Semi-clathrate hydrate based carbon dioxide capture and separation techniques
Lijuan Gu, Hailong Lu
Semi-clathrate hydrate based carbon dioxide capture and separation techniques
● Structural and thermodynamical properties of semi-clathrate hydrate are summarized.
● Properties of quaternary salts and gas mixture hydrate are summarized.
● Challenges persist in the application of semi-clathrate hydrates for carbon capture and separation.
CO2 is considered as the main contributor to global warming, and hydrate enclathration is an efficient way for carbon capture and separation (CCS). Semi-clathrate hydrate (SCH) is a type of clathrate hydrate capable of encaging CO2 molecules under mild temperature and pressure conditions. SCH has numerous unique advantages, including high thermal stability, selective absorption of gas molecules with proper size and recyclable, making it a promising candidate for CCS. While SCH based CCS technology is in the developing stage and great efforts have to be conducted to improve the performance that is determined by their thermodynamical and structural properties. This review summarizes and compares the thermodynamic and structural properties of SCH and quaternary salt hydrates with gas mixtures to be captured and separated. Based on the description of the physical properties of SCH and hydrate of quaternary salts with gas mixture, the CO2 capture and separation from fuel gas, flue gas and biogas with SCH are reviewed. The review focuses on the use of tetra-n-butyl ammonium halide and tetra-n-butyl phosphonium halide, which are the current application hotspots. This review aims to provide guidance for the future applications of SCH.
Semi-clathrate hydrate / Tetra-n-butyl ammonium halide / Tetra-n-butyl phosphonium halide / Structure / Thermodynamical properties / CO2 capture and separation
[1] |
Acosta H Y, Bishnoi P R, Clarke M A. (2011). Experimental measurements of the thermodynamic equilibrium conditions of tetra-n-butylammonium bromide semiclathrates formed from synthetic landfill gases. Journal of Chemical & Engineering Data, 56(1): 69–73
CrossRef
Google scholar
|
[2] |
Adisasmito S, Frank R J III, Sloan E D Jr. (1991). Hydrates of carbon dioxide and methane mixtures. Journal of Chemical & Engineering Data, 36(1): 68–71
CrossRef
Google scholar
|
[3] |
Aladko L S, Dyadin Y A. (1996). Clathrate formation in the Bu4NClNH4ClH2O system. Mendeleev Communications, 6(5): 198–200
CrossRef
Google scholar
|
[4] |
AladkoL SDyadin Y ARodionovaT VTerekhovaI S (2003). Effect of size and shape of cations and anions on clathrate formation in the system: halogenides of quaterly ammonium bases and water. Journal of Molecular Liquids, 106(2−3): 229−238
|
[5] |
Arjmandi M, Chapoy A, Tohidi B. (2007). Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide. Journal of Chemical & Engineering Data, 52(6): 2153–2158
CrossRef
Google scholar
|
[6] |
Babu P, Chin W I, Kumar R, Linga P. (2014a). Systematic evaluation of tetra-n-butylammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process. Industrial & Engineering Chemistry Research, 53(12): 4878–4887
CrossRef
Google scholar
|
[7] |
Babu P, Datta S, Kumar R, Linga P. (2014b). Impact of experimental pressure and temperature on semiclathrate hydrate formation for pre-combustion capture of CO2 using tetra-n-butyl ammonium nitrate. Energy, 78: 458–464
CrossRef
Google scholar
|
[8] |
Babu P, Linga P, Kumar R, Englezos P. (2015). A review of the hydrate based gas separation (HBGS) process for carbon dioxide pre-combustion capture. Energy, 85: 261–279
CrossRef
Google scholar
|
[9] |
Babu P, Yao M, Datta S, Kumar R, Linga P. (2014c). Thermodynamic and kinetic verification of tetra-n-butylammonium nitrate (TBANO3) as a promoter for the clathrate process applicable to precombustion carbon dioxide capture. Environmental Science & Technology, 48(6): 3550–3558
CrossRef
Google scholar
|
[10] |
BelandriaVMohammadi A HEslamimaneshARichonDSánchez-Mora M FGalicia-LunaL A (2012). Phase equilibrium measurements for semi-clathrate hydrates of the (CO2+N2+tetra-n-butylammonium bromide) aqueous solution systems: Part 2. Fluid Phase Equilibria, 322–323: 105–112
|
[11] |
Ben-Mansour R, Habib M A, Bamidele O E, Basha M, Qasem N A A, Peedikakkal A, Laoui T, Ali M. (2016). Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations: a review. Applied Energy, 161: 225–255
CrossRef
Google scholar
|
[12] |
Castellani B, Rossi F, Filipponi M, Nicolini A. (2014). Hydrate-based removal of carbon dioxide and hydrogen sulphide from biogas mixtures: experimental investigation and energy evaluations. Biomass and Bioenergy, 70: 330–338
CrossRef
Google scholar
|
[13] |
Chapoy A, Anderson R, Tohidi B. (2007). Low-pressure molecular hydrogen storage in semi-clathrate hydrates of quaternary ammonium compounds. Journal of the American Chemical Society, 129(4): 746–747
CrossRef
Google scholar
|
[14] |
Chapoy A, Gholinezhad J, Tohidi B. (2010). Experimental clathrate dissociations for the hydrogen+water and hydrogen+tetrabutylammonium bromide+water systems. Journal of Chemical & Engineering Data, 55(11): 5323–5327
CrossRef
Google scholar
|
[15] |
Chazallon B, Ziskind M, Carpentier Y, Focsa C. (2014). CO2 capture using semi-clathrates of quaternary ammonium salt: structure change induced by CO2 and N2 enclathration. Journal of Physical Chemistry B, 118(47): 13440–13452
CrossRef
Google scholar
|
[16] |
Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G. (2013). Activated carbons and amine-modified materials for carbon dioxide capture: a review. Frontiers of Environmental Science & Engineering., 7(3): 326–340
CrossRef
Google scholar
|
[17] |
Darbouret M, Cournil M, Herri J M. (2005). Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants. International Journal of Refrigeration, 28(5): 663–671
CrossRef
Google scholar
|
[18] |
DavidsonD W (1973). Water: A Comprehensive Treatise. New York: Plenum Press
|
[19] |
Davis S J, Lewis N S, Shaner M, Aggarwal S, Arent D, Azevedo I L, Benson S M, Bradley T, Brouwer J, Chiang Y M.
CrossRef
Google scholar
|
[20] |
Deschamps J, Dalmazzone D. (2009). Dissociation enthalpies and phase equilibrium for TBAB semi-clathrate hydrates of N2, CO2, N2+CO2 and CH4+CO2. Journal of Thermal Analysis and Calorimetry, 98(1): 113–118
CrossRef
Google scholar
|
[21] |
Deschamps J, Dalmazzone D. (2010). Hydrogen storage in semiclathrate hydrates of tetrabutyl ammonium chloride and tetrabutyl phosphonium bromide. Journal of Chemical & Engineering Data, 55(9): 3395–3399
CrossRef
Google scholar
|
[22] |
Duc N H, Chauvy F, Herri J M. (2007). CO2 capture by hydrate crystallization: a potential solution for gas emission of steelmaking industry. Energy Conversion and Management, 48(4): 1313–1322
CrossRef
Google scholar
|
[23] |
Dyadin Y A, Terekhova I S, Polyanskaya T M, Aladko L S. (1977). Clathrate hydrates of tetrabutylammonium fluoride and oxalate. Journal of Structural Chemistry, 17(4): 566–571
CrossRef
Google scholar
|
[24] |
Dyadin Y A, Udachin K A. (1984). Clathrate formation in water-peralkylonium salts systems. Journal of Inclusion Phenomena, 2(1): 61–72
|
[25] |
Dyadin Y A, Udachin K A. (1987). Clathrate polyhydrates of peralkylonium salts and their analogs. Journal of Structural Chemistry, 28(3): 394–432
CrossRef
Google scholar
|
[26] |
Fan S, Li Q, Nie J, Lang X, Wen Y, Wang Y. (2013). Semiclathrate hydrate phase equilibrium for CO2/CH4 gas mixtures in the presence of tetrabutylammonium halide (bromide, chloride, or fluoride). Journal of Chemical & Engineering Data, 58(11): 3137–3141
CrossRef
Google scholar
|
[27] |
Fan S, Li S, Wang J, Lang X, Wang Y. (2009). Efficient capture of CO2 from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates. Energy & Fuels, 23(8): 4202–4208
CrossRef
Google scholar
|
[28] |
Fan S, Long X, Lang X, Wang Y, Chen J. (2016). CO2 capture from CH4/CO2 mixture gas with tetra-n-butylammonium bromide semi-clathrate hydrate through a pressure recovery method. Energy & Fuels, 30(10): 8529–8534
CrossRef
Google scholar
|
[29] |
Favre E. (2022). Membrane separation processes and post-combustion carbon capture: state of the art and prospects. Membranes (Basel), 12(9): 884
CrossRef
Google scholar
|
[30] |
Font-Palma C, Cann D, Udemu C. (2021). Review of cryogenic carbon capture innovations and their potential applications. C, 7(3): 730058
CrossRef
Google scholar
|
[31] |
Friedlingstein P, Jones M W, O’Sullivan M, Andrew R M, Bakker D C E, Hauck J, Le Quéré C, Peters G P, Peters W, Pongratz J.
CrossRef
Google scholar
|
[32] |
Gaponenko L A, Solodovnikov S F, Dyadin Y A, Aladko L S, Polyanskaya T M. (1984). Crystallographic study of tetra-n-butylammonium bromide polyhydrates. Journal of Structural Chemistry, 25(1): 157–159
CrossRef
Google scholar
|
[33] |
Gholinezhad J, Chapoy A, Tohidi B. (2011). Separation and capture of carbon dioxide from CO2/H2 syngas mixture using semi-clathrate hydrates. Chemical Engineering Research & Design, 89(9): 1747–1751
CrossRef
Google scholar
|
[34] |
Nakayama H. (1982). Hydrates of organic compounds. VI. Heats of fusion and of solution of quaternary ammonium halide clathrate hydrates. Bulletin of the Chemical Society of Japan, 55(2): 389–393
CrossRef
Google scholar
|
[35] |
Nakayama H. (1983). Hydrates of organic compounds. VII. The effect of anions on the formation of clathrate hydrates of tetrabutyl ammonium salts. Bulletin of the Chemical Society of Japan, 56(3): 877–880
CrossRef
Google scholar
|
[36] |
NakayamaH (1987). Hydrates of organic compounds. XI. Determination of the melting point and hydration numbers of the clathrate-like hydrate of tetrabutyl ammonium chloride by differential scanning calorimetry. Bulletin of the Chemical Society of Japan, 60(3): 839−843
|
[37] |
Hashimoto H, Ozeki H, Yamamoto Y, Muromachi S. (2020). CO2 capture from flue gas based on tetra-n-butylammonium fluoride hydrates at near ambient temperature. ACS Omega, 5(13): 7115–7123
CrossRef
Google scholar
|
[38] |
Hashimoto H, Yamaguchi T, Kinoshita T, Muromachi S. (2017a). Gas separation of flue gas by tetra-n-butylammonium bromide hydrates under moderate pressure conditions. Energy, 129: 292–298
CrossRef
Google scholar
|
[39] |
Hashimoto H, Yamaguchi T, Ozeki H, Muromachi S. (2017b). Structure-driven CO2 selectivity and gas capacity of ionic clathrate hydrates. Scientific Reports, 7(1): 17216
CrossRef
Google scholar
|
[40] |
Hashimoto S, Murayama S, Sugahara T, Sato H, Ohgaki K. (2006). Thermodynamic and Raman spectroscopic studies on H2+tetrahydrofuran+water and H2+tetra-n-butyl ammonium bromide+water mixtures containing gas hydrates. Chemical Engineering Science, 61(24): 7884–7888
CrossRef
Google scholar
|
[41] |
Hashimoto S, Sugahara T, Moritoki M, Sato H, Ohgaki K. (2008). Thermodynamic stability of hydrogen + tetra-n-butyl ammonium bromide mixed gas hydrate in nonstoichiometric aqueous solutions. Chemical Engineering Science, 63(4): 1092–1097
CrossRef
Google scholar
|
[42] |
Herri J M, Bouchemoua A, Kwaterski M, Brântuas P, Galfré A, Bouillot B, Douzet J, Ouabbas Y, Cameirao A. (2014). Enhanced selectivity of the separation of CO2 from N2 during crystallization of semi-clathrates from quaternary ammonium solutions. Oil & Gas Science and Technology, 69(5): 947–968
|
[43] |
Höhne G W H, Cammenga H K, Eysel W, Gmelin E, Hemminger W. (1990). The temperature calibration of scanning calorimeters. Thermochimica Acta, 160(1): 1–12
CrossRef
Google scholar
|
[44] |
Horii S, Ohmura R. (2018). Continuous separation of CO2 from a H2+CO2 gas mixture using clathrate hydrate. Applied Energy, 225: 78–84
CrossRef
Google scholar
|
[45] |
Iarikov D D, Hacarlioglu P, Oyama S T. (2011). Supported room temperature ionic liquid membranes for CO2/CH4 separation. Chemical Engineering Journal, 166(1): 401–406
CrossRef
Google scholar
|
[46] |
Iino K, Sakakibara Y, Suginaka T, Ohmura R. (2014). Phase equilibria for the ionic semiclathrate hydrate formed with tetrabutyl phosphonium chloride plus CO2, CH4, or N2. Journal of Chemical Thermodynamics, 71: 133–136
CrossRef
Google scholar
|
[47] |
Mohammadi A, Pakzad M, Mohammadi A H, Jahangiri A. (2018). Kinetics of (TBAF+CO2) semi-clathrate hydrate formation in the presence and absence of SDS. Petroleum Science, 15(2): 375–384
CrossRef
Google scholar
|
[48] |
Jeffrey G A, McMullan R K. (1967). The clathrate hydrates. Progress in Inorganic Chemistry, 8: 43–108
|
[49] |
Jin Y, Kida M, Nagao J. (2019). Crystal phase conditions of semiclathrate hydrates in nitrogen–tetra-n-butylammonium bromide–water systems below 1 MPa. Journal of Chemical & Engineering Data, 64(6): 2843–2848
CrossRef
Google scholar
|
[50] |
Joshi A, Sangwai J S, Das K, Sami N A. (2013). Experimental investigations on the phase equilibrium of semiclathrate hydrates of carbon dioxide in TBAB with small amount of surfactant. International Journal of Energy and Environmental Engineering, 4(1): 11
CrossRef
Google scholar
|
[51] |
Kamata Y, Yamakoshi Y, Ebinuma T, Oyama H, Shimada W, Narita H. (2005). Hydrogen sulfide separation using tetra-n-butyl ammonium bromide semi-clathrate (TBAB). Energy Fuels, 19(4): 1717–1722
CrossRef
Google scholar
|
[52] |
KárászováM ZachBPetrusová ZČervenkaVBobákMŠyc MIzákP (2020). Post-combustion carbon capture by membrane separation. Separation and Purification Technology, 238: 116448 (Review)
|
[53] |
Kharrat M, Dalmazzone D. (2003). Experimental determination of stability conditions of methane hydrate in aqueous calcium chloride solutions using high pressure differential scanning calorimetry. Journal of Chemical Thermodynamics, 35(9): 1489–1505
CrossRef
Google scholar
|
[54] |
Kida M, Jin Y, Nagao J. (2019). Changes in the 13C NMR spectra of tetra-n-butylammonium chloride by clathrate hydration. Chemical Physics, 522: 233–237
CrossRef
Google scholar
|
[55] |
Kim H, Zheng J, Yin Z, Babu P, Kumar S, Tee J, Linga P. (2023). Semi-clathrate hydrate slurry as a cold energy storage and transport medium: rheological study, energy analysis and enhancement by amino acid. Energy, 264: 126226
CrossRef
Google scholar
|
[56] |
Kim H, Zheng J, Yin Z, Kumar S, Tee J, Seo Y, Linga P. (2022). An electrical resistivity-based method for measuring semi-clathrate hydrate formation kinetics: application for cold storage and transport. Applied Energy, 308: 118397
CrossRef
Google scholar
|
[57] |
Kim S, Ko G, Kim K S, Seo Y. (2020). Phase equilibria of tetra-iso-amylammonium bromide (TiAAB) semiclathrates with CO2, N2, or CO2+N2. Journal of Chemical Thermodynamics, 142: 106024
CrossRef
Google scholar
|
[58] |
Kim S, Seo Y. (2015). Semiclathrate-based CO2 capture from flue gas mixtures: an experimental approach with thermodynamic and Raman spectroscopic analyses. Applied Energy, 154: 987–994
CrossRef
Google scholar
|
[59] |
Kim S M, Lee J D, Lee H J, Lee E K, Kim Y. (2011). Gas hydrate formation method to capture the carbon dioxide for pre-combustion process in IGCC plant. International Journal of Hydrogen Energy, 36(1): 1115–1121
CrossRef
Google scholar
|
[60] |
Klara S M, Srivastava R D. (2002). U.S. DOE integrated collaborative technology development program for CO2 separation and capture. Environment and Progress, 21(4): 247–253
CrossRef
Google scholar
|
[61] |
Kobori T, Muromachi S, Ohmura R. (2015a). Phase equilibrium for ionic semiclathrate hydrates formed in the system of water + tetra-n-butylammonium bromide pressurized with carbon dioxide. Journal of Chemical & Engineering Data, 60(2): 299–303
CrossRef
Google scholar
|
[62] |
Kobori T, Muromachi S, Yamasaki T, Takeya S, Yamamoto Y, Alavi S, Ohmura R. (2015b). Phase behavior and structural characterization of ionic clathrate hydrate formed with tetra-n-butylphosphonium hydroxide: discovery of primitive crystal structure. Crystal Growth & Design, 15(8): 3862–3867
CrossRef
Google scholar
|
[63] |
KomarovV YRodionova T VTerekhovaI SKuratievaN V (2007). The cubic superstructure-I of tetrabutylammonium fluoride (C4H9)4NF·29.7H2O clathrate hydrate. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 59(1-2): 11-15
|
[64] |
Komatsu H, Maruyama K, Yamagiwa K, Tajima H. (2019). Separation processes for carbon dioxide capture with semi-clathrate hydrate slurry based on phase equilibria of CO2+N2+tetra-n-butylammonium bromide+water systems. Chemical Engineering Research & Design, 150: 289–298
CrossRef
Google scholar
|
[65] |
Koyama R, Hotta A, Ohmura R. (2020). Equilibrium temperature and dissociation heat of tetrabutylphosphonium acrylate (TBPAc) ionic semi-clathrate hydrate as a medium for the hydrate-based thermal energy storage system. Journal of Chemical Thermodynamics, 144: 106088
CrossRef
Google scholar
|
[66] |
Lee S, Lee Y, Park S, Kim Y, Lee J D, Seo Y. (2012). Thermodynamic and spectroscopic identification of guest gas enclathration in the double tetra-n-butylammonium fluoride semiclathrates. Journal of Physical Chemistry B, 116(30): 9075–9081
CrossRef
Google scholar
|
[67] |
Lee S, Lee Y, Park S, Seo Y. (2010). Phase Equilibria of semiclathrate hydrate for nitrogen in the presence of tetra-n-butylammonium bromide and fluoride. Journal of Chemical & Engineering Data, 55(12): 5883–5886
CrossRef
Google scholar
|
[68] |
Lee S, Park S, Lee Y, Lee J, Lee H, Seo Y. (2011). Guest gas enclathration in semiclathrates of tetra-n-butylammonium bromide: stability condition and spectroscopic analysis. Langmuir, 27(17): 10597–10603
CrossRef
Google scholar
|
[69] |
Li Q, Fan S, Wang Y, Lang X, Chen J. (2015). CO2 removal from biogas based on hydrate formation with tetra-n-butylammonium bromide solution in the presence of 1-butyl-3-methylimidazolium tetrafluoroborate. Energy & Fuels, 29(5): 3143–3148
CrossRef
Google scholar
|
[70] |
Li S, Fan S, Wang J, Lang X, Liang D. (2009). CO2 capture from binary mixture via forming hydrate with the help of tetra-n-butylammonium bromide. Journal of Natural Gas Chemistry, 18(1): 15–20
CrossRef
Google scholar
|
[71] |
Li S, Fan S, Wang J, Lang X, Wang Y. (2010a). Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride). Journal of Chemical & Engineering Data, 55(9): 3212–3215
CrossRef
Google scholar
|
[72] |
Li X S, Xia Z M, Chen Z Y, Wu H J. (2011). Precombustion capture of carbon dioxide and hydrogen with a one-stage hydrate/membrane process in the presence of tetra-n-butylammonium bromide (TBAB). Energy & Fuels, 25(3): 1302–1309
CrossRef
Google scholar
|
[73] |
Li X S, Xia Z M, Chen Z Y, Yan K F, Li G, Wu H J. (2010b). Equilibrium hydrate formation conditions for the mixtures of CO2 + H2 + tetrabutyl ammonium bromide. Journal of Chemical & Engineering Data, 55(6): 2180–2184
CrossRef
Google scholar
|
[74] |
Li X S, Xia Z M, Chen Z Y, Yan K F, Li G, Wu H J. (2010c). Gas hydrate formation process for capture of carbon dioxide from fuel gas mixture. Industrial & Engineering Chemistry Research, 49(22): 11614–11619
CrossRef
Google scholar
|
[75] |
Li Z, Zhong D L, Lu Y Y, Yan J, Zou Z L. (2017). Preferential enclathration of CO2 into tetra-n-butylphosphonium bromide semiclathrate hydrate in moderate operating conditions: application for CO2 capture from shale gas. Applied Energy, 199: 370–381
CrossRef
Google scholar
|
[76] |
Li Z, Zhong D L, Zheng W Y, Yan J, Lu Y Y, Yi D T. (2019). Morphology and kinetic investigation of TBAB/TBPB semiclathrate hydrates formed with a CO2+CH4 gas mixture. Journal of Crystal Growth, 511: 79–88
CrossRef
Google scholar
|
[77] |
Lin W, Dalmazzone D, Fürst W, Delahaye A, Fournaison L, Clain P. (2013). Accurate DSC measurement of the phase transition temperature in the TBPB–water system. Journal of Chemical Thermodynamics, 61: 132–137
CrossRef
Google scholar
|
[78] |
LinWDelahayeA FournaisonL (2008). Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2+TBAB. Fluid Phase Equilibria, 264(1–2): 220–227
|
[79] |
Linga P, Clarke M A. (2017). A review of reactor designs and materials employed for increasing the rate of gas hydrate formation. Energy & Fuels, 31(1): 1–13
CrossRef
Google scholar
|
[80] |
Linga P, Kumar R, Englezos P. (2007a). The clathrate hydrate process for post and pre-combustion capture of carbon dioxide. Journal of Hazardous Materials, 149(3): 625–629
CrossRef
Google scholar
|
[81] |
Linga P, Kumar R, Englezos P. (2007b). Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chemical Engineering Science, 62(16): 4268–4276
CrossRef
Google scholar
|
[82] |
LipkowskiJKomarov V YRodionovaT VDyadinY AAladkoL S (2002). The structure of tetrabutylammonium bromide hydrate (C4H9)4NBr·21/3H2O. Journal of Supramolecular Chemistry, 2(4–5): 435–439
|
[83] |
Liu F P, Li A R, Qing S L, Luo Z D, Ma Y L. (2022). Formation kinetics, mechanism of CO2 hydrate and its applications. Renewable & Sustainable Energy Reviews, 159: 112221
CrossRef
Google scholar
|
[84] |
Lundgren J O, Olovsson I. (1967). Hydrogen-bond studies. XVI. The crystal structure of chloride trihydrate. Acta Crystallographica, 23(6): 971–976
CrossRef
Google scholar
|
[85] |
Lundgren J O, Olovsson I. (1968). Hydrogen-bond studies. XXX. The crystal structure of hydrogen bromide tetrahydrate, (H7O3)+(H9O4)+2Br·−+H2O. Journal of Chemical Physics, 49(3): 1068–1074
CrossRef
Google scholar
|
[86] |
Ma Z W, Zhang P, Bao H S, Deng S. (2016). Review of fundamental properties of CO2 hydrates and CO2 capture and separation using hydration method. Renewable & Sustainable Energy Reviews, 53: 1273–1302
CrossRef
Google scholar
|
[87] |
MaZ WZhang PWangR ZFuruiSXiG N (2010). Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes. International Journal of Heat and Mass Transfer, 53(19–20): 3745–3757
|
[88] |
Machida H, Sugahara T, Hirasawa I. (2018). Memory effect in tetra-n-butyl ammonium bromide semiclathrate hydrate reformation: the existence of solution structures after hydrate decomposition. CrystEngComm, 20(24): 3328–3334
CrossRef
Google scholar
|
[89] |
Machida H, Sugahara T, Masunaga H, Hirasawa I. (2020). Calorimetric and small-angle X-ray scattering studies on the memory effect in the tetra-n-butylammonium bromide semiclathrate hydrate system. Journal of Crystal Growth, 533: 125476
CrossRef
Google scholar
|
[90] |
Majumdar A, Maini B, Bishnoi P R, Clarke M A. (2012). Three-phase equilibrium conditions of TiAAB semiclathrates formed from N2, CO2, and their mixtures. Journal of Chemical & Engineering Data, 57(8): 2322–2327
CrossRef
Google scholar
|
[91] |
ManakovARodionova TTerekhovaIKomarovVBurdinA SizikovA (2011). Structural and physico-chemical studies of ionic clathrate hydrates of tetrabutyland tetraisoamylammonium salts. In: Proceedings of the 7th International Conference on Gas Hydrates, Edinburgh, Scotland, United Kingdom, July 17–21
|
[92] |
Mayoufi N, Dalmazzone D, Fürst W, Delahaye A, Fournaison L. (2010). CO2 enclathration in hydrates of peralkyl-(ammonium/phosphonium) salts: stability conditions and dissociation enthalpies. Journal of Chemical & Engineering Data, 55(3): 1271–1275
CrossRef
Google scholar
|
[93] |
Mayoufi N, Dalmazzone D, Delahaye A, Clain P, Fournaison L, Fürst W. (2011). Experimental data on phase behavior of simple tetrabutylphosphonium bromide (TBPB) and mixed CO2+TBPB semiclathrate hydrates. Journal of Chemical & Engineering Data, 56(6): 2987–2993
CrossRef
Google scholar
|
[94] |
McMullan R, Jeffrey G A. (1959). Hydrates of the tetra n-butyl and tetra i-amyl quaternary ammonium salts. Journal of Chemical Physics, 31(5): 1231–1234
CrossRef
Google scholar
|
[95] |
McMullan R K, Bonamico M, Jeffrey G A. (1963). Polyhedral clathrate hydrates. V. Structure of the tetra-n-butyl ammonium fluoride hydrate. Journal of Chemical Physics, 39(12): 3295–3310
CrossRef
Google scholar
|
[96] |
Mehta A P, Makogon T Y, Burruss R C, Wendlandt R F, Sloan E D. (1996). A composite phase diagram of structure H hydrates using Schreinemakers’ geometric approach. Fluid Phase Equilibria, 121(1–2): 141–165
CrossRef
Google scholar
|
[97] |
Meysel P, Oellrich L, Raj Bishnoi P, Clarke M A. (2011). Experimental investigation of incipient equilibrium conditions for the formation of semi-clathrate hydrates from quaternary mixtures of (CO2+N2+TBAB+H2O). Journal of Chemical Thermodynamics, 43(10): 1475–1479
CrossRef
Google scholar
|
[98] |
MiwaYMatsumura KTakeyaKTaniA (2018). THz-TDS Study on Tetrabutylammonium Bromide Hydrate, 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, September 9–14
|
[99] |
Miyamoto T, Koyama R, Kurokawa N, Hotta A, Alavi S, Ohmura R. (2020). Thermophysical property measurements of tetrabutylphosphonium oxalate (TBPOx) ionic semiclathrate hydrate as a media for the thermal energy storage system. Frontiers in Chemistry, 8: 547
CrossRef
Google scholar
|
[100] |
Mohammadi A, Manteghian M, Mohammadi A H. (2013a). Dissociation data of semiclathrate hydrates for the systems of tetra-n-butylammonium fluoride (TBAF)+methane+water, TBAF+carbon dioxide+water, and TBAF+nitrogen+water. Journal of Chemical & Engineering Data, 58(12): 3545–3550
CrossRef
Google scholar
|
[101] |
Mohammadi A H, Eslamimanesh A, Belandria V, Richon D. (2011). Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2+tetra-n-butylammonium bromide aqueous solution. Journal of Chemical & Engineering Data, 56(10): 3855–3865
CrossRef
Google scholar
|
[102] |
Mohammadi A H, Eslamimanesh A, Belandria V, Richon D, Naidoo P, Ramjugernath D. (2012). Phase equilibrium measurements for semi-clathrate hydrates of the (CO2+N2+tetra-n-butylammonium bromide) aqueous solution system. Journal of Chemical Thermodynamics, 46: 57–61
CrossRef
Google scholar
|
[103] |
Mohammadi A H, Eslamimanesh A, Richon D. (2013b). Semi-clathrate hydrate phase equilibrium measurements for the CO2+H2/CH4+tetra-n-butylammonium bromide aqueous solution system. Chemical Engineering Science, 94: 284–290
CrossRef
Google scholar
|
[104] |
Momeni K, Jomekian A, Bazooyar B. (2020). Semi-clathrate hydrate phase equilibria of carbon dioxide in presence of tetra-n-butyl-ammonium chloride (TBAC): experimental measurements and thermodynamic modeling. Fluid Phase Equilibria, 508: 112445
CrossRef
Google scholar
|
[105] |
Muromachi S. (2020). Phase equilibrium data for semiclathrate hydrates formed with tetra-n-butylammonium (bromide or chloride) and tetra-n-butylphosphonium (bromide or chloride) under hydrogen+carbon dioxide pressure. Fluid Phase Equilibria, 506: 112389
CrossRef
Google scholar
|
[106] |
Muromachi S. (2021). CO2 capture properties of semiclathrate hydrates formed with tetra-n-butylammonium and tetra-n-butylphosphonium salts from H2+CO2 mixed gas. Energy, 223: 120015
CrossRef
Google scholar
|
[107] |
Muromachi S, Hashimoto H, Maekawa T, Takeya S, Yamamoto Y. (2016a). Phase equilibrium and characterization of ionic clathrate hydrates formed with tetra-n-butylammonium bromide and nitrogen gas. Fluid Phase Equilibria, 413: 249–253
CrossRef
Google scholar
|
[108] |
Muromachi S, Kida M, Takeya S, Yamamoto Y, Ohmura R. (2015). Characterization of the ionic clathrate hydrate of tetra-n-butylammonium acrylate. Canadian Journal of Chemistry, 93(9): 954–959
CrossRef
Google scholar
|
[109] |
Muromachi S, Takeya S. (2017). Gas-containing semiclathrate hydrate formation by tetra-n-butylammonium carboxylates: acrylate and butyrate. Fluid Phase Equilibria, 441: 59–63
CrossRef
Google scholar
|
[110] |
Muromachi S, Takeya S. (2018). Design of thermophysical properties of semiclathrate hydrates formed by tetra-n-butylammonium hydroxybutyrate. Industrial & Engineering Chemistry Research, 57(8): 3059–3064
CrossRef
Google scholar
|
[111] |
Muromachi S, Takeya S. (2019). Thermodynamic properties and crystallographic characterization of semiclathrate hydrates formed with tetra-n-butylammonium glycolate. ACS Omega, 4(4): 7317–7322
CrossRef
Google scholar
|
[112] |
Muromachi S, Takeya S, Alavi S, Ripmeester J A. (2022). Structural CO2 capture preference of semiclathrate hydrate formed with tetra-n-butylammonium chloride. CrystEngComm, 24(24): 4366–4371
CrossRef
Google scholar
|
[113] |
Muromachi S, Takeya S, Yamamoto Y, Ohmura R. (2014a). Characterization of tetra-n-butylphosphonium bromide semiclathrate hydrate by crystal structure analysis. CrystEngComm, 16(10): 2056–2060
CrossRef
Google scholar
|
[114] |
Muromachi S, Udachin K A, Alavi S, Ohmura R, Ripmeester J A. (2016b). Selective occupancy of methane by cage symmetry in TBAB ionic clathrate hydrate. Chemical Communications (Cambridge), 52(32): 5621–5624
CrossRef
Google scholar
|
[115] |
Muromachi S, Udachin K A, Shin K, Alavi S, Moudrakovski I L, Ohmura R, Ripmeester J A. (2014b). Guest-induced symmetry lowering of an ionic clathrate material for carbon capture. Chemical Communications (Cambridge), 50(78): 11476–11479
CrossRef
Google scholar
|
[116] |
Oshima M, Jin Y, Kida M, Nagao J. (2020). Thermodynamic and crystallographic properties depending on hydration numbers in tetra-n-butylammonium chloride semiclathrate hydrates. Journal of Chemical Thermodynamics, 142: 106004
CrossRef
Google scholar
|
[117] |
Oshima M, Kida M, Nagao J. (2018). Hydration numbers and thermal properties of tetra-n-butylammonium bromide semiclathrate hydrates determined by ion chromatography and differential scanning calorimetry. Journal of Chemical Thermodynamics, 123: 32–37
CrossRef
Google scholar
|
[118] |
Oshima M, Shimada W, Hashimoto S, Tani A, Ohgaki K. (2010). Memory effect on semi-clathrate hydrate formation: a case study of tetragonal tetra-n-butyl ammonium bromide hydrate. Chemical Engineering Science, 65(20): 5442–5446
CrossRef
Google scholar
|
[119] |
OyamaHEbinuma TShimadaWTakeyaSNagao JUchidaTNaritaH (2003). An experimental study of gas-hydrate formation by measuring viscosity and infrared spectra. Canadian Journal of Physics, 81(1–2): 485–492
|
[120] |
OyamaHShimada WEbinumaTKamataYTakeyaS UchidaTNagao JNaritaH (2005). Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals. Fluid Phase Equilibria, 234(1–2): 131–135
|
[121] |
Park S, Lee S, Lee Y, Seo Y. (2013). CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts. Environmental Science & Technology, 47(13): 7571–7577
CrossRef
Google scholar
|
[122] |
Rakkappan S R, Sivan S, Praveen B, Naarendharan M, Sai Sudhir P. (2021). Thermal property, charging and discharging characteristics study on tetra-n-butyl ammonium bromide semi-clathrate hydrates for air-conditioning cold storage and secondary refrigerant applications. Journal of Chemical Thermodynamics, 153: 106275
CrossRef
Google scholar
|
[123] |
Rodionova T, Komarov V, Villevald G, Aladko L, Karpova T, Manakov A. (2010). Calorimetric and structural studies of tetrabutylammonium chloride ionic clathrate hydrates. Journal of Physical Chemistry B, 114(36): 11838–11846
CrossRef
Google scholar
|
[124] |
Rodionova T V, Komarov V Y, Villevald G V, Karpova T D, Kuratieva N V, Manakov A Y. (2013). Calorimetric and structural studies of tetrabutylammonium bromide ionic clathrate hydrates. Journal of Physical Chemistry B, 117(36): 10677–10685
CrossRef
Google scholar
|
[125] |
RodionovaT VManakovA YSteninY G VillevaldG VKarpovaT D (2008). The heats of fusion of tetrabutylammonium fluoride ionic clathrate hydrates. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 61(1–2): 107–111
|
[126] |
Rodionova T V, Terekhova I S, Manakov A Y. (2022). Ionic clathrate hydrates of tetraalkylammonium/phosphonium salts: structures, properties, some applications, and perspectives. Energy & Fuels, 36(18): 10458–10477
CrossRef
Google scholar
|
[127] |
Rodriguez C T, Le Q D, Focsa C, Pirim C, Chazallon B. (2020). Influence of crystallization parameters on guest selectivity and structures in a CO2-based separation process using TBAB semi-clathrate hydrates. Chemical Engineering Journal, 382: 122867
CrossRef
Google scholar
|
[128] |
Sakamoto H, Sato K, Shiraiwa K, Takeya S, Nakajima M, Ohmura R. (2011). Synthesis, characterization and thermal-property measurements of ionic semi-clathrate hydrates formed with tetrabutylphosphonium chloride and tetrabutylammonium acrylate. RSC Advances, 1(2): 315–322
CrossRef
Google scholar
|
[129] |
Sakamoto J, Hashimoto S, Tsuda T, Sugahara T, Inoue Y, Ohgaki K. (2008). Thermodynamic and Raman spectroscopic studies on hydrogen+tetra-n-butyl ammonium fluoride semi-clathrate hydrates. Chemical Engineering Science, 63(24): 5789–5794
CrossRef
Google scholar
|
[130] |
Sales Silva L P, Dalmazzone D, Stambouli M, Lesort A L, Arpentinier P, Trueba A, Fürst W. (2016). Phase equilibria of semi-clathrate hydrates of tetra-n-butyl phosphonium bromide at atmospheric pressure and in presence of CH4 and CO2+CH4. Fluid Phase Equilibria, 413: 28–35
CrossRef
Google scholar
|
[131] |
Sánchez-Mora M F, Galicia-Luna L A, Pimentel-Rodas A, Mohammadi A H. (2019). Experimental Determination of gas hydrates dissociation conditions in CO2/N2+ethanol/1-propanol/TBAB/TBAF+water systems. Journal of Chemical & Engineering Data, 64(2): 763–770
CrossRef
Google scholar
|
[132] |
Sato K, Tokutomi H, Ohmura R. (2013). Phase equilibrium of ionic semiclathrate hydrates formed with tetrabutylammonium bromide and tetrabutylammonium chloride. Fluid Phase Equilibria, 337: 115–118
CrossRef
Google scholar
|
[133] |
Shimada J, Shimada M, Sugahara T, Tsunashima K. (2019). Phase equilibrium relations of tetra-n-butylphosphonium propionate and butyrate semiclathrate hydrates. Fluid Phase Equilibria, 485: 61–66
CrossRef
Google scholar
|
[134] |
Shimada J, Shimada M, Sugahara T, Tsunashima K, Tani A, Tsuchida Y, Matsumiya M. (2018). Phase equilibrium relations of semiclathrate hydrates based on tetra-n-butylphosphonium formate, acetate, and lactate. Journal of Chemical & Engineering Data, 63(9): 3615–3620
CrossRef
Google scholar
|
[135] |
ShimadaWEbinuma TOyamaHKamataYNaritaH (2005a). Free-growth forms and growth kinetics of tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals. Journal of Crystal Growth, 274(1–2): 246–250
|
[136] |
Shimada W, Ebinuma T, Oyama H, Kamata Y, Takeya S, Uchida T, Nagao J, Narita H. (2003). Separation of gas molecule using tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals. Japanese Journal of Applied Physics, 42(2A): L129–131
|
[137] |
Shimada W, Shiro M, Kondo H, Takeya S, Oyama H, Ebinuma T, Narita H. (2005b). Tetra-n-butylammonium bromide-water (1/38). Acta Crystallographica. Section C, Crystal Structure Communications, 61(2): o65–o66
CrossRef
Google scholar
|
[138] |
Stoporev A, Mendgaziev R, Artemova M, Semenov A, Novikov A, Kiiamov A, Emelianov D, Rodionova T, Fakhrullin R, Shchukin D. (2020). Ionic clathrate hydrates loaded into a cryogel–halloysite clay composite for cold storage. Applied Clay Science, 191: 105618
CrossRef
Google scholar
|
[139] |
Stoporev A S, Kiiamov A G, Varfolomeev M A, Rodionova T V, Manakov A Y. (2021). Metastable ionic cubic structure I clathrate hydrate formed with tetra-n-butylammonium bromide. Mendeleev Communications, 31(1): 17–19
CrossRef
Google scholar
|
[140] |
Sugahara T, Machida H. (2017). Dissociation and nucleation of tetra-n-butyl ammonium bromide semi-clathrate hydrates at high pressures. Journal of Chemical & Engineering Data, 62(9): 2721–2725
CrossRef
Google scholar
|
[141] |
Suginaka T, Sakamoto H, Iino K, Sakakibara Y, Ohmura R. (2013). Phase equilibrium for ionic semiclathrate hydrate formed with CO2, CH4, or N2 plus tetrabutylphosphonium bromide. Fluid Phase Equilibria, 344: 108–111
CrossRef
Google scholar
|
[142] |
Suginaka T, Sakamoto H, Iino K, Takeya S, Nakajima M, Ohmura R. (2012). Thermodynamic properties of ionic semiclathrate hydrate formed with tetrabutylphosphonium bromide. Fluid Phase Equilibria, 317: 25–28
CrossRef
Google scholar
|
[143] |
Sun Q, Guo X, Liu A, Liu B, Huo Y, Chen G. (2011a). Experimental study on the separation of CH4 and N2 via hydrate formation in TBAB solution. Industrial & Engineering Chemistry Research, 50(4): 2284–2288
CrossRef
Google scholar
|
[144] |
Sun Z G, Jiang C M, Xie N L. (2008). Hydrate equilibrium conditions for tetra-n-butyl ammonium bromide. Journal of Chemical & Engineering Data, 53(10): 2375–2377
CrossRef
Google scholar
|
[145] |
Sun Z G, Liu C G, Zhou B, Xu L Z. (2011b). Phase equilibrium and latent heat of tetra-n-butylammonium chloride semi-clathrate hydrate. Journal of Chemical & Engineering Data, 56(8): 3416–3418
CrossRef
Google scholar
|
[146] |
Tang J, Zeng D, Wang C, Chen Y, He L, Cai N. (2013). Study on the influence of SDS and THF on hydrate-based gas separation performance. Chemical Engineering Research & Design, 91(9): 1777–1782
CrossRef
Google scholar
|
[147] |
Tohidi B, Burgass R, Danesh A, Todd A. (1994). Experimental study on the causes of disagreements in methane hydrate dissociation data. Annals of the New York Academy of Sciences, 715(1): 532–534
CrossRef
Google scholar
|
[148] |
Tohidi B, Burgass R W, Danesh A, Østergaard K K, Todd A C. (2000). Improving the accuracy of gas hydrate dissociation point measurements. Annals of the New York Academy of Sciences, 912(1): 924–931
CrossRef
Google scholar
|
[149] |
Trueba A T, Radović I R, Zevenbergen J F, Peters C J, Kroon M C. (2013). Kinetic measurements and in situ Raman spectroscopy study of the formation of TBAF semi-hydrates with hydrogen and carbon dioxide. International Journal of Hydrogen Energy, 38(18): 7326–7334
CrossRef
Google scholar
|
[150] |
UdachinK ALipkowski J (2002). Water-fluorine chains in (n-Bu)4NF·5.5H2O hydrate. Journal of Supramolecular Chemistry, 2(4-5): 449–451
|
[151] |
Veluswamy H P, Chin W I, Linga P. (2014). Clathrate hydrates for hydrogen storage: the impact of tetrahydrofuran, tetra-n-butylammonium bromide and cyclopentane as promoters on the macroscopic kinetics. International Journal of Hydrogen Energy, 39(28): 16234–16243
CrossRef
Google scholar
|
[152] |
Wang F, Fu S, Guo G, Jia Z Z, Luo S J, Guo R B. (2016). Experimental study on hydrate-based CO2 removal from CH4/CO2 mixture. Energy, 104: 76–84
CrossRef
Google scholar
|
[153] |
Wang X, Dennis M. (2015). An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications. Chemical Engineering Science, 137: 938–946
CrossRef
Google scholar
|
[154] |
Wang X, Song C. (2020). Carbon capture from flue gas and the atmosphere: a perspective. Frontiers in Energy Research, 8: 560849
CrossRef
Google scholar
|
[155] |
Wang X, Zhang F, Lipiński W. (2020a). Research progress and challenges in hydrate-based carbon dioxide capture applications. Applied Energy, 269: 114928
CrossRef
Google scholar
|
[156] |
Wang Y, Zhong D L, Li Z, Li J B. (2020b). Application of tetra-n-butylammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases. Energy, 197: 117209
CrossRef
Google scholar
|
[157] |
Wilberforce T, Baroutaji A, Soudan B, Al-Alami A H, Olabi A G. (2019). Outlook of carbon capture technology and challenges. Science of the Total Environment, 657: 56–72
CrossRef
Google scholar
|
[158] |
Xia Z M, Chen Z Y, Li X S, Zhang Y, Yan K F, Lv Q N, Xu C G, Cai J. (2012). Thermodynamic equilibrium conditions for simulated landfill gas hydrate formation in aqueous solutions of additives. Journal of Chemical & Engineering Data, 57(11): 3290–3295
CrossRef
Google scholar
|
[159] |
Xia Z M, Li X S, Chen Z Y, Li G, Yan K F, Xu C G, Lv Q N, Cai J. (2016). Hydrate-based CO2 capture and CH4 purification from simulated biogas with synergic additives based on gas solvent. Applied Energy, 162: 1153–1159
CrossRef
Google scholar
|
[160] |
Xie F M, Li X Y, Zhong D L, Englezos P, Lu G X. (2021). A Calorimetric study on the phase behavior of tetra-n-butyl phosphonium bromide+CO2 semiclathrate hydrate and evaluation of CO2 consumption—impact of a surfactant. Journal of Chemical & Engineering Data, 66(11): 4228–4235
CrossRef
Google scholar
|
[161] |
Xu C G, Zhang S H, Cai J, Chen Z Y, Li X S. (2013). CO2 (carbon dioxide) separation from CO2–H2 (hydrogen) gas mixtures by gas hydrates in TBAB (tetra-n-butyl ammonium bromide) solution and Raman spectroscopic analysis. Energy, 59: 719–725
CrossRef
Google scholar
|
[162] |
Yamauchi Y, Arai Y, Yamasaki T, Endo F, Hotta A, Ohmura R. (2017a). Phase equilibrium temperature and dissociation heat of ionic semiclathrate hydrate formed with tetrabutylammonium butyrate. Fluid Phase Equilibria, 441: 54–58
CrossRef
Google scholar
|
[163] |
Yamauchi Y, Yamasaki T, Endo F, Hotta A, Ohmura R. (2017b). Thermodynamic properties of ionic semiclathrate hydrate formed with tetrabutylammonium propionate. Chemical Engineering & Technology, 40(10): 1810–1816
CrossRef
Google scholar
|
[164] |
Yan J, Lu Y Y, Zhong D L, Qing S L. (2019). Insights into the phase behaviour of tetra-n-butyl ammonium bromide semi-clathrates formed with CO2, (CO2+CH4) using high-pressure DSC. Journal of Chemical Thermodynamics, 137: 101–107
CrossRef
Google scholar
|
[165] |
Yang H, Huang X, Hu J L, Thompson R, Roger J F. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
CrossRef
Google scholar
|
[166] |
Ye N, Zhang P. (2012). Equilibrium data and morphology of tetra-n-butyl ammonium bromide semiclathrate hydrate with carbon dioxide. Journal of Chemical & Engineering Data, 57(5): 1557–1562
CrossRef
Google scholar
|
[167] |
Ye N, Zhang P. (2014a). Phase equilibrium and morphology characteristics of hydrates formed by tetra-n-butyl ammonium chloride and tetra-n-butylphosphonium chloride with and without CO2. Fluid Phase Equilibria, 361: 208–214
CrossRef
Google scholar
|
[168] |
Ye N, Zhang P. (2014b). Phase equilibrium conditions and carbon dioxide separation efficiency of tetra-n-butylphosphonium bromide hydrate. Journal of Chemical & Engineering Data, 59(9): 2920–2926
CrossRef
Google scholar
|
[169] |
Yue G, Liu A, Sun Q, Li X, Lan W, Yang L, Guo X. (2018). The combination of 1-octyl-3-methylimidazolium tetrafluorborate with TBAB or THF on CO2 hydrate formation and CH4 separation from biogas. Chinese Journal of Chemical Engineering, 26(12): 2495–2502
CrossRef
Google scholar
|
[170] |
Zang X, Liang D. (2017). Phase equilibrium data for semiclathrate hydrate of synthesized binary CO2/CH4 gas mixture in tetra-n-butylammonium bromide aqueous solution. Journal of Chemical & Engineering Data, 62(2): 851–856
CrossRef
Google scholar
|
[171] |
Zhang P, Ye N, Zhu H, Xiao X. (2013). Hydrate equilibrium conditions of tetra-n-butylphosphonium bromide+carbon dioxide and the crystal morphologies. Journal of Chemical & Engineering Data, 58(6): 1781–1786
CrossRef
Google scholar
|
[172] |
Zheng J, Bhatnagar K, Khurana M, Zhang P, Zhang B Y, Linga P. (2018). Semiclathrate based CO2 capture from fuel gas mixture at ambient temperature: effect of concentrations of tetra-n-butylammonium fluoride (TBAF) and kinetic additives. Applied Energy, 217: 377–389
CrossRef
Google scholar
|
[173] |
Zheng J, Zhang P, Linga P. (2017). Semiclathrate hydrate process for pre-combustion capture of CO2 at near ambient temperatures. Applied Energy, 194: 267–278
CrossRef
Google scholar
|
[174] |
Zhong D, Englezos P. (2012). Methane separation from coal mine methane gas by tetra-n-butylammonium bromide semiclathrate hydrate formation. Energy & Fuels, 26(4): 2098–2106
CrossRef
Google scholar
|
[175] |
Zhong D L, Wang W C, Zou Z L, Lu Y Y, Yan J, Ding K. (2018). Investigation on methane recovery from low-concentration coal mine gas by tetra-n-butyl ammonium chloride semiclathrate hydrate formation. Applied Energy, 227: 686–693
CrossRef
Google scholar
|
[176] |
Zhou X, Liang D. (2019). Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB·26H2O hydrates. Chemical Engineering Journal, 378(12): 122128
CrossRef
Google scholar
|
[177] |
Zhuang Q, Clements B, Dai J, Carrigan L. (2016). Ten years of research on phase separation absorbents for carbon capture: achievements and next steps. International Journal of Greenhouse Gas Control, 52: 449–460
CrossRef
Google scholar
|
/
〈 | 〉 |