A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning

Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi

PDF(7078 KB)
PDF(7078 KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (12) : 148. DOI: 10.1007/s11783-023-1748-3
RESEARCH ARTICLE
RESEARCH ARTICLE

A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning

Author information +
History +

Highlights

● Screened 8862 metal-organic frameworks for I2 capture via molecular simulation.

● Ranked metal-organic frameworks on predicted I2 uptake and identified Top 10.

● Established quantitative structure-property relationships via machine learning.

Abstract

We performed large-scale molecular simulation to screen and identify metal-organic framework materials for gaseous iodine capture, as part of our ongoing effort in addressing management and handling issues of various radionuclides in the grand scheme of spent nuclear fuel reprocessing. Starting from the computation-ready experimental (CoRE) metal-organic frameworks (MOFs) database, grand canonical Monte Carlo simulation was employed to predict the iodine uptake values of the MOFs. A ranking list of MOFs based on their iodine uptake capabilities was generated, with the Top 10 candidates identified and their respective adsorption sites visualized. Subsequently, machine learning was used to establish structure-property relationships to correlate MOFs’ various structural and chemical features with their corresponding performances in iodine capture, yielding interpretable common features and design rules for viable MOF adsorbents. The research strategy and framework of the present study could aid the development of high-performing MOF adsorbents for capture and recovery of radioactive iodine, and moreover, other volatile environmentally hazardous species.

Graphical abstract

Keywords

Iodine capture / Metal-organic framework / Large-scale screening / Molecular simulation / Machine learning

Cite this article

Download citation ▾
Min Cheng, Zhiyuan Zhang, Shihui Wang, Kexin Bi, Kong-qiu Hu, Zhongde Dai, Yiyang Dai, Chong Liu, Li Zhou, Xu Ji, Wei-qun Shi. A large-scale screening of metal-organic frameworks for iodine capture combining molecular simulation and machine learning. Front. Environ. Sci. Eng., 2023, 17(12): 148 https://doi.org/10.1007/s11783-023-1748-3

References

[1]
Altintas C, Altundal O F, Keskin S, Yildirim R. (2021). Machine learning meets with metal organic frameworks for gas storage and separation. Journal of Chemical Information and Modeling, 61(5): 2131–2146
CrossRef Google scholar
[2]
Altintas C, Erucar I, Keskin S. (2018). High-throughput computational screening of the metal organic framework database for CH4/H2 separations. ACS Applied Materials & Interfaces, 10(4): 3668–3679
CrossRef Google scholar
[3]
Audi G, Bersillon O, Blachot J, Wapstra A H. (2003). The Nubase evaluation of nuclear and decay properties. Nuclear Physics. A, 729(1): 3–128
CrossRef Google scholar
[4]
BifarinO O (2022). Interpretable machine learning with tree-based shapley additive explanations: application to metabolomics datasets for binary classification. bioRxiv: 2022.2009.2019.508550
CrossRef Google scholar
[5]
Breiman L. (2001). Random forests. Machine Learning, 45(1): 5–32
CrossRef Google scholar
[6]
Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R. . (2020). A mobile robotic chemist. Nature, 583(7815): 237–241
CrossRef Google scholar
[7]
Cai J, Luo J, Wang S, Yang S. (2018). Feature selection in machine learning: a new perspective. Neurocomputing, 300(26): 70–79
CrossRef Google scholar
[8]
Chapman K W, Chupas P J, Nenoff T M. (2010). Radioactive iodine capture in silver-containing mordenites through nanoscale silver iodide formation. Journal of the American Chemical Society, 132(26): 8897–8899
CrossRef Google scholar
[9]
Chen P, He X, Pang M, Dong X, Zhao S, Zhang W. (2020). Iodine capture using Zr-based metal–organic frameworks (Zr-MOFs): adsorption performance and mechanism. ACS Applied Materials & Interfaces, 12(18): 20429–20439
CrossRef Google scholar
[10]
Chen Z, Kirlikovali K O, Li P, Farha O K. (2022). Reticular chemistry for highly porous metal–organic frameworks: the chemistry and applications. Accounts of Chemical Research, 55(4): 579–591
CrossRef Google scholar
[11]
Cheng M, Wang S, Zhang Z, Zhou L, Liu C, Dai Y, Dang Y, Ji X. (2023). High-throughput virtual screening of metal–organic frameworks for xenon recovery from exhaled anesthetic gas mixture. Chemical Engineering Journal, 451: 138218
CrossRef Google scholar
[12]
Chong S, Lee S, Kim B, Kim J. (2020). Applications of machine learning in metal-organic frameworks. Coordination Chemistry Reviews, 423: 213487
CrossRef Google scholar
[13]
Chu S, Majumdar A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411): 294–303
CrossRef Google scholar
[14]
Chung Y G, Haldoupis E, Bucior B J, Haranczyk M, Lee S, Zhang H, Vogiatzis K D, Milisavljevic M, Ling S, Camp J S. . (2019). Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. Journal of Chemical & Engineering Data, 64(12): 5985–5998
CrossRef Google scholar
[15]
CohenJ (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, 79–81
[16]
Colón Y J, Snurr R Q. (2014). High-throughput computational screening of metal-organic frameworks. Chemical Society Reviews, 43(16): 5735–5749
CrossRef Google scholar
[17]
Daglar H, Gulbalkan H C, Habib N, Durak O, Uzun A, Keskin S. (2023). Integrating molecular simulations with machine learning guides in the design and synthesis of [BMIM][BF4]/MOF composites for CO2/N2 separation. ACS Applied Materials & Interfaces, 15(13): 17421–17431
CrossRef Google scholar
[18]
Demir H, Daglar H, Gulbalkan H C, Aksu G O, Keskin S. (2023). Recent advances in computational modeling of MOFs: from molecular simulations to machine learning. Coordination Chemistry Reviews, 484: 215112
CrossRef Google scholar
[19]
Dubbeldam D, Calero S, Ellis D E, Snurr R Q. (2016). RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Molecular Simulation, 42(2): 81–101
CrossRef Google scholar
[20]
Falaise C, Volkringer C, Facqueur J, Bousquet T, Gasnot L, Loiseau T. (2013). Capture of iodine in highly stable metal–organic frameworks: a systematic study. Chemical Communications (Cambridge), 49(87): 10320–10322
CrossRef Google scholar
[21]
Feng M, Cheng M, Ji X, Zhou L, Dang Y, Bi K, Dai Z, Dai Y. (2022). Finding the optimal CO2 adsorption material: prediction of multi-properties of metal-organic frameworks (MOFs) based on DeepFM. Separation and Purification Technology, 302: 122111
CrossRef Google scholar
[22]
Fernandez M, Woo T K, Wilmer C E, Snurr R Q. (2013). Large-scale quantitative structure-property relationship (QSPR) analysis of methane storage in metal–organic frameworks. Journal of Physical Chemistry C, 117(15): 7681–7689
CrossRef Google scholar
[23]
FrenkelD, Smit B (2002). Understanding molecular simulation (2nd Edition). Frenkel D, Smit B. eds. San Diego: Academic Press, 111–137
[24]
Furukawa H, Cordova K E, O’keeffe M, Yaghi O M. (2013). The chemistry and applications of metal-organic frameworks. Science, 341(6149): 1230444
CrossRef Google scholar
[25]
Gładysiak A, Nguyen T N, Spodaryk M, Lee J H, Neaton J B, Züttel A, Stylianou K C. (2019). Incarceration of iodine in a pyrene-based metal–organic framework. Chemistry–A European Journal, 25(2): 501–506
[26]
Granda J M, Donina L, Dragone V, Long D L, Cronin L. (2018). Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature, 559(7714): 377–381
CrossRef Google scholar
[27]
Greathouse J A, Allendorf M D. (2008). Force field validation for molecular dynamics simulations of IRMOF-1 and other isoreticular zinc carboxylate coordination polymers. Journal of Physical Chemistry C, 112(15): 5795–5802
CrossRef Google scholar
[28]
Guo B, Li F, Wang C, Zhang L, Sun D. (2019). A rare (3,12)-connected zirconium metal–organic framework with efficient iodine adsorption capacity and pH sensing. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 7(21): 13173–13179
CrossRef Google scholar
[29]
Haldoupis E, Watanabe T, Nair S, Sholl D S. (2012). Quantifying large effects of framework flexibility on diffusion in MOFs: CH4 and CO2 in ZIF-8. ChemPhysChem, 13(15): 3449–3452
CrossRef Google scholar
[30]
Harrison R L. (2010). Introduction to Monte Carlo simulation. AIP Conference Proceedings, 1204(1): 17–21
CrossRef Google scholar
[31]
He J, Duan J, Shi H, Huang J, Huang J, Yu L, Zeller M, Hunter A D, Xu Z. (2014). Immobilization of volatile and corrosive iodine monochloride (ICl) and I2 reagents in a stable metal-organic framework. Inorganic Chemistry, 53(13): 6837–6843
CrossRef Google scholar
[32]
He L, Chen L, Dong X, Zhang S, Zhang M, Dai X, Liu X, Lin P, Li K, Chen C. . (2021). A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem, 7(3): 699–714
CrossRef Google scholar
[33]
Hill D J. (2008). Nuclear energy for the future. Nature Materials, 7(9): 680–682
CrossRef Google scholar
[34]
Huang Y, Chen J, Duan Q, Feng Y, Luo R, Wang W, Liu F, Bi S, Lee J. (2022). A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning. Frontiers of Environmental Science & Engineering, 16(3): 38
CrossRef Google scholar
[35]
Huve J, Ryzhikov A, Nouali H, Lalia V, Augé G, Daou T J. (2018). Porous sorbents for the capture of radioactive iodine compounds: a review. RSC Advances, 8(51): 29248–29273
CrossRef Google scholar
[36]
Jablonka K M, Ongari D, Moosavi S M, Smit B. (2020). Big-data science in porous materials: materials genomics and machine learning. Chemical Reviews, 120(16): 8066–8129
CrossRef Google scholar
[37]
Jiang H, Alezi D, Eddaoudi M. (2021). A reticular chemistry guide for the design of periodic solids. Nature Reviews. Materials, 6(6): 466–487
CrossRef Google scholar
[38]
Jiao L, Seow J Y R, Skinner W S, Wang Z U, Jiang H L. (2019). Metal–organic frameworks: structures and functional applications. Materials Today, 27: 43–68
CrossRef Google scholar
[39]
Joss L, Müller E A. (2019). Machine learning for fluid property correlations: classroom examples with MATLAB. Journal of Chemical Education, 96(4): 697–703
CrossRef Google scholar
[40]
Lee Y, Barthel S D, Dłotko P, Moosavi S M, Hess K, Smit B. (2017). Quantifying similarity of pore-geometry in nanoporous materials. Nature Communications, 8(1): 15396
CrossRef Google scholar
[41]
Li B, Dong X, Wang H, Ma D, Tan K, Jensen S, Deibert B J, Butler J, Cure J, Shi Z. . (2017). Capture of organic iodides from nuclear waste by metal-organic framework-based molecular traps. Nature Communications, 8(1): 485
CrossRef Google scholar
[42]
Li J, Li L, Tong Y W, Wang X. (2023). Understanding and optimizing the gasification of biomass waste with machine learning. Green Chemical Engineering, 4(1): 123–133
CrossRef Google scholar
[43]
Li J, Zhang L, Li C, Tian H, Ning J, Zhang J, Tong Y W, Wang X. (2022). Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production. ACS ES&T Engineering, 2(4): 642–652
CrossRef Google scholar
[44]
Li J, Zhang W, Liu T, Yang L, Li H, Peng H, Jiang S, Wang X, Leng L. (2021). Machine learning aided bio-oil production with high energy recovery and low nitrogen content from hydrothermal liquefaction of biomass with experiment verification. Chemical Engineering Journal, 425: 130649
CrossRef Google scholar
[45]
Li J R, Sculley J, Zhou H C. (2012). Metal-organic frameworks for separations. Chemical Reviews, 112(2): 869–932
CrossRef Google scholar
[46]
Liu Y M, Merlet C, Smit B. (2019). Carbon with regular pore geometry yield fundamental insights into supercapacitor charge storage. ACS Central Science, 5(11): 1813–1823
CrossRef Google scholar
[47]
Liu Z, Deng Z, He G, Wang H, Zhang X, Lin J, Qi Y, Liang X. (2022). Challenges and opportunities for carbon neutrality in China. Nature Reviews Earth & Environment, 3(2): 141–155
CrossRef Google scholar
[48]
LundbergS M, Lee S I (2017a). A unified approach to interpreting model predictions, Proceedings of the 31st International Conference on Neural Information Processing Systems, 4768–4777
[49]
LundbergS M, Lee S I (2017b). Consistent feature attribution for tree ensembles. ArXiv, abs/1706.06060
[50]
Mai H, Le T C, Chen D, Winkler D A, Caruso R A. (2022). Machine learning in the development of adsorbents for clean energy application and greenhouse gas capture. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 9(36): 2203899
CrossRef Google scholar
[51]
Majumdar S, Moosavi S M, Jablonka K M, Ongari D, Smit B. (2021). Diversifying databases of metal organic frameworks for high-throughput computational screening. ACS Applied Materials & Interfaces, 13(51): 61004–61014
CrossRef Google scholar
[52]
Marshall R J, Griffin S L, Wilson C, Forgan R S. (2016). Stereoselective halogenation of integral unsaturated C–C bonds in chemically and mechanically robust Zr and Hf MOFs. Chemistry–A European Journal, 22(14): 4870–4877
CrossRef Google scholar
[53]
Moghadam P Z, Li A, Liu X W, Bueno-Perez R, Wang S D, Wiggin S B, Wood P A, Fairen-Jimenez D. (2020). Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD). Chemical Science (Cambridge), 11(32): 8373–8387
CrossRef Google scholar
[54]
Moghadam P Z, Li A, Wiggin S B, Tao A, Maloney A G P, Wood P A, Ward S C, Fairen-Jimenez D. (2017). Development of a Cambridge structural database subset: a collection of metal-organic frameworks for past, present, and future. Chemistry of Materials, 29(7): 2618–2625
CrossRef Google scholar
[55]
Nandanwar S U, Coldsnow K, Utgikar V, Sabharwall P, Eric Aston D. (2016). Capture of harmful radioactive contaminants from off-gas stream using porous solid sorbents for clean environment: a review. Chemical Engineering Journal, 306: 369–381
CrossRef Google scholar
[56]
Orhan I B, Daglar H, Keskin S, Le T C, Babarao R. (2022). Prediction of O2/N2 selectivity in metal–organic frameworks via high-throughput computational screening and machine learning. ACS Applied Materials & Interfaces, 14(1): 736–749
CrossRef Google scholar
[57]
Palansooriya K N, Li J, Dissanayake P D, Suvarna M, Li L, Yuan X, Sarkar B, Tsang D C W, Rinklebe J, Wang X. . (2022). Prediction of soil heavy metal immobilization by biochar using machine learning. Environmental Science & Technology, 56(7): 4187–4198
CrossRef Google scholar
[58]
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V. . (2011). Scikit-learn: machine learning in Python. Journal of Machine Learning Research, 12(85): 2825–2830
[59]
Peng D Y, Robinson D B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1): 59–64
CrossRef Google scholar
[60]
Pérez-Pellitero J, Amrouche H, Siperstein F R, Pirngruber G, Nieto-Draghi C, Chaplais G, Simon-Masseron A, Bazer-Bachi D, Peralta D, Bats N. (2010). Adsorption of CO2, CH4, and N2 on zeolitic imidazolate frameworks: experiments and simulations. Chemistry–A European Journal, 16(5): 1560–1571
CrossRef Google scholar
[61]
Pétuya R, Durdy S, Antypov D, Gaultois M W, Berry N G, Darling G R, Katsoulidis A P, Dyer M S, Rosseinsky M J. (2022). Machine-learning prediction of metal–organic framework guest accessibility from linker and metal chemistry. Angewandte Chemie International Edition, 61(9): e202114573
CrossRef Google scholar
[62]
Poinssot C, Bourg S, Ouvrier N, Combernoux N, Rostaing C, Vargas-Gonzalez M, Bruno J. (2014). Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles. Energy, 69: 199–211
CrossRef Google scholar
[63]
Polat H M, Kavak S, Kulak H, Uzun A, Keskin S. (2020). CO2 separation from flue gas mixture using [BMIM][BF4]/MOF composites: linking high-throughput computational screening with experiments. Chemical Engineering Journal, 394: 124916
CrossRef Google scholar
[64]
Raccuglia P, Elbert K C, Adler P D F, Falk C, Wenny M B, Mollo A, Zeller M, Friedler S A, Schrier J, Norquist A J. (2016). Machine-learning-assisted materials discovery using failed experiments. Nature, 533(7601): 73–76
CrossRef Google scholar
[65]
Rappe A K, Casewit C J, Colwell K S, Goddard W A III, Skiff W M. (1992). UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. Journal of the American Chemical Society, 114(25): 10024–10035
CrossRef Google scholar
[66]
SekerkaR F (2015). Thermal Physics. Amsterdam: Elsevier
[67]
ShevchenkoA P, AlexandrovE V, GolovA A, BlatovaO A, Duyunova A S, BlatovV A (2020). Topology versus porosity: what can reticular chemistry tell us about free space in metal–organic frameworks? Chemical Communications (Cambridge), 56(67): 9616–9619
CrossRef Google scholar
[68]
Shi L, Li J, Palansooriya K N, Chen Y, Hou D, Meers E, Tsang D C W, Wang X, Ok Y S. (2023). Modeling phytoremediation of heavy metal contaminated soils through machine learning. Journal of Hazardous Materials, 441: 129904
CrossRef Google scholar
[69]
Simon C M, Kim J, Gomez-Gualdron D A, Camp J S, Chung Y G, Martin R L, Mercado R, Deem M W, Gunter D, Haranczyk M. . (2015). The materials genome in action: identifying the performance limits for methane storage. Energy & Environmental Science, 8(4): 1190–1199
CrossRef Google scholar
[70]
Tang Y, Huang H, Li J, Xue W, Zhong C. (2019). IL-induced formation of dynamic complex iodide anions in IL@MOF composites for efficient iodine capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 7(31): 18324–18329
CrossRef Google scholar
[71]
Valizadeh B, Nguyen T N, Smit B, Stylianou K C. (2018). Porous metal-organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Advanced Functional Materials, 28(30): 1801596
CrossRef Google scholar
[72]
Wang F, Harindintwali J D, Yuan Z, Wang M, Wang F, Li S, Yin Z, Huang L, Fu Y, Li L. . (2021). Technologies and perspectives for achieving carbon neutrality. Innovation, 2(4): 100180
[73]
Wang S, Cheng M, Luo L, Ji X, Liu C, Bi K, Zhou L. (2023). High-throughput screening of metal-organic frameworks for hydrogen purification. Chemical Engineering Journal, 451: 138436–138446
CrossRef Google scholar
[74]
Wang S, Xue X, Cheng M, Chen S, Liu C, Zhou L, Bi K, Ji X. (2022). High-throughput computational screening of metal-organic frameworks for CH4, CH2 separation by synergizing machine learning and molecular simulation. Acta Chimica Sinica, 80(5): 614–624
CrossRef Google scholar
[75]
Wang Z, Huang Y, Yang J, Li Y, Zhuang Q, Gu J. (2017). The water-based synthesis of chemically stable Zr-based MOFs using pyridine-containing ligands and their exceptionally high adsorption capacity for iodine. Dalton Transactions (Cambridge, England), 46(23): 7412–7420
CrossRef Google scholar
[76]
Wei J, Chu X, Sun X Y, Xu K, Deng H X, Chen J, Wei Z, Lei M. (2019). Machine learning in materials science. InfoMat, 1(3): 338–358
CrossRef Google scholar
[77]
Wiechert A I, Ladshaw A P, Moon J, Abney C W, Nan Y, Choi S, Liu J, Tavlarides L L, Tsouris C, Yiacoumi S. (2020). Capture of iodine from nuclear-fuel-reprocessing off-gas: influence of aging on a reduced silver mordenite adsorbent after exposure to NO/NO2. ACS Applied Materials & Interfaces, 12(44): 49680–49693
CrossRef Google scholar
[78]
Willems T F, Rycroft C H, Kazi M, Meza J C, Haranczyk M. (2012). Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Microporous and Mesoporous Materials, 149(1): 134–141
CrossRef Google scholar
[79]
Wu X, Che Y, Chen L, Amigues E J, Wang R, He J, Dong H, Ding L. (2022). Mapping the porous and chemical structure-function relationships of trace CH3I capture by metal-organic frameworks using machine learning. ACS Applied Materials & Interfaces, 14(41): 47209–47221
CrossRef Google scholar
[80]
Xie W, Cui D, Zhang S R, Xu Y H, Jiang D L. (2019). Iodine capture in porous organic polymers and metal–organic frameworks materials. Materials Horizons, 6(8): 1571–1595
CrossRef Google scholar
[81]
Xie Y, Pan T, Lei Q, Chen C, Dong X, Yuan Y, Maksoud W A, Zhao L, Cavallo L, Pinnau I, Han Y. (2022). Efficient and simultaneous capture of iodine and methyl iodide achieved by a covalent organic framework. Nature Communications, 13(1): 2878
CrossRef Google scholar
[82]
Xu Y, Lu Z, Sun W, Zhang X. (2021). Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics. Frontiers of Environmental Science & Engineering, 15(6): 131
CrossRef Google scholar
[83]
Yan Y, Shi Z, Li H, Li L, Yang X, Li S, Liang H, Qiao Z. (2022). Machine learning and in-silico screening of metal-organic frameworks for O2/N2 dynamic adsorption and separation. Chemical Engineering Journal, 427: 131604
CrossRef Google scholar
[84]
Yang H, Huang X, Hu J, Thompson J R, Flower R J. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
CrossRef Google scholar
[85]
Yao R X, Cui X, Jia X X, Zhang F Q, Zhang X M. (2016). A luminescent zinc(II) metal-organic framework (MOF) with conjugated π-electron ligand for high iodine capture and nitro-explosive detection. Inorganic Chemistry, 55(18): 9270–9275
CrossRef Google scholar
[86]
Yao Z, Sánchez-Lengeling B, Bobbitt N S, Bucior B J, Kumar S G H, Collins S P, Burns T, Woo T K, Farha O K, Snurr R Q. . (2021). Inverse design of nanoporous crystalline reticular materials with deep generative models. Nature Machine Intelligence, 3(1): 76–86
CrossRef Google scholar
[87]
Yu L, Liu H. (2004). Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research, 5: 1205–1224
[88]
Yuan Y, Dong X, Chen Y, Zhang M. (2016). Computational screening of iodine uptake in zeolitic imidazolate frameworks in a water-containing system. Physical Chemistry Chemical Physics, 18(33): 23246–23256
CrossRef Google scholar
[89]
Zhang X, Da Silva I, Godfrey H G W, Callear S K, Sapchenko S A, Cheng Y, Vitórica-Yrezábal I, Frogley M D, Cinque G, Tang C C. . (2017). Confinement of iodine molecules into triple-helical chains within robust metal-organic frameworks. Journal of the American Chemical Society, 139(45): 16289–16296
CrossRef Google scholar
[90]
Zhang X, Maddock J, Nenoff T M, Denecke M A, Yang S, Schröder M. (2022a). Adsorption of iodine in metal-organic framework materials. Chemical Society Reviews, 51(8): 3243–3262
CrossRef Google scholar
[91]
Zhang Z, Cheng M, Xiao X, Bi K, Song T, Hu K Q, Dai Y, Zhou L, Liu C, Ji X. . (2022b). Machine-learning-guided identification of coordination polymer ligands for crystallizing separation of Cs/Sr. ACS Applied Materials & Interfaces, 14(29): 33076–33084
CrossRef Google scholar
[92]
Zhao Z, Cheng G, Zhang Y, Han B, Wang X. (2021). Metal-organic-framework based functional materials for uranium recovery: performance optimization and structure/functionality-activity relationships. ChemPlusChem, 86(8): 1177–1192
CrossRef Google scholar
[93]
Zhu Q, Gu A, Li D, Zhang T, Xiang L, He M. (2021b). Online recognition of drainage type based on UV-vis spectra and derivative neural network algorithm. Frontiers of Environmental Science & Engineering, 15(6): 136
CrossRef Google scholar
[94]
Zhu Y, Qi Y, Guo X, Zhang M, Jia Z, Xia C, Liu N, Bai C, Ma L, Wang Q. (2021a). A crystalline covalent organic framework embedded with a crystalline supramolecular organic framework for efficient iodine capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 9(31): 16961–16966
CrossRef Google scholar
[95]
Zimmermann M B, Hess S Y, Molinari L, De Benoist B, Delange F, Braverman L E, Fujieda K, Ito Y, Jooste P L, Moosa K. . (2004). New reference values for thyroid volume by ultrasound in iodine-sufficient schoolchildren: a World Health Organization/nutrition for health and development iodine deficiency study group report. American Journal of Clinical Nutrition, 79(2): 231–237
CrossRef Google scholar

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 22176135, C.L.). Additionally, this research was supported by the Fundamental Research Funds for the Central Universities in China (No. YJ201976, C.L.) and start-up funds from the School of Chemical Engineering, Sichuan University (C.L.).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-023-1748-3and is accessible for authorized users.

Data Accessibility Statement

Additional data supporting the findings of this study are available from the corresponding author [C.L.] on request.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7078 KB)

Accesses

Citations

Detail

Sections
Recommended

/