New insights into the formation of ammonium nitrate from a physical and chemical level perspective

Yuting Wei, Xiao Tian, Junbo Huang, Zaihua Wang, Bo Huang, Jinxing Liu, Jie Gao, Danni Liang, Haofei Yu, Yinchang Feng, Guoliang Shi

PDF(4568 KB)
PDF(4568 KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (11) : 137. DOI: 10.1007/s11783-023-1737-6
RESEARCH ARTICLE
RESEARCH ARTICLE

New insights into the formation of ammonium nitrate from a physical and chemical level perspective

Author information +
History +

Highlights

● Factor analysis of ammonium nitrate formation based on thermodynamic theory.

● Aerosol liquid water content has important role on the ammonium nitrate formation.

● Contribution of coal combustion and vehicle exhaust is significant in haze periods.

Abstract

High levels of fine particulate matter (PM2.5) is linked to poor air quality and premature deaths, so haze pollution deserves the attention of the world. As abundant inorganic components in PM2.5, ammonium nitrate (NH4NO3) formation includes two processes, the diffusion process (molecule of ammonia and nitric acid move from gas phase to liquid phase) and the ionization process (subsequent dissociation to form ions). In this study, we discuss the impact of meteorological factors, emission sources, and gaseous precursors on NH4NO3 formation based on thermodynamic theory, and identify the dominant factors during clean periods and haze periods. Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution. The dust source is dominant emission source in clean periods; while a combination of coal combustion and vehicle exhaust sources is more important in haze periods. And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate. The findings of this work inform the design of effective strategies to control particulate matter pollution.

Graphical abstract

Keywords

Ammonium nitrate formation / Thermodynamic theory / Aerosol liquid water content / Source apportionment

Cite this article

Download citation ▾
Yuting Wei, Xiao Tian, Junbo Huang, Zaihua Wang, Bo Huang, Jinxing Liu, Jie Gao, Danni Liang, Haofei Yu, Yinchang Feng, Guoliang Shi. New insights into the formation of ammonium nitrate from a physical and chemical level perspective. Front. Environ. Sci. Eng., 2023, 17(11): 137 https://doi.org/10.1007/s11783-023-1737-6

References

[1]
Behera S N , Betha R , Balasubramanian R . (2013). Insights into chemical coupling among acidic gases, ammonia and secondary inorganic aerosols. Aerosol and Air Quality Research, 13(4): 1282–1296
CrossRef Google scholar
[2]
Behera S N , Sharma M . (2010). Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Science of the Total Environment, 408(17): 3569–3575
CrossRef Google scholar
[3]
Bhattarai N , Wang S X , Pan Y P , Xu Q C , Zhang Y L , Chang Y H , Fang Y T . (2021). δ15N-stable isotope analysis of NHx: an overview on analytical measurements, source sampling and its source apportionment. Frontiers of Environmental Science & Engineering, 15(6): 126
[4]
Che H , Xia X , Zhu J , Li Z , Dubovik O , Holben B , Goloub P , Chen H , Estelles V , Cuevas-Agullo E . . (2014). Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmospheric Chemistry and Physics, 14(4): 2125–2138
CrossRef Google scholar
[5]
Chen T Z , Chu B W , Ge Y L , Zhang S P , Ma Q X , He H , Li S M . (2019). Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environmental Pollution, 252: 236–244
CrossRef Google scholar
[6]
Chen X R , Wang H C , Lu K D , Li C M , Zhai T Y , Tan Z F , Ma X F , Yang X P , Liu Y H , Chen S Y . . (2020). Field determination of nitrate formation pathway in winter Beijing. Environmental Science & Technology, 54(15): 9243–9253
CrossRef Google scholar
[7]
Cheng Y , Yu Q Q , Liu J M , Sun Y W , Liang L L , Du Z Y , Geng G N , Ma W L , Qi H , Zhang Q . . (2022). Formation of secondary inorganic aerosol in a frigid urban atmosphere. Frontiers of Environmental Science & Engineering, 16(2): 18
CrossRef Google scholar
[8]
Dao X , Lin Y C , Cao F , Di S Y , Hong Y H , Xing G H , Li J J , Fu P Q , Zhang Y L . (2019). Introduction to the national aerosol chemical composition monitoring network of China: objectives, current status, and outlook. Bulletin of the American Meteorological Society, 100(12): Es337–Es351
[9]
Fan M Y , Zhang Y L , Lin Y C , Chang Y H , Cao F , Zhang W Q , Hu Y B , Bao M Y , Liu X Y , Zhai X Y . . (2019). Isotope-based source apportionment of nitrogen-containing aerosols: a case study in an industrial city in China. Atmospheric Environment, 212: 96–105
CrossRef Google scholar
[10]
Fountoukis C , Nenes A . (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42–-NO3-Cl-H2O aerosols. Atmospheric Chemistry and Physics, 7(17): 4639–4659
CrossRef Google scholar
[11]
Fu X , Wang T , Gao J , Wang P , Liu Y M , Wang S X , Zhao B , Xue L K . (2020). Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in Northern China. Environmental Science & Technology, 54(7): 3881–3889
CrossRef Google scholar
[12]
Gao J , Dong S H , Yu H F , Peng X , Wang W , Shi G L , Han B , Wei Y T , Feng Y C . (2020). Source apportionment for online dataset at a megacity in China using a new PTT-PMF model. Atmospheric Environment, 229: 117457
CrossRef Google scholar
[13]
Guo H Y , Otjes R , Schlag P , Kiendler-Scharr A , Nenes A , Weber R J . (2018). Effectiveness of ammonia reduction on control of fine particle nitrate. Atmospheric Chemistry and Physics, 18(16): 12241–12256
CrossRef Google scholar
[14]
Guo W , Zhang Z Y , Zheng N J , Luo L , Xiao H Y , Xiao H W . (2020). Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons. Atmospheric Research, 234: 104687
CrossRef Google scholar
[15]
Huang R J , Duan J , Li Y J , Chen Q , Chen Y , Tang M J , Yang L , Ni H Y , Lin C S , Xu W . . (2020). Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of the Total Environment, 717: 137190
CrossRef Google scholar
[16]
Lin Y C , Cheng M T . (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9): 1903–1910
CrossRef Google scholar
[17]
Lin Y C , Cheng M T , Lin W H , Lan Y Y , Tsuang B J . (2010). Causes of the elevated nitrate aerosol levels during episodic days in Taichung urban area, Taiwan (China). Atmospheric Environment, 44(13): 1632–1640
CrossRef Google scholar
[18]
Lin Y C , Zhang Y L , Fan M Y , Bao M Y . (2020). Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China. Atmospheric Chemistry and Physics, 20(6): 3999–4011
CrossRef Google scholar
[19]
Liu M X , Huang X , Song Y , Xu T T , Wang S X , Wu Z J , Hu M , Zhang L , Zhang Q , Pan Y P . . (2018). Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 18(24): 17933–17943
CrossRef Google scholar
[20]
Liu Y , Zheng M , Yu M Y , Cai X H , Du H Y , Li J , Zhou T , Yan C Q , Wang X S , Shi Z B . . (2019). High-time-resolution source apportionment of PM2.5 in Beijing with multiple models. Atmospheric Chemistry and Physics, 19(9): 6595–6609
CrossRef Google scholar
[21]
Meskhidze N, Chameides W L, Nenes A, Chen G (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters, 30(21): 2085
CrossRef Google scholar
[22]
Pan D , Benedict K B , Golston L M , Wang R , Collett J L Jr , Tao L , Sun K , Guo X H , Ham J , Prenni A J . . (2021). Ammonia dry deposition in an alpine ecosystem traced to agricultural emission hotpots. Environmental Science & Technology, 55(12): 7776–7785
CrossRef Google scholar
[23]
Pant P , Harrison R M . (2012). Critical review of receptor modelling for particulate matter: a case study of India. Atmospheric Environment, 49: 1–12
CrossRef Google scholar
[24]
Peng X , Liu X X , Shi X R , Shi G L , Li M , Liu J Y , Huangfu Y Q , Xu H , Ma R Y , Wang W . . (2019). Source apportionment using receptor model based on aerosol mass spectra and 1 h resolution chemical dataset in Tianjin, China. Atmospheric Environment, 198: 387–397
CrossRef Google scholar
[25]
Ryu S Y , Kwon B G , Kim Y J , Kim H H , Chun K J . (2007). Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research, 84(4): 362–373
CrossRef Google scholar
[26]
Seinfeld J H, Pandis S N (2016). Atmospheric chemistry and physics: from air pollution to climate change. Hoboken, NJ: John Wiley & Sons, Inc.
[27]
Shen H Q , Liu Y H , Zhao M , Li J , Zhang Y N , Yang J , Jiang Y , Chen T S , Chen M , Huang X B . . (2021). Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in eastern China. Science of the Total Environment, 764: 144031
CrossRef Google scholar
[28]
Shen Z X , Sun J , Cao J J , Zhang L M , Zhang Q , Lei Y L , Gao J J , Huang R J , Liu S X , Huang Y . . (2016). Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Science of the Total Environment, 569-570: 619–626
CrossRef Google scholar
[29]
Shi X R , Nenes A , Xiao Z M , Song S J , Yu H F , Shi G L , Zhao Q Y , Chen K , Feng Y C , Russell A G . (2019). High-resolution data sets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environmental Science & Technology, 53(6): 3048–3057
CrossRef Google scholar
[30]
Song S J , Gao M , Xu W Q , Shao J Y , Shi G L , Wang S X , Wang Y X , Sun Y L , Mcelroy M B . (2018). Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 18(10): 7423–7438
CrossRef Google scholar
[31]
Squizzato S , Masiol M , Brunelli A , Pistollato S , Tarabotti E , Rampazzo G , Pavoni B . (2013). Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13(4): 1927–1939
CrossRef Google scholar
[32]
Su H , Cheng Y F , Poschl U . (2020). New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Accounts of Chemical Research, 53(10): 2034–2043
CrossRef Google scholar
[33]
Tao J , Gao J , Zhang L , Zhang R , Che H , Zhang Z , Lin Z , Jing J , Cao J , Hsu S C . (2014). PM2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmospheric Chemistry and Physics, 14(16): 8679–8699
CrossRef Google scholar
[34]
Tao Y , Murphy J G . (2019). The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmospheric Chemistry and Physics, 19(14): 9309–9320
CrossRef Google scholar
[35]
Tao Y , Ye X N , Ma Z , Xie Y Y , Wang R Y , Chen J M , Yang X , Jiang S Q . (2016). Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. Atmospheric Environment, 145: 1–9
CrossRef Google scholar
[36]
Tian M , Liu Y , Yang F M , Zhang L M , Peng C , Chen Y , Shi G M , Wang H B , Luo B , Jiang C T . . (2019). Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, Southwest China. Environmental Pollution, 250: 898–905
CrossRef Google scholar
[37]
Tian Y Z , Shi G L , Han B , Wu J H , Zhou X Y , Zhou L D , Zhang P , Feng Y C . (2015). Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere, 119: 750–756
CrossRef Google scholar
[38]
Wang S B , Yin S S , Zhang R Q , Yang L M , Zhao Q Y , Zhang L S , Yan Q S , Jiang N , Tang X Y . (2019a). Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Science of the Total Environment, 660: 47–56
CrossRef Google scholar
[39]
Wang Y L , Song W , Yang W , Sun X C , Tong Y D , Wang X M , Liu C Q , Bai Z P , Liu X Y . (2019b). Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing. Journal of Geophysical Research. Atmospheres, 124(7): 4174–4185
CrossRef Google scholar
[40]
Wu Z J , Wang Y , Tan T Y , Zhu Y S , Li M R , Shang D J , Wang H C , Lu K D , Guo S , Zeng L M . . (2018). Aerosol liquid water driven by anthropogenic inorganic salts: implying its key role in haze formation over the north China plain. Environmental Science & Technology Letters, 5(3): 160–166
CrossRef Google scholar
[41]
Xu J , Chen J , Zhao N , Wang G C , Yu G Y , Li H , Huo J T , Lin Y F , Fu Q Y , Guo H Y . . (2020). Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. Atmospheric Chemistry and Physics, 20(12): 7259–7269
CrossRef Google scholar
[42]
Xu L L , Duan F K , He K B , Ma Y L , Zhu L D , Zheng Y X , Huang T , Kimoto T , Ma T , Li H . . (2017). Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing. Environmental Pollution, 227: 296–305
CrossRef Google scholar
[43]
Xue J , Yuan Z B , Lau A K H , Yu J Z . (2014). Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research. Atmospheres, 119(8): 4888–4902
CrossRef Google scholar
[44]
Yang J R , Wang S B , Zhang R Q , Yin S S . (2022a). Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China. Environmental Pollution, 296: 118716
CrossRef Google scholar
[45]
Yang S X , Yuan B , Peng Y W , Huang S , Chen W , Hu W W , Pei C L , Zhou J , Parrish D D , Wang W J . . (2022b). The formation and mitigation of nitrate pollution: comparison between urban and suburban environments. Atmospheric Chemistry and Physics, 22(7): 4539–4556
CrossRef Google scholar
[46]
Yao L , Yang L X , Yuan Q , Yan C , Dong C , Meng C P , Sui X , Yang F , Lu Y L , Wang W X . (2016). Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 541: 590–598
CrossRef Google scholar
[47]
Ye X N , Ma Z , Zhang J C , Du H H , Chen J M , Chen H , Yang X , Gao W , Geng F H . (2011). Important role of ammonia on haze formation in Shanghai. Environmental Research Letters, 6(2): 024019
CrossRef Google scholar
[48]
Zhai S X , Jacob D J , Wang X , Shen L , Li K , Zhang Y Z , Gui K , Zhao T L , Liao H . (2019). Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16): 11031–11041
CrossRef Google scholar
[49]
Zhang Q , Shen Z X , Cao J J , Ho K F , Zhang R J , Bie Z J , Chang H R , Liu S X . (2014). Chemical profiles of urban fugitive dust over Xi’an in the south margin of the Loess Plateau, China. Atmospheric Pollution Research, 5(3): 421–430
CrossRef Google scholar
[50]
Zhang Q , Zheng Y X , Tong D , Shao M , Wang S X , Zhang Y H , Xu X D , Wang J N , He H , Liu W Q . . (2019). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469
CrossRef Google scholar
[51]
Zhang T , Shen Z X , Su H , Liu S X , Zhou J M , Zhao Z Z , Wang Q Y , Prevot A S H , Cao J J . (2021). Effects of aerosol water content on the formation of secondary inorganic aerosol during a winter heavy pm2.5 pollution episode in Xi’an, China. Atmospheric Environment, 252: 118304
CrossRef Google scholar
[52]
Zhao Q Y , Nenes A , Yu H F , Song S J , Xiao Z M , Chen K , Shi G L , Feng Y C , Russell A G . (2020). Using high-temporal-resolution ambient data to investigate gas-particle partitioning of ammonium over different seasons. Environmental Science & Technology, 54(16): 9834–9843
CrossRef Google scholar
[53]
Zheng B , Tong D , Li M , Liu F , Hong C P , Geng G N , Li H Y , Li X , Peng L Q , Qi J . . (2018). Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095–14111
CrossRef Google scholar
[54]
Zhou W , Gao M , He Y , Wang Q Q , Xie C H , Xu W Q , Zhao J , Du W , Qiu Y M , Lei L . . (2019). Response of aerosol chemistry to clean air action in Beijing, China: insights from two-year ACSM measurements and model simulations. Environmental Pollution, 255: 113345
CrossRef Google scholar
[55]
Zong Z , Wang X P , Tian C G , Chen Y J , Qu L , Ji L , Zhi G R , Li J , Zhang G . (2016). Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. Atmospheric Chemistry and Physics, 16(17): 11249–11265
CrossRef Google scholar

Acknowledgements

This project was funded by the National Natural Science Foundation of China (No. 42077191), the Fundamental Research Funds for the Central Universities (Nos. 63213072 and 63213074), the GDAS’ Project of Science and Technology Development (No. 2021GDASYL-20210103058), the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515012165), The Blue Sky Foundation.

Conflict of Interest

The authors declare no competing interests.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-023-1737-6 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4568 KB)

Accesses

Citations

Detail

Sections
Recommended

/