New insights into the formation of ammonium nitrate from a physical and chemical level perspective

Yuting Wei , Xiao Tian , Junbo Huang , Zaihua Wang , Bo Huang , Jinxing Liu , Jie Gao , Danni Liang , Haofei Yu , Yinchang Feng , Guoliang Shi

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (11) : 137

PDF (4568KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (11) : 137 DOI: 10.1007/s11783-023-1737-6
RESEARCH ARTICLE
RESEARCH ARTICLE

New insights into the formation of ammonium nitrate from a physical and chemical level perspective

Author information +
History +
PDF (4568KB)

Abstract

● Factor analysis of ammonium nitrate formation based on thermodynamic theory.

● Aerosol liquid water content has important role on the ammonium nitrate formation.

● Contribution of coal combustion and vehicle exhaust is significant in haze periods.

High levels of fine particulate matter (PM2.5) is linked to poor air quality and premature deaths, so haze pollution deserves the attention of the world. As abundant inorganic components in PM2.5, ammonium nitrate (NH4NO3) formation includes two processes, the diffusion process (molecule of ammonia and nitric acid move from gas phase to liquid phase) and the ionization process (subsequent dissociation to form ions). In this study, we discuss the impact of meteorological factors, emission sources, and gaseous precursors on NH4NO3 formation based on thermodynamic theory, and identify the dominant factors during clean periods and haze periods. Results show that aerosol liquid water content has a more significant effect on ammonium nitrate formation regardless of the severity of pollution. The dust source is dominant emission source in clean periods; while a combination of coal combustion and vehicle exhaust sources is more important in haze periods. And the control of ammonia emission is more effective in reducing the formation of ammonium nitrate. The findings of this work inform the design of effective strategies to control particulate matter pollution.

Graphical abstract

Keywords

Ammonium nitrate formation / Thermodynamic theory / Aerosol liquid water content / Source apportionment

Cite this article

Download citation ▾
Yuting Wei, Xiao Tian, Junbo Huang, Zaihua Wang, Bo Huang, Jinxing Liu, Jie Gao, Danni Liang, Haofei Yu, Yinchang Feng, Guoliang Shi. New insights into the formation of ammonium nitrate from a physical and chemical level perspective. Front. Environ. Sci. Eng., 2023, 17(11): 137 DOI:10.1007/s11783-023-1737-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Behera S N , Betha R , Balasubramanian R . (2013). Insights into chemical coupling among acidic gases, ammonia and secondary inorganic aerosols. Aerosol and Air Quality Research, 13(4): 1282–1296

[2]

Behera S N , Sharma M . (2010). Investigating the potential role of ammonia in ion chemistry of fine particulate matter formation for an urban environment. Science of the Total Environment, 408(17): 3569–3575

[3]

Bhattarai N , Wang S X , Pan Y P , Xu Q C , Zhang Y L , Chang Y H , Fang Y T . (2021). δ15N-stable isotope analysis of NHx: an overview on analytical measurements, source sampling and its source apportionment. Frontiers of Environmental Science & Engineering, 15(6): 126

[4]

Che H , Xia X , Zhu J , Li Z , Dubovik O , Holben B , Goloub P , Chen H , Estelles V , Cuevas-Agullo E . . (2014). Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmospheric Chemistry and Physics, 14(4): 2125–2138

[5]

Chen T Z , Chu B W , Ge Y L , Zhang S P , Ma Q X , He H , Li S M . (2019). Enhancement of aqueous sulfate formation by the coexistence of NO2/NH3 under high ionic strengths in aerosol water. Environmental Pollution, 252: 236–244

[6]

Chen X R , Wang H C , Lu K D , Li C M , Zhai T Y , Tan Z F , Ma X F , Yang X P , Liu Y H , Chen S Y . . (2020). Field determination of nitrate formation pathway in winter Beijing. Environmental Science & Technology, 54(15): 9243–9253

[7]

Cheng Y , Yu Q Q , Liu J M , Sun Y W , Liang L L , Du Z Y , Geng G N , Ma W L , Qi H , Zhang Q . . (2022). Formation of secondary inorganic aerosol in a frigid urban atmosphere. Frontiers of Environmental Science & Engineering, 16(2): 18

[8]

Dao X , Lin Y C , Cao F , Di S Y , Hong Y H , Xing G H , Li J J , Fu P Q , Zhang Y L . (2019). Introduction to the national aerosol chemical composition monitoring network of China: objectives, current status, and outlook. Bulletin of the American Meteorological Society, 100(12): Es337–Es351

[9]

Fan M Y , Zhang Y L , Lin Y C , Chang Y H , Cao F , Zhang W Q , Hu Y B , Bao M Y , Liu X Y , Zhai X Y . . (2019). Isotope-based source apportionment of nitrogen-containing aerosols: a case study in an industrial city in China. Atmospheric Environment, 212: 96–105

[10]

Fountoukis C , Nenes A . (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42–-NO3-Cl-H2O aerosols. Atmospheric Chemistry and Physics, 7(17): 4639–4659

[11]

Fu X , Wang T , Gao J , Wang P , Liu Y M , Wang S X , Zhao B , Xue L K . (2020). Persistent heavy winter nitrate pollution driven by increased photochemical oxidants in Northern China. Environmental Science & Technology, 54(7): 3881–3889

[12]

Gao J , Dong S H , Yu H F , Peng X , Wang W , Shi G L , Han B , Wei Y T , Feng Y C . (2020). Source apportionment for online dataset at a megacity in China using a new PTT-PMF model. Atmospheric Environment, 229: 117457

[13]

Guo H Y , Otjes R , Schlag P , Kiendler-Scharr A , Nenes A , Weber R J . (2018). Effectiveness of ammonia reduction on control of fine particle nitrate. Atmospheric Chemistry and Physics, 18(16): 12241–12256

[14]

Guo W , Zhang Z Y , Zheng N J , Luo L , Xiao H Y , Xiao H W . (2020). Chemical characterization and source analysis of water-soluble inorganic ions in PM2.5 from a plateau city of Kunming at different seasons. Atmospheric Research, 234: 104687

[15]

Huang R J , Duan J , Li Y J , Chen Q , Chen Y , Tang M J , Yang L , Ni H Y , Lin C S , Xu W . . (2020). Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. Science of the Total Environment, 717: 137190

[16]

Lin Y C , Cheng M T . (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9): 1903–1910

[17]

Lin Y C , Cheng M T , Lin W H , Lan Y Y , Tsuang B J . (2010). Causes of the elevated nitrate aerosol levels during episodic days in Taichung urban area, Taiwan (China). Atmospheric Environment, 44(13): 1632–1640

[18]

Lin Y C , Zhang Y L , Fan M Y , Bao M Y . (2020). Heterogeneous formation of particulate nitrate under ammonium-rich regimes during the high-PM2.5 events in Nanjing, China. Atmospheric Chemistry and Physics, 20(6): 3999–4011

[19]

Liu M X , Huang X , Song Y , Xu T T , Wang S X , Wu Z J , Hu M , Zhang L , Zhang Q , Pan Y P . . (2018). Rapid SO2 emission reductions significantly increase tropospheric ammonia concentrations over the North China Plain. Atmospheric Chemistry and Physics, 18(24): 17933–17943

[20]

Liu Y , Zheng M , Yu M Y , Cai X H , Du H Y , Li J , Zhou T , Yan C Q , Wang X S , Shi Z B . . (2019). High-time-resolution source apportionment of PM2.5 in Beijing with multiple models. Atmospheric Chemistry and Physics, 19(9): 6595–6609

[21]

Meskhidze N, Chameides W L, Nenes A, Chen G (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity? Geophysical Research Letters, 30(21): 2085

[22]

Pan D , Benedict K B , Golston L M , Wang R , Collett J L Jr , Tao L , Sun K , Guo X H , Ham J , Prenni A J . . (2021). Ammonia dry deposition in an alpine ecosystem traced to agricultural emission hotpots. Environmental Science & Technology, 55(12): 7776–7785

[23]

Pant P , Harrison R M . (2012). Critical review of receptor modelling for particulate matter: a case study of India. Atmospheric Environment, 49: 1–12

[24]

Peng X , Liu X X , Shi X R , Shi G L , Li M , Liu J Y , Huangfu Y Q , Xu H , Ma R Y , Wang W . . (2019). Source apportionment using receptor model based on aerosol mass spectra and 1 h resolution chemical dataset in Tianjin, China. Atmospheric Environment, 198: 387–397

[25]

Ryu S Y , Kwon B G , Kim Y J , Kim H H , Chun K J . (2007). Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research, 84(4): 362–373

[26]

Seinfeld J H, Pandis S N (2016). Atmospheric chemistry and physics: from air pollution to climate change. Hoboken, NJ: John Wiley & Sons, Inc.

[27]

Shen H Q , Liu Y H , Zhao M , Li J , Zhang Y N , Yang J , Jiang Y , Chen T S , Chen M , Huang X B . . (2021). Significance of carbonyl compounds to photochemical ozone formation in a coastal city (Shantou) in eastern China. Science of the Total Environment, 764: 144031

[28]

Shen Z X , Sun J , Cao J J , Zhang L M , Zhang Q , Lei Y L , Gao J J , Huang R J , Liu S X , Huang Y . . (2016). Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities. Science of the Total Environment, 569-570: 619–626

[29]

Shi X R , Nenes A , Xiao Z M , Song S J , Yu H F , Shi G L , Zhao Q Y , Chen K , Feng Y C , Russell A G . (2019). High-resolution data sets unravel the effects of sources and meteorological conditions on nitrate and its gas-particle partitioning. Environmental Science & Technology, 53(6): 3048–3057

[30]

Song S J , Gao M , Xu W Q , Shao J Y , Shi G L , Wang S X , Wang Y X , Sun Y L , Mcelroy M B . (2018). Fine-particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics, 18(10): 7423–7438

[31]

Squizzato S , Masiol M , Brunelli A , Pistollato S , Tarabotti E , Rampazzo G , Pavoni B . (2013). Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13(4): 1927–1939

[32]

Su H , Cheng Y F , Poschl U . (2020). New multiphase chemical processes influencing atmospheric aerosols, air quality, and climate in the anthropocene. Accounts of Chemical Research, 53(10): 2034–2043

[33]

Tao J , Gao J , Zhang L , Zhang R , Che H , Zhang Z , Lin Z , Jing J , Cao J , Hsu S C . (2014). PM2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmospheric Chemistry and Physics, 14(16): 8679–8699

[34]

Tao Y , Murphy J G . (2019). The sensitivity of PM2.5 acidity to meteorological parameters and chemical composition changes: 10-year records from six Canadian monitoring sites. Atmospheric Chemistry and Physics, 19(14): 9309–9320

[35]

Tao Y , Ye X N , Ma Z , Xie Y Y , Wang R Y , Chen J M , Yang X , Jiang S Q . (2016). Insights into different nitrate formation mechanisms from seasonal variations of secondary inorganic aerosols in Shanghai. Atmospheric Environment, 145: 1–9

[36]

Tian M , Liu Y , Yang F M , Zhang L M , Peng C , Chen Y , Shi G M , Wang H B , Luo B , Jiang C T . . (2019). Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, Southwest China. Environmental Pollution, 250: 898–905

[37]

Tian Y Z , Shi G L , Han B , Wu J H , Zhou X Y , Zhou L D , Zhang P , Feng Y C . (2015). Using an improved Source Directional Apportionment method to quantify the PM2.5 source contributions from various directions in a megacity in China. Chemosphere, 119: 750–756

[38]

Wang S B , Yin S S , Zhang R Q , Yang L M , Zhao Q Y , Zhang L S , Yan Q S , Jiang N , Tang X Y . (2019a). Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Science of the Total Environment, 660: 47–56

[39]

Wang Y L , Song W , Yang W , Sun X C , Tong Y D , Wang X M , Liu C Q , Bai Z P , Liu X Y . (2019b). Influences of atmospheric pollution on the contributions of major oxidation pathways to PM2.5 nitrate formation in Beijing. Journal of Geophysical Research. Atmospheres, 124(7): 4174–4185

[40]

Wu Z J , Wang Y , Tan T Y , Zhu Y S , Li M R , Shang D J , Wang H C , Lu K D , Guo S , Zeng L M . . (2018). Aerosol liquid water driven by anthropogenic inorganic salts: implying its key role in haze formation over the north China plain. Environmental Science & Technology Letters, 5(3): 160–166

[41]

Xu J , Chen J , Zhao N , Wang G C , Yu G Y , Li H , Huo J T , Lin Y F , Fu Q Y , Guo H Y . . (2020). Importance of gas-particle partitioning of ammonia in haze formation in the rural agricultural environment. Atmospheric Chemistry and Physics, 20(12): 7259–7269

[42]

Xu L L , Duan F K , He K B , Ma Y L , Zhu L D , Zheng Y X , Huang T , Kimoto T , Ma T , Li H . . (2017). Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing. Environmental Pollution, 227: 296–305

[43]

Xue J , Yuan Z B , Lau A K H , Yu J Z . (2014). Insights into factors affecting nitrate in PM2.5 in a polluted high NOx environment through hourly observations and size distribution measurements. Journal of Geophysical Research. Atmospheres, 119(8): 4888–4902

[44]

Yang J R , Wang S B , Zhang R Q , Yin S S . (2022a). Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China. Environmental Pollution, 296: 118716

[45]

Yang S X , Yuan B , Peng Y W , Huang S , Chen W , Hu W W , Pei C L , Zhou J , Parrish D D , Wang W J . . (2022b). The formation and mitigation of nitrate pollution: comparison between urban and suburban environments. Atmospheric Chemistry and Physics, 22(7): 4539–4556

[46]

Yao L , Yang L X , Yuan Q , Yan C , Dong C , Meng C P , Sui X , Yang F , Lu Y L , Wang W X . (2016). Sources apportionment of PM2.5 in a background site in the North China Plain. Science of the Total Environment, 541: 590–598

[47]

Ye X N , Ma Z , Zhang J C , Du H H , Chen J M , Chen H , Yang X , Gao W , Geng F H . (2011). Important role of ammonia on haze formation in Shanghai. Environmental Research Letters, 6(2): 024019

[48]

Zhai S X , Jacob D J , Wang X , Shen L , Li K , Zhang Y Z , Gui K , Zhao T L , Liao H . (2019). Fine particulate matter (PM2.5) trends in China, 2013–2018: separating contributions from anthropogenic emissions and meteorology. Atmospheric Chemistry and Physics, 19(16): 11031–11041

[49]

Zhang Q , Shen Z X , Cao J J , Ho K F , Zhang R J , Bie Z J , Chang H R , Liu S X . (2014). Chemical profiles of urban fugitive dust over Xi’an in the south margin of the Loess Plateau, China. Atmospheric Pollution Research, 5(3): 421–430

[50]

Zhang Q , Zheng Y X , Tong D , Shao M , Wang S X , Zhang Y H , Xu X D , Wang J N , He H , Liu W Q . . (2019). Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 116(49): 24463–24469

[51]

Zhang T , Shen Z X , Su H , Liu S X , Zhou J M , Zhao Z Z , Wang Q Y , Prevot A S H , Cao J J . (2021). Effects of aerosol water content on the formation of secondary inorganic aerosol during a winter heavy pm2.5 pollution episode in Xi’an, China. Atmospheric Environment, 252: 118304

[52]

Zhao Q Y , Nenes A , Yu H F , Song S J , Xiao Z M , Chen K , Shi G L , Feng Y C , Russell A G . (2020). Using high-temporal-resolution ambient data to investigate gas-particle partitioning of ammonium over different seasons. Environmental Science & Technology, 54(16): 9834–9843

[53]

Zheng B , Tong D , Li M , Liu F , Hong C P , Geng G N , Li H Y , Li X , Peng L Q , Qi J . . (2018). Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095–14111

[54]

Zhou W , Gao M , He Y , Wang Q Q , Xie C H , Xu W Q , Zhao J , Du W , Qiu Y M , Lei L . . (2019). Response of aerosol chemistry to clean air action in Beijing, China: insights from two-year ACSM measurements and model simulations. Environmental Pollution, 255: 113345

[55]

Zong Z , Wang X P , Tian C G , Chen Y J , Qu L , Ji L , Zhi G R , Li J , Zhang G . (2016). Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. Atmospheric Chemistry and Physics, 16(17): 11249–11265

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4568KB)

Supplementary files

FSE-23032-OF-WYT_suppl_1

4346

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/