neurocomputing, 300(26): 70–79

[8]

Chapman K W, Chupas P J, Nenoff T M. (2010). Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. Journal of the American Chemical Society, 132(26): 8897–8899

[9]

Chen P, He X, Pang M, Dong X, Zhao S, Zhang W. (2020). Iodine capture using Zr-based metal–organic frameworks (Zr-MOFs): adsorption performance and mechanism. ACS Applied Materials & Interfaces, 12(18): 20429–20439

[10]

Chen Z, Kirlikovali K O, Li P, Farha O K. (2022). Reticular chemistry for highly porous metal–organic frameworks: the chemistry and applications. Accounts of Chemical Research, 55(4): 579–591

[11]

Cheng M, Wang S, Zhang Z, Zhou L, Liu C, Dai Y, Dang Y, Ji X. (2023). High-throughput virtual screening of metal–organic frameworks for xenon recovery from exhaled anesthetic gas mixture. Chemical Engineering Journal, 451: 138218

[12]

Chong S, Lee S, Kim B, Kim J. (2020). Applications of machine learning in metal-organic frameworks. Coordination Chemistry Reviews, 423: 213487

[13]

Chu S, Majumdar A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411): 294–303

[14]

Chung Y G, Haldoupis E, Bucior B J, Haranczyk M, Lee S, Zhang H, Vogiatzis K D, Milisavljevic M, Ling S, Camp J S. . (2019). Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. Journal of Chemical & Engineering Data, 64(12): 5985–5998

[15]

CohenJ (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, 79–81

[16]

Colón Y J, Snurr R Q. (2014). High-throughput computational screening of metal-organic frameworks. Chemical Society Reviews, 43(16): 5735–5749

[17]

Daglar H, Gulbalkan H C, Habib N, Durak O, Uzun A, Keskin S. (2023). Integrating molecular simulations with machine learning guides in the design and synthesis of [BMIM][BF4]/MOF composites for CO2/N2 separation. ACS Applied Materials & Interfaces, 15(13): 17421–17431

[18]

Demir H, Daglar H, Gulbalkan H C, Aksu G O, Keskin S. (2023). Recent advances in computational modeling of MOFs: from molecular simulations to machine learning. Coordination Chemistry Reviews, 484: 215112

[19]

Dubbeldam D, Calero S, Ellis D E, Snurr R Q. (2016). RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2): 81–101

[20]

Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T. (2013). Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications (Cambridge), 49(87): 10320–10322

[21]

Feng M, Cheng M, Ji X, Zhou L, Dang Y, Bi K, Dai Z, Dai Y. (2022). Finding the optimal CO2 adsorption material: prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 302: 122111

[22]

Fernandez M, Woo T K, Wilmer C E, Snurr R Q. (2013). Large-scale quantitative structure-property relationship (QSPR) analysis of methane storage in metal–organic frameworks. Journal of Physical Chemistry C, 117(15): 7681–7689

[23]

FrenkelD, Smit B (2002). Understanding molecular simulation (2nd Edition). Frenkel D, Smit B. eds. San Diego: Academic Press, 111–137

[24]

Furukawa H, Cordova K E, O’keeffe M, Yaghi O M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149): 1230444

[25]

Gładysiak A, Nguyen T N, Spodaryk M, Lee J H, Neaton J B, Züttel A, Stylianou K C. (2019). Incarceration of iodine in a pyrene-based metal–organic framework. Chemistry–A European Journal, 25(2): 501–506

[26]

Granda J M, Donina L, Dragone V, Long D L, Cronin L. (2018). Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature, 559(7714): 377–381

[27]

Greathouse J A, Allendorf M D. (2008). Force field validation for molecular dynamics simulations of IRMOF-1 and other isoreticular zinc carboxylate coordination polymers. Journal of Physical Chemistry C, 112(15): 5795–5802

[28]

Guo B, Li F, Wang C, Zhang L, Sun D. (2019). A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 7(21): 13173–13179

[29]

Haldoupis E, Watanabe T, Nair S, Sholl D S. (2012). Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem, 13(15): 3449–3452

[30]

Harrison R L. (2010). Introduction to Monte Carlo simulation. AIP Conference Proceedings, 1204(1): 17–21

[31]

He J, Duan J, Shi H, Huang J, Huang J, Yu L, Zeller M, Hunter A D, Xu Z. (2014). Immobilization of volatile and corrosive iodine monochloride (ICl) and I2 reagents in a stable metal-organic framework. Inorganic Chemistry, 53(13): 6837–6843

[32]

He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C. . (2021). A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 7(3): 699–714

[33]

Hill D J. (2008). Nuclear energy for the future. Nature Materials, 7(9): 680–682

[34]

Huang Y, Chen J, Duan Q, Feng Y, Luo R, Wang W, Liu F, Bi S, Lee J. (2022). A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning. Frontiers of Environmental Science & Engineering, 16(3): 38

[35]

Huve J, Ryzhikov A, Nouali H, Lalia V, Augé G, Daou T J. (2018). Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Advances, 8(51): 29248–29273

[36]

Jablonka K M, Ongari D, Moosavi S M, Smit B. (2020). Big-data science in porous materials: materials genomics and machine learning. Chemical Reviews, 120(16): 8066–8129

[37]

Jiang H, Alezi D, Eddaoudi M. (2021). A reticular chemistry guide for the design of periodic solids. Nature Reviews. Materials, 6(6): 466–487

[38]

Jiao L, Seow J Y R, Skinner W S, Wang Z U, Jiang H L. (2019). Metal–organic frameworks: structures and functional applications. Materials Today, 27: 43–68

[39]

Joss L, Müller E A. (2019). Machine learning for fluid property correlations: classroom examples with MATLAB. Journal of Chemical Education, 96(4): 697–703

[40]

Lee Y, Barthel S D, Dłotko P, Moosavi S M, Hess K, Smit B. (2017). Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications, 8(1): 15396

[41]

Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z. . (2017). Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 8(1): 485

[42]

Li J, Li L, Tong Y W, Wang X. (2023). Understanding and optimizing the gasification of biomass waste with machine learning. Green Chemical Engineering, 4(1): 123–133

[43]

Li J, Zhang L, Li C, Tian H, Ning J, Zhang J, Tong Y W, Wang X. (2022). Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production. ACS ES&T Engineering, 2(4): 642–652

[44]

Li J, Zhang W, Liu T, Yang L, Li H, Peng H, Jiang S, Wang X, Leng L. (2021). Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chemical Engineering Journal, 425: 130649

[45]

Li J R, Sculley J, Zhou H C. (2012). Metal-organic frameworks for separations. Chemical Reviews, 112(2): 869–932

[46]

Liu Y M, Merlet C, Smit B. (2019). Carbon with regular pore geometry yield fundamental insights into supercapacitor charge storage. ACS Central Science, 5(11): 1813–1823

[47]

Liu Z, Deng Z, He G, Wang H, Zhang X, Lin J, Qi Y, Liang X. (2022). Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 3(2): 141–155

[48]

LundbergS M, Lee S I (2017a). A unified approach to interpreting model predictions, Proceedings of the 31st International Conference on Neural Information Processing Systems, 4768–4777

[49]

LundbergS M, Lee S I (2017b). Consistent feature attribution for tree ensembles. ArXiv, abs/1706.06060

[50]

Mai H, Le T C, Chen D, Winkler D A, Caruso R A. (2022). Machine learning in the development of adsorbents for clean energy application and greenhouse gas capture. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(36): 2203899

[51]

Majumdar S, Moosavi S M, Jablonka K M, Ongari D, Smit B. (2021). Diversifying databases of metal organic frameworks for high-throughput computational screening. ACS Applied Materials & Interfaces, 13(51): 61004–61014

[52]

Marshall R J, Griffin S L, Wilson C, Forgan R S. (2016). Stereoselective halogenation of integral unsaturated C–C bonds in chemically and mechanically robust Zr and Hf MOFs. Chemistry–A European Journal, 22(14): 4870–4877

[53]

Moghadam P Z, Li A, Liu X W, Bueno-Perez R, Wang S D, Wiggin S B, Wood P A, Fairen-Jimenez D. (2020). Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science (Cambridge), 11(32): 8373–8387

[54]

Moghadam P Z, Li A, Wiggin S B, Tao A, Maloney A G P, Wood P A, Ward S C, Fairen-Jimenez D. (2017). Development of a Cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future. Chemistry of Materials, 29(7): 2618–2625

[55]

Nandanwar S U, Coldsnow K, Utgikar V, Sabharwall P, Eric Aston D. (2016). Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment: a review. Chemical Engineering Journal, 306: 369–381

[56]

Orhan I B, Daglar H, Keskin S, Le T C, Babarao R. (2022). Prediction of O2/N2 selectivity in metal–organic frameworks via high-throughput computational screening and machine learning. ACS Applied Materials & Interfaces, 14(1): 736–749

[57]

Palansooriya K N, Li J, Dissanayake P D, Suvarna M, Li L, Yuan X, Sarkar B, Tsang D C W, Rinklebe J, Wang X. . (2022). Prediction of soil heavy metal immobilization by biochar using machine learning. Environmental Science & Technology, 56(7): 4187–4198

[58]

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. . (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12(85): 2825–2830

[59]

Peng D Y, Robinson D B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1): 59–64

[60]

Pérez-Pellitero J, Amrouche H, Siperstein F R, Pirngruber G, Nieto-Draghi C, Chaplais G, Simon-Masseron A, Bazer-Bachi D, Peralta D, Bats N. (2010). Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Chemistry–A European Journal, 16(5): 1560–1571

[61]

Pétuya R, Durdy S, Antypov D, Gaultois M W, Berry N G, Darling G R, Katsoulidis A P, Dyer M S, Rosseinsky M J. (2022). Machine-learning prediction of metal–organic framework guest accessibility from linker and metal chemistry. Angewandte Chemie International Edition, 61(9): e202114573

[62]

Poinssot C, Bourg S, Ouvrier N, Combernoux N, Rostaing C, Vargas-Gonzalez M, Bruno J. (2014). Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy, 69: 199–211

[63]

Polat H M, Kavak S, Kulak H, Uzun A, Keskin S. (2020). CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: linking high-throughput computational screening with experiments. Chemical Engineering Journal, 394: 124916

[64]

Raccuglia P, Elbert K C, Adler P D F, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J, Norquist A J. (2016). Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601): 73–76

[65]

Rappe A K, Casewit C J, Colwell K S, Goddard W A III, Skiff W M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25): 10024–10035

[66]

SekerkaR F (2015). Thermal Physics. Amsterdam: Elsevier

[67]

ShevchenkoA P, AlexandrovE V, GolovA A, BlatovaO A, Duyunova A S, BlatovV A (2020). Topology versus porosity: what can reticular chemistry tell us about free space in metal–organic frameworks? Chemical Communications (Cambridge), 56(67): 9616–9619

[68]

Shi L, Li J, Palansooriya K N, Chen Y, Hou D, Meers E, Tsang D C W, Wang X, Ok Y S. (2023). Modeling phytoremediation of heavy metal contaminated soils through machine learning. Journal of Hazardous Materials, 441: 129904

[69]

Simon C M, Kim J, Gomez-Gualdron D A, Camp J S, Chung Y G, Martin R L, Mercado R, Deem M W, Gunter D, Haranczyk M. . (2015). The materials genome in action: identifying the performance limits for methane storage. Energy & Environmental Science, 8(4): 1190–1199

[70]

Tang Y, Huang H, Li J, Xue W, Zhong C. (2019). IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 7(31): 18324–18329

[71]

Valizadeh B, Nguyen T N, Smit B, Stylianou K C. (2018). Porous metal-organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 28(30): 1801596

[72]

Wang F, Harindintwali J D, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L. . (2021). Technologies and perspectives for achieving carbon neutrality. Innovation, 2(4): 100180

[73]

Wang S, Cheng M, Luo L, Ji X, Liu C, Bi K, Zhou L. (2023). High-throughput screening of metal-organic frameworks for hydrogen purification. Chemical Engineering Journal, 451: 138436–138446

[74]

Wang S, Xue X, Cheng M, Chen S, Liu C, Zhou L, Bi K, Ji X. (2022). High-throughput computational screening of metal-organic frameworks for CH4, CH2 separation by synergizing machine learning and molecular simulation. Acta Chimica Sinica, 80(5): 614–624

[75]

Wang Z, Huang Y, Yang J, Li Y, Zhuang Q, Gu J. (2017). The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine. Dalton Transactions (Cambridge, England), 46(23): 7412–7420

[76]

Wei J, Chu X, Sun X Y, Xu K, Deng H X, Chen J, Wei Z, Lei M. (2019). Machine learning in materials science. InfoMat, 1(3): 338–358

[77]

Wiechert A I, Ladshaw A P, Moon J, Abney C W, Nan Y, Choi S, Liu J, Tavlarides L L, Tsouris C, Yiacoumi S. (2020). Capture of iodine from nuclear-fuel-reprocessing off-gas: influence of aging on a reduced silver mordenite adsorbent after exposure to NO/NO2. ACS Applied Materials & Interfaces, 12(44): 49680–49693

[78]

Willems T F, Rycroft C H, Kazi M, Meza J C, Haranczyk M. (2012). Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials, 149(1): 134–141

[79]

Wu X, Che Y, Chen L, Amigues E J, Wang R, He J, Dong H, Ding L. (2022). Mapping the porous and chemical structure-function relationships of trace CH3I capture by metal-organic frameworks using machine learning. ACS Applied Materials & Interfaces, 14(41): 47209–47221

[80]

Xie W, Cui D, Zhang S R, Xu Y H, Jiang D L. (2019). Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 6(8): 1571–1595

[81]

Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Maksoud W A, Zhao L, Cavallo L, Pinnau I, Han Y. (2022). Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nature Communications, 13(1): 2878

[82]

Xu Y, Lu Z, Sun W, Zhang X. (2021). Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics. Frontiers of Environmental Science & Engineering, 15(6): 131

[83]

Yan Y, Shi Z, Li H, Li L, Yang X, Li S, Liang H, Qiao Z. (2022). Machine learning and in-silico screening of metal-organic frameworks for O2/N2 dynamic adsorption and separation. Chemical Engineering Journal, 427: 131604

[84]

Yang H, Huang X, Hu J, Thompson J R, Flower R J. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111

[85]

Yao R X, Cui X, Jia X X, Zhang F Q, Zhang X M. (2016). A luminescent zinc(II) metal-organic framework (MOF) with conjugated π-electron ligand for high iodine capture and nitro-explosive detection. Inorganic Chemistry, 55(18): 9270–9275

[86]

Yao Z, Sánchez-Lengeling B, Bobbitt N S, Bucior B J, Kumar S G H, Collins S P, Burns T, Woo T K, Farha O K, Snurr R Q. . (2021). Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 3(1): 76–86

[87]

Yu L, Liu H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5: 1205–1224

[88]

Yuan Y, Dong X, Chen Y, Zhang M. (2016). Computational screening of iodine uptake in zeolitic imidazolate frameworks in a water-containing system. Physical Chemistry Chemical Physics, 18(33): 23246–23256

[89]

Zhang X, Da Silva I, Godfrey H G W, Callear S K, Sapchenko S A, Cheng Y, Vitórica-Yrezábal I, Frogley M D, Cinque G, Tang C C. . (2017). Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks. Journal of the American Chemical Society, 139(45): 16289–16296

[90]

Zhang X, Maddock J, Nenoff T M, Denecke M A, Yang S, Schröder M. (2022a). Adsorption of iodine in metal-organic framework materials. Chemical Society Reviews, 51(8): 3243–3262

[91]

Zhang Z, Cheng M, Xiao X, Bi K, Song T, Hu K Q, Dai Y, Zhou L, Liu C, Ji X. . (2022b). Machine-learning-guided identification of coordination polymer ligands for crystallizing separation of Cs/Sr. ACS Applied Materials & Interfaces, 14(29): 33076–33084

[92]

Zhao Z, Cheng G, Zhang Y, Han B, Wang X. (2021). Metal-organic-framework based functional materials for uranium recovery: performance optimization and structure/functionality-activity relationships. ChemPlusChem, 86(8): 1177–1192

[93]

Zhu Q, Gu A, Li D, Zhang T, Xiang L, He M. (2021b). Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm. Frontiers of Environmental Science & Engineering, 15(6): 136

[94]

Zhu Y, Qi Y, Guo X, Zhang M, Jia Z, Xia C, Liu N, Bai C, Ma L, Wang Q. (2021a). A crystalline covalent organic framework embedded with a crystalline supramolecular organic framework for efficient iodine capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 9(31): 16961–16966

[95]

Zimmermann M B, Hess S Y, Molinari L, De Benoist B, Delange F, Braverman L E, Fujieda K, Ito Y, Jooste P L, Moosa K. . (2004). New reference values for thyroid volume by ultrasound in iodine-sufficient schoolchildren: a World Health Organization/nutrition for health and development iodine deficiency study group report. American Journal of Clinical Nutrition, 79(2): 231–237

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7078KB)

Supplementary files

FSE-23049-OF-CM_suppl_1

4611

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/