Multimedia distribution and health risk assessment of typical organic pollutants in a retired industrial park

Shijin Wu, Zijing Xiang, Daohui Lin, Lizhong Zhu

PDF(3112 KB)
PDF(3112 KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (11) : 142. DOI: 10.1007/s11783-023-1742-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Multimedia distribution and health risk assessment of typical organic pollutants in a retired industrial park

Author information +
History +

Highlights

● A fine portrayal of organic pollutants in a retired industrial park is provided.

● Key factors affecting the spatial distribution of organic pollutants are unrevaled.

● Risk classification, grading, and management are reached based on risk assessment.

Abstract

The overall cross-media risk evaluation of organic pollutants in retired industrial parks is insufficiently recognized. In this study, 11 semi-volatile organic compounds (SVOCs) and 27 volatile organic compounds (VOCs) were measured in 531 soil and groundwater samples taken from a retired industrial park by coast in Zhejiang Province, China. Total petroleum hydrocarbons (TPHs), Di (2-ethylhexyl) phthalate (DEHP), benzene, and ethylbenzene were identified as the critical pollutants in the soil, while TPHs, 1,2-dichloropropane (1,2-DCP), toluene, benzo[a]anthracene (BaA), and benzo[b]fluoranthene (BbF) were identified as critical pollutants in the groundwater for exceeding China national standards. The spatial correlation between the concentrations of organic pollutants in soil and groundwater was explored by employing the Geodetector model. Based on the results of spatial interpolation, high-risk hotspots regarding soil and groundwater pollution were identified. Moreover, the possible harm to human health of the critical pollutants were also under evaluation. Among various critical pollutants, benzene, ethylbenzene, and DEHP in soil, and 1,2-DCP in groundwater, were the main contributors to the overall health risk of multimedia pollution. This study developed a comprehensive approach to assess the risks posed by specific organic toxicants in various environmental media. The findings of this work can serve as a valuable reference for future management strategies in retired industrial parks.

Graphical abstract

Keywords

Organic pollutants / Retired industrial park / Spatial correlation / Health risk assessment

Cite this article

Download citation ▾
Shijin Wu, Zijing Xiang, Daohui Lin, Lizhong Zhu. Multimedia distribution and health risk assessment of typical organic pollutants in a retired industrial park. Front. Environ. Sci. Eng., 2023, 17(11): 142 https://doi.org/10.1007/s11783-023-1742-9

References

[1]
Ashjar N, Keshavarzi B, Moore F, Soltani N, Hooda P S, Mahmoudi M R. (2021). TPH and PAHs in an oil-rich metropolis in SW Iran: Implication for source apportionment and human health. Human and Ecological Risk Assessment, 28(1): 58–78
CrossRef Google scholar
[2]
Chen R, Li T, Huang C, Yu Y, Zhou L, Hu G, Yang F, Zhang L. (2021). Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park. Environmental Pollution, 289: 117893
CrossRef Google scholar
[3]
Cheng L, Wei W, Guo A, Zhang C, Sha K, Wang R, Wang K, Cheng S. (2022). Health risk assessment of hazardous VOCs and its associations with exposure duration and protection measures for coking industry workers. Journal of Cleaner Production, 379: 134919
CrossRef Google scholar
[4]
Han L, Qian L, Yan J, Liu R, Du Y, Chen M. (2016). A comparison of risk modeling tools and a case study for human health risk assessment of volatile organic compounds in contaminated groundwater. Environmental Science and Pollution Research International, 23(2): 1234–1245
CrossRef Google scholar
[5]
Han W, Gao G, Geng J, Li Y, Wang Y. (2018). Ecological and health risks assessment and spatial distribution of residual heavy metals in the soil of an e-waste circular economy park in Tianjin, China. Chemosphere, 197: 325–335
CrossRef Google scholar
[6]
Hou D, Al-Tabbaa A, O’Connor D, Hu Q, Zhu Y G, Wang L, Kirkwood N, Ok  Y S, Tsang  D C, Bolan N S. . (2023a). Sustainable remediation and redevelopment of brownfield sites. Nature Reviews Earth & Environment, 4: 271–286
CrossRef Google scholar
[7]
HouYLiY TaoHCaoH LiaoXLiu X (2023b). Three-dimensional distribution characteristics of multiple pollutants in the soil at a steelworks mega-site based on multi-source information. Journal of Hazardous Materials, 448: 130934
[8]
Hu G, Liu H, Chen C, Li J, Hou H, Hewage K, Sadiq R. (2021). An integrated geospatial correlation analysis and human health risk assessment approach for investigating abandoned industrial sites. Journal of Environmental Management, 293: 112891
CrossRef Google scholar
[9]
Jenks F G. (1967). The data model concept in statistical mapping. International Yearbook of Cartography, 7: 186–190
[10]
Jiang Y, Chao S, Liu J, Yang Y, Chen Y, Zhang A, Cao H. (2017). Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere, 168: 1658–1668
CrossRef Google scholar
[11]
Jiang Y, Sun Y, Zhang L, Wang X. (2020). Influence factor analysis of soil heavy metal Cd based on the GeoDetector. Stochastic Environmental Research and Risk Assessment, 34(6): 921–930
CrossRef Google scholar
[12]
Junaid M, Jia P P, Tang Y M, Xiong W X, Huang H Y, Strauss P R, Li W G, Pei D S. (2018). Mechanistic toxicity of DEHP at environmentally relevant concentrations (ERCs) and ecological risk assessment in the Three Gorges Reservoir Area, China. Environmental Pollution, 242: 1939–1949
CrossRef Google scholar
[13]
Kang B, Wang D, Du S. (2017). Source identification and degradation pathway of multiple persistent organic pollutants in groundwater at an abandoned chemical site in Hebei, China. Exposure and Health, 9(2): 135–141
CrossRef Google scholar
[14]
Katz S D, Chen H, Fields D M, Beirne E C, Keyes P, Drozd G T, Aeppli C. (2022). Changes in chemical composition and copepod toxicity during petroleum photo-oxidation. Environmental Science & Technology, 56(9): 5552–5562
CrossRef Google scholar
[15]
Khan M A I, Biswas B, Smith E, Naidu R, Megharaj M. (2018). Toxicity assessment of fresh and weathered petroleum hydrocarbons in contaminated soil- a review. Chemosphere, 212: 755–767
CrossRef Google scholar
[16]
Lee S T, Vu C T, Lin C, Chen K S. (2018). High occurrence of BTEX around major industrial plants in Kaohsiung, Taiwan (China). Environmental Forensics, 19(3): 206–216
CrossRef Google scholar
[17]
Li J, Xi B, Cai W, Yang Y, Jia Y, Li X, Lv Y, Lv N, Huan H, Yang J. (2017). Identification of dominating factors affecting vadose zone vulnerability by a simulation method. Scientific Reports, 7(1): 45955
CrossRef Google scholar
[18]
Liao J, Qian X, Liu F, Deng S, Lin H, Liu X, Wei C. (2021). Multiphase distribution and migration characteristics of heavy metals in typical sandy intertidal zones: insights from solid-liquid partitioning. Ecotoxicology and Environmental Safety, 208: 111674
CrossRef Google scholar
[19]
Lin C, Lee C J, Mao W M, Nadim F. (2009). Identifying the potential sources of di-(2-ethylhexyl) phthalate contamination in the sediment of the Houjing River in southern Taiwan (China). Journal of Hazardous Materials, 161(1): 270–275
CrossRef Google scholar
[20]
MEEPRC (2014). National Soil Contamination Survey Report. Beijing: MEEPRC (in Chinese)
[21]
MEEPRC (2019). Technical Guidelines for Risk Assessment of Soil Contamination of Land for Construction. Beijing: MEEPRC (in Chinese)
[22]
Meng Y, Liu W, Fiedler H, Zhang J, Wei X, Liu X, Peng M, Zhang T. (2021). Fate and risk assessment of emerging contaminants in reclaimed water production processes. Frontiers of Environmental Science & Engineering, 15(5): 104
CrossRef Google scholar
[23]
Olawoyin R. (2013). Exploration of the spatial-Composite Risk Index (CRI) for the characterization of toxicokinetics in petrochemical active areas. Chemosphere, 92(9): 1207–1213
CrossRef Google scholar
[24]
Pizzol L, Critto A, Agostini P, Marcomini A. (2011). Regional risk assessment for contaminated sites. Part 2: Ranking of potentially contaminated sites. Environment International, 37(8): 1307–1320
CrossRef Google scholar
[25]
Qiao W, Li R, Tang T, Zuh A A. (2021). Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system. Frontiers of Environmental Science & Engineering, 15(2): 20
CrossRef Google scholar
[26]
Ren H, Su P, Kang W, Ge X, Ma S, Shen G, Chen Q, Yu Y, An T. (2022). Heterologous spatial distribution of soil polycyclic aromatic hydrocarbons and the primary influencing factors in three industrial parks. Environmental Pollution, 310: 119912
CrossRef Google scholar
[27]
RivettM O, Wealthall G P, DeardenR A, McAlaryT A (2011). Review of unsaturated-zone transport and attenuation of volatile organic compound (VOC) plumes leached from shallow source zones. Journal of Contaminant Hydrology, 123(3–4): 130–156
CrossRef Google scholar
[28]
State Council PRC (2016). State Council of China Soil Pollution Prevention and Cleanup Action Plan. Beijing: MEEPRC (in Chinese)
[29]
Su C, Meng J, Zhou Y, Bi R, Chen Z, Diao J, Huang Z, Kan Z, Wang T. (2022). Heavy metals in soils from intense industrial areas in South China: spatial distribution, source apportionment, and risk assessment. Frontiers in Environmental Science, 10: 820536
CrossRef Google scholar
[30]
Sun Y, Ding A, Zhao X, Chang W, Ren L, Zhao Y, Song Z, Hao D, Liu Y, Jin N, Zhang D. (2022). Response of soil microbial communities to petroleum hydrocarbons at a multi-contaminated industrial site in Lanzhou, China. Chemosphere, 306: 135559
CrossRef Google scholar
[31]
Teng Y, Zhou Q, Miao X, Chen Y. (2015). Assessment of soil organic contamination in a typical petrochemical industry park in China. Environmental Science and Pollution Research International, 22(13): 10227–10234
CrossRef Google scholar
[32]
Ugochukwu U C, Ochonogor A, Jidere C M, Agu C, Nkoloagu F, Ewoh J, Okwu-Delunzu V U. (2018). Exposure risks to polycyclic aromatic hydrocarbons by humans and livestock (cattle) due to hydrocarbon spill from petroleum products in Niger-delta wetland. Environment International, 115: 38–47
CrossRef Google scholar
[33]
USEPA (2001). Risk Assessment Guidance for Superfund: Vol. III−Part A: Process for Conducting Probabilistic Risk Assessment. Washington, DC: US Environmental Protection Agency
[34]
USEPA (2011). Exposure Factors Handbook 2011. Washington, DC: US Environmental Protection Agency
[35]
USEPA (2023). Superfund Remedy Report, 15th ed. Washington, DC: US Environmental Protection Agency
[36]
Verginelli I, Baciocchi R. (2013). Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework. Journal of Environmental Management, 114: 395–403
CrossRef Google scholar
[37]
Wang M, Li X, Lei M, Duan L, Chen H. (2022a). Human health risk identification of petrochemical sites based on extreme gradient boosting. Ecotoxicology and Environmental Safety, 233: 113332
CrossRef Google scholar
[38]
Wang Q, Bian J, Ruan D, Zhang C. (2022b). Adsorption of benzene on soils under different influential factors: an experimental investigation, importance order and prediction using artificial neural network. Journal of Environmental Management, 306: 114467
CrossRef Google scholar
[39]
Wang Q, Lv K N, Wang A T, Liu X, Yin G, Wang J, Du X, Li J, Yuan G. (2022c). Release of phthalate esters from a local landfill in the Tibetan Plateau: importance of soil particle-size specific association. Science of the Total Environment, 806: 151281
CrossRef Google scholar
[40]
WangY, Wang S, JiangL, MaL, LiX, ZhongM, Zhang W (2022d). Does the geographic difference of soil properties matter for setting up the soil screening levels in large countries like China? Environmental Science & Technology, 56(9): 5684–5693
CrossRef Google scholar
[41]
Wcisło E, Bronder J, Bubak A, Rodríguez-Valdés E, Gallego J L R. (2016). Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environment International, 94: 436–448
CrossRef Google scholar
[42]
Wu B, Guo S, Zhang L, Wang S, Liu D, Cheng Z, Shi N. (2022). Spatial variation of residual total petroleum hydrocarbons and ecological risk in oilfield soils. Chemosphere, 291: 132916
CrossRef Google scholar
[43]
Wu S, Zhou S, Bao H, Chen D, Wang C, Li B, Tong G, Yuan Y, Xu B. (2019). Improving risk management by using the spatial interaction relationship of heavy metals and PAHs in urban soil. Journal of Hazardous Materials, 364: 108–116
CrossRef Google scholar
[44]
Xu L, Dai H, Skuza L, Wei S. (2021). Comprehensive exploration of heavy metal contamination and risk assessment at two common smelter sites. Chemosphere, 285: 131350
CrossRef Google scholar
[45]
Zeng W, Wan X, Lei M, Gu G, Chen T. (2022). Influencing factors and prediction of arsenic concentration in Pteris vittata: a combination of geodetector and empirical models. Environmental Pollution, 292: 118240
CrossRef Google scholar
[46]
Zhang C, Kuang W, Wu J, Liu J, Tian H. (2021). Industrial land expansion in rural China threatens environmental securities. Frontiers of Environmental Science & Engineering, 15(2): 29
CrossRef Google scholar
[47]
Zhang F, Wang Y, Liao X. (2022). Recognition method for the health risks of potentially toxic elements in a headwater catchment. Science of the Total Environment, 839: 156287
CrossRef Google scholar
[48]
Zheng S, Wang J, Zhuo Y, Yang D, Liu R. (2022). Spatial distribution model of DEHP contamination categories in soil based on Bi-LSTM and sparse sampling. Ecotoxicology and Environmental Safety, 229: 113092
CrossRef Google scholar
[49]
Zolfaghari M, Drogui P, Seyhi B, Brar S K, Buelna G, Dubé R. (2014). Occurrence, fate and effects of di-(2-ethylhexyl) phthalate in wastewater treatment plants: a review. Environmental Pollution, 194: 281–293
CrossRef Google scholar
[50]
Zuo R, Han K, Xu D, Li Q, Liu J, Xue Z, Zhao X, Wang J. (2022). Response of environmental factors to attenuation of toluene in vadose zone. Journal of Environmental Management, 302: 113968
CrossRef Google scholar

Acknowledgements

This work was supported by the Consulting Research Project of the Chinese Academy of Engineering (No. 2023-XZ-37) and the Science and Technology Research Program of Zhejiang Province (China) (No. 2020C03011).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author Contributions

All authors contributed to the study conception and design. Investigation and data collection were performed by Shijin Wu and Zijing Xiang. Data analysis and manuscript were performed by Shijin Wu. Manuscript revision, supervision, and project administration were performed by Daohui Lin and Lizhong Zhu. All authors read and approved the final manuscript.

Data Availability

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-023-1742-9 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3112 KB)

Accesses

Citations

Detail

Sections
Recommended

/