Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region
Jinbo Wang, Jiaping Wang, Wei Nie, Xuguang Chi, Dafeng Ge, Caijun Zhu, Lei Wang, Yuanyuan Li, Xin Huang, Ximeng Qi, Yuxuan Zhang, Tengyu Liu, Aijun Ding
Response of organic aerosol characteristics to emission reduction in Yangtze River Delta region
● The emission reduction causes significant change in organic aerosol composition.
● The atmospheric oxidizing capacity improved during emission reduction.
● The mixed oxygenated organic aerosol contributed higher during emission reduction.
Organic aerosol (OA) is a major component of atmospheric particulate matter (PM) with complex composition and formation processes influenced by various factors. Emission reduction can alter both precursors and oxidants which further affects secondary OA formation. Here we provide an observational analysis of secondary OA (SOA) variation properties in Yangtze River Delta (YRD) of eastern China in response to large scale of emission reduction during Chinese New Year (CNY) holidays from 2015 to 2020, and the COVID-19 pandemic period from January to March, 2020. We found a 17% increase of SOA proportion during the COVID lockdown. The relative enrichment of SOA is also found during multi-year CNY holidays with dramatic reduction of anthropogenic emissions. Two types of oxygenated OA (OOA) influenced by mixed emissions and SOA formation were found to be the dominant components during the lockdown in YRD region. Our results highlight that these emission-reduction-induced changes in organic aerosol need to be considered in the future to optimize air pollution control measures.
Emission control / Secondary organic aerosol / Atmospheric oxidizing capacity / Holiday effects / COVID-19 lockdown
[1] |
Aiken A C, Decarlo P F, Kroll J H, Worsnop D R, Huffman J A, Docherty K S, Ulbrich I M, Mohr C, Kimmel J R, Sueper D.
CrossRef
Google scholar
|
[2] |
Aiken A C, Salcedo D, Cubison M J, Huffman J A, Decarlo P F, Ulbrich I M, Docherty K S, Sueper D, Kimmel J R, Worsnop D R.
CrossRef
Google scholar
|
[3] |
Bauwens M, Compernolle S, Stavrakou T, Muller J F, Gent J, Eskes H, Levelt P F, A R, Veefkind J P, Vlietinck J, Yu H, et al. (2020). Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. Geophysical Research Letters, 47(11): 2020GL087978
|
[4] |
Cai J, Wu C, Wang J D, Du W, Zheng F X, Hakala S M, Fan X L, Chu B W, Yao L, Feng Z M.
CrossRef
Google scholar
|
[5] |
Canagaratna M R, Jayne J T, Jimenez J L, Allan J D, Alfarra M R, Zhang Q, Onasch T B, Drewnick F, Coe H, Middlebrook A.
CrossRef
Google scholar
|
[6] |
ChenL D, Qi X M, NieW, WangJ P, XuZ, WangT Y, Liu Y L, ShenY C, XuZ N, Kokkonen T V, et al. (2021). Cluster analysis of submicron particle number size distributions at the SORPES station in the Yangtze River Delta of East China. Journal of Geophysical Research. Atmospheres, 126(13): 2020JD034004
CrossRef
Google scholar
|
[7] |
Cheng Y, He K B, Duan F K, Du Z Y, Zheng M, Ma Y L. (2014). Ambient organic carbon to elemental carbon ratios: influence of the thermal-optical temperature protocol and implications. Science of the Total Environment, 468−469: 1103–1111
CrossRef
Google scholar
|
[8] |
Chhabra P S, Ng N L, Canagaratna M R, Corrigan A L, Russell L M, Worsnop D R, Flagan R C, Seinfeld J H. (2011). Elemental composition and oxidation of chamber organic aerosol. Atmospheric Chemistry and Physics, 11(17): 8827–8845
CrossRef
Google scholar
|
[9] |
Crippa M, Decarlo P F, Slowik J G, Mohr C, Heringa M F, Chirico R, Poulain L, Freutel F, Sciare J, Cozic J.
CrossRef
Google scholar
|
[10] |
Cui S J, Huang D D, Wu Y Z, Wang J F, Shen F Z, Xian J K, Zhang Y J, Wang H L, Huang C, Liao H, Ge X L. (2022). Chemical properties, sources and size-resolved hygroscopicity of submicron black-carbon-containing aerosols in urban Shanghai. Atmospheric Chemistry and Physics, 22(12): 8073–8096
CrossRef
Google scholar
|
[11] |
Ding A, Nie W, Huang X, Chi X, Sun J, Kerminen V M, Xu Z, Guo W, Petaja T, Yang X.
CrossRef
Google scholar
|
[12] |
Ding A, Wang T, Fu C. (2013a). Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China. Journal of Geophysical Research. Atmospheres, 118(16): 9475–9488
CrossRef
Google scholar
|
[13] |
Ding A J, Fu C B, Yang X Q, Sun J N, Petaja T, Kerminen V M, Wang T, Xie Y, Herrmann E, Zheng L F.
CrossRef
Google scholar
|
[14] |
Ding A J, Fu C B, Yang X Q, Sun J N, Zheng L F, Xie Y N, Herrmann E, Nie W, Petaja T, Kerminen V M.
CrossRef
Google scholar
|
[15] |
Ding A J, Huang X, Nie W, Chi X G, Xu Z, Zheng L F, Xu Z N, Xie Y N, Qi X M, Shen Y C.
CrossRef
Google scholar
|
[16] |
Ding A J, Huang X, Nie W, Sun J N, Kerminen V M, Petaja T, Su H, Cheng Y F, Yang X Q, Wang M H.
CrossRef
Google scholar
|
[17] |
Donahue N M, Robinson A L, Stanier C O, Pandis S N. (2006). Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environmental Science & Technology, 40(8): 2635–2643
CrossRef
Google scholar
|
[18] |
Ehn M, Thornton J A, Kleist E, Sipila M, Junninen H, Pullinen I, Springer M, Rubach F, Tillmann R, Lee B.
CrossRef
Google scholar
|
[19] |
Feng Z M, Zheng F X, Liu Y C, Fan X L, Yan C, Zhang Y S, Daellenbach K R, Bianchi F, Petaja T, Kulmala M.
CrossRef
Google scholar
|
[20] |
Fu P Q, Zhuang G S, Sun Y L, Wang Q Z, Chen J, Ren L J, Yang F, Wang Z F, Pan X L, Li X D.
CrossRef
Google scholar
|
[21] |
Ge X L, Li L, Chen Y F, Chen H, Wu D, Wang J F, Xie X C, Ge S, Ye Z L, Xu J Z.
CrossRef
Google scholar
|
[22] |
Hennigan C J, Bergin M H, Russell A G, Nenes A, Weber R J. (2009). Gas/particle partitioning of water-soluble organic aerosol in Atlanta. Atmospheric Chemistry and Physics, 9(11): 3613–3628
CrossRef
Google scholar
|
[23] |
Ho C S, Peng J F, Yun U, Zhang Q J, Mao H J (2022). Impacts of methanol fuel on vehicular emissions: a review. Frontiers of Environmental Science & Engineering, 16(9): 121
|
[24] |
Hu R, Wang H L, Yin Y, Chen K, Zhu B, Zhang Z F, Kang H, Shen L J. (2018). Mixing state of ambient aerosols during different fog-haze pollution episodes in the Yangtze River Delta, China. Atmospheric Environment, 178: 1–10
CrossRef
Google scholar
|
[25] |
Hu R L, Wang S X, Zheng H T, Zhao B, Liang C R, Chang X, Jiang Y Q, Yin R J, Jiang J K, Hao J M. (2022). Variations and sources of organic aerosol in winter Beijing under markedly reduced anthropogenic activities during COVID-2019. Environmental science & technology, 56(11): 6956–6967
CrossRef
Google scholar
|
[26] |
Hu W W, Campuzano-Jost P, Palm B B, Day D A, Ortega A M, Hayes P L, Krechmer J E, Chen Q, Kuwata M, Liu Y J.
CrossRef
Google scholar
|
[27] |
Hu W W, Hu M, Hu W, Jimenez J L, Yuan B, Chen W T, Wang M, Wu Y S, Chen C, Wang Z B.
CrossRef
Google scholar
|
[28] |
Huang D D, Kong L, Gao J, Lou S R, Qiao L P, Zhou M, Ma Y G, Zhu S H, Wang H L, Chen S Y.
CrossRef
Google scholar
|
[29] |
Huang X, Ding A J, Gao J, Zheng B, Zhou D R, Qi X M, Tang R, Wang J P, Ren C H, Nie W.
CrossRef
Google scholar
|
[30] |
Huang X F, He L Y, Xue L, Sun T L, Zeng L W, Gong Z H, Hu M, Zhu T. (2012). Highly time-resolved chemical characterization of atmospheric fine particles during 2010 Shanghai World Expo. Atmospheric Chemistry and Physics, 12(11): 4897–4907
CrossRef
Google scholar
|
[31] |
Huang X F, Xue L, Tian X D, Shao W W, Sun T L, Gong Z H, Ju W W, Jiang B, Hu M, He L Y. (2013). Highly time-resolved carbonaceous aerosol characterization in Yangtze River Delta of China: Composition, mixing state and secondary formation. Atmospheric Environment, 64: 200–207
CrossRef
Google scholar
|
[32] |
IPCC(2021). Climate Change 2021. Masson-Delmotte V, eds. The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
|
[33] |
Jiang Q, Sun Y L, Wang Z, Yin Y. (2015). Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects. Atmospheric Chemistry and Physics, 15(11): 6023–6034
CrossRef
Google scholar
|
[34] |
Jimenez J L, Canagaratna M R, Donahue N M, Prevot A S H, Zhang Q, Kroll J H, Decarlo P F, Allan J D, Coe H, Ng N L.
CrossRef
Google scholar
|
[35] |
Jimenez J L, Canagaratna M R, Drewnick F, Allan J D, Alfarra M R, Middlebrook A M, Slowik J G, Zhang Q, Coe H, Jayne J T.
CrossRef
Google scholar
|
[36] |
Kanakidou M, Seinfeld J H, Pandis S N, Barnes I, Dentener F J, Facchini M C, Van Dingenen R, Ervens B, Nenes A, Nielsen C J.
CrossRef
Google scholar
|
[37] |
Kim H, Zhang Q, Heo J. (2018). Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: results from KORUS-AQ. Atmospheric Chemistry and Physics, 18(10): 7149–7168
CrossRef
Google scholar
|
[38] |
Kong S F, Li L, Li X X, Yin Y, Chen K, Liu D T, Yuan L, Zhang Y J, Shan Y P, Ji Y Q. (2015). The impacts of firework burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes. Atmospheric Chemistry and Physics, 15(4): 2167–2184
CrossRef
Google scholar
|
[39] |
LaughnerJ L, Neu J L, SchimelD, WennbergP O, Barsanti K, BowmanK W, ChatterjeeA, CroesB E, FitzmauriceH L, HenzeD K, et al. (2021). Societal shifts due to COVID-19 reveal large-scale complexities and feedbacks between atmospheric chemistry and climate change. Proceedings of the National Academy of Sciences of the United States of America, 118(46)
|
[40] |
Li H, Zhang Q, Zhang Q, Chen C, Wang L, Wei Z, Zhou S, Parworth C, Zheng B, Canonaco F.
CrossRef
Google scholar
|
[41] |
Li H Y, Zhang Q, Jiang W Q, Collier S, Sun Y L, Zhang Q, He K B. (2021). Characteristics and sources of water-soluble organic aerosol in a heavily polluted environment in Northern China. Science of the Total Environment, 758: 143970
CrossRef
Google scholar
|
[42] |
Li K, Li J L, Tong S R, Wang W G, Huang R J, Ge M F. (2019). Characteristics of wintertime VOCs in suburban and urban Beijing: concentrations, emission ratios, and festival effects. Atmospheric Chemistry and Physics, 19(12): 8021–8036
CrossRef
Google scholar
|
[43] |
Li L J, Ren L J, Ren H, Yue S Y, Xie Q R, Zhao W Y, Kang M J, Li J, Wang Z F, Sun Y L.
CrossRef
Google scholar
|
[44] |
Li Y J, Sun Y, Zhang Q, Li X, Li M, Zhou Z, Chan C K. (2017b). Real-time chemical characterization of atmospheric particulate matter in China: a review. Atmospheric Environment, 158: 270–304
CrossRef
Google scholar
|
[45] |
Lin C S, Huang R J, Xu W, Duan J, Zheng Y, Chen Q, Hu W W, Li Y J, Ni H Y, Wu Y F, Zhang R J.
CrossRef
Google scholar
|
[46] |
LiuL, ZhangJ, DuR G, Teng X M, HuR, YuanQ, TangS S, RenC H, Huang X, XuL, et al. (2021a). Chemistry of atmospheric fine particles during the COVID-19 pandemic in a megacity of eastern China. Geophysical Research Letters, 48(2): 2020GL091611
CrossRef
Google scholar
|
[47] |
Liu Y L, Nie W, Li Y Y, Ge D F, Liu C, Xu Z N, Chen L D, Wang T Y, Wang L, Sun P.
CrossRef
Google scholar
|
[48] |
Liu Y L, Nie W, Xu Z, Wang T Y, Wang R X, Li Y Y, Wang L, Chi X G, Ding A J. (2019). Semi-quantitative understanding of source contribution to nitrous acid (HONO) based on 1 year of continuous observation at the SORPES station in eastern China. Atmospheric Chemistry and Physics, 19(20): 13289–13308
CrossRef
Google scholar
|
[49] |
Mao S D, Li J, Cheng Z N, Zhong G C, Li K C, Liu X, Zhang G. (2018). Contribution of biomass burning to ambient particulate polycyclic aromatic hydrocarbons at a regional background site in east China. Environmental Science & Technology Letters, 5(2): 56–61
CrossRef
Google scholar
|
[50] |
Massoli P, Onasch T B, Cappa C D, Nuamaan I, Hakala J, Hayden K, Li S M, Sueper D T, Bates T S, Quinn P K.
CrossRef
Google scholar
|
[51] |
Ng N L, Canagaratna M R, Jimenez J L, Chhabra P S, Seinfeld J H, Worsnop D R. (2011). Changes in organic aerosol composition with aging inferred from aerosol mass spectra. Atmospheric Chemistry and Physics, 11(13): 6465–6474
CrossRef
Google scholar
|
[52] |
Ng N L, Canagaratna M R, Zhang Q, Jimenez J L, Tian J, Ulbrich I M, Kroll J H, Docherty K S, Chhabra P S, Bahreini R.
CrossRef
Google scholar
|
[53] |
Nie W, Yan C, Huang D D, Wang Z, Liu Y, Qiao X, Guo Y, Tian L, Zheng P, Xu Z.
CrossRef
Google scholar
|
[54] |
Onasch T B, Trimborn A, Fortner E C, Jayne J T, Kok G L, Williams L R, Davidovits P, Worsnop D R. (2012). Soot particle Aerosol Mass Spectrometer: development, validation, and initial application. Aerosol Science and Technology, 46(7): 804–817
CrossRef
Google scholar
|
[55] |
Qi X M, Ding A J, Roldin P, Xu Z N, Zhou P T, Sarnela N, Nie W, Huang X, Rusanen A, Ehn M.
CrossRef
Google scholar
|
[56] |
Shang D J, Peng J F, Guo S, Wu Z J, Hu M. (2021). Secondary aerosol formation in winter haze over the Beijing-Tianjin-Hebei region, China. Frontiers of Environmental Science & Engineering, 15(2): 34
CrossRef
Google scholar
|
[57] |
ShiX Q, Brasseur G P (2020). The response in air quality to the reduction of Chinese Economic activities during the COVID-19 outbreak. Geophysical Research Letters, 47(11): 2020GL088070
CrossRef
Google scholar
|
[58] |
Shilling J E, Pekour M S, Fortner E C, Artaxo P, De Sa S, Hubbe J M, Longo K M, Machado L A T, Martin S T, Springston S R.
CrossRef
Google scholar
|
[59] |
Shrivastava M, Andreae M O, Artaxo P, Barbosa H M J, Berg L K, Brito J, Ching J, Easter R C, Fan J W, Fast J D.
CrossRef
Google scholar
|
[60] |
Stein A F, Draxler R R, Rolph G D, Stunder B J B, Cohen M D, Ngan F. (2015). Noaa’s hysplit atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12): 2059–2077
CrossRef
Google scholar
|
[61] |
Sun P, Nie W, Wang T, Chi X, Huang X, Xu Z, Zhu C, Wang L, Qi X, Zhang Q.
CrossRef
Google scholar
|
[62] |
Sun Y L, Lei L, Zhou W, Chen C, He Y, Sun J X, Li Z J, Xu W Q, Wang Q Q, Ji D S.
CrossRef
Google scholar
|
[63] |
Turpin B J, Huntzicker J J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during scaqs. Atmospheric Environment, 29(23): 3527–3544
CrossRef
Google scholar
|
[64] |
Ulbrich I M, Canagaratna M R, Zhang Q, Worsnop D R, Jimenez J L. (2009). Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9(9): 2891–2918
CrossRef
Google scholar
|
[65] |
Virkkula A, Chi X, Ding A, Shen Y, Nie W, Qi X, Zheng L, Huang X, Xie Y, Wang J.
CrossRef
Google scholar
|
[66] |
Wang H L, An J L, Shen L J, Zhu B, Pan C, Liu Z R, Liu X H, Duan Q, Liu X, Wang Y S. (2014). Mechanism for the formation and microphysical characteristics of submicron aerosol during heavy haze pollution episode in the Yangtze River Delta, China. Science of the Total Environment, 490: 501–508
CrossRef
Google scholar
|
[67] |
Wang J, Nie W, Cheng Y, Shen Y, Chi X, Wang J, Huang X, Xie Y, Sun P, Xu Z.
CrossRef
Google scholar
|
[68] |
Wang J F, Ge X L, Chen Y F, Shen Y F, Zhang Q, Sun Y L, Xu J Z, Ge S, Yu H, Chen M D. (2016). Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry. Atmospheric Chemistry and Physics, 16(14): 9109–9127
CrossRef
Google scholar
|
[69] |
Wang J F, Ge X L, Sonya C, Ye J H, Lei Y L, Chen M D, Zhang Q. (2022a). Influence of regional emission controls on the chemical composition, sources, and size distributions of submicron aerosols: Insights from the 2014 Nanjing Youth Olympic Games. Science of the Total Environment, 807: 150869
CrossRef
Google scholar
|
[70] |
Wang J F, Liu D T, Ge X L, Wu Y Z, Shen F Z, Chen M D, Zhao J, Xie C H, Wang Q Q, Xu W Q.
CrossRef
Google scholar
|
[71] |
Wang S Y, Zhao Y L, Han Y, Li R, Fu H B, Gao S, Duan Y S, Zhang L W, Chen J M. (2022b). Spatiotemporal variation, source and secondary transformation potential of volatile organic compounds (VOCs) during the winter days in Shanghai, China. Atmospheric Environment, 286: 119203
CrossRef
Google scholar
|
[72] |
Wang Y Y, Li Z Q, Wang Q Y, Jin X A, Yan P, Cribb M, Li Y A, Yuan C, Wu H, Wu T, Ren R M.
CrossRef
Google scholar
|
[73] |
Wu K, Kang P, Tie X, Gu S, Zhang X, Wen X, Kong L, Wang S, Chen Y, Pan W.
CrossRef
Google scholar
|
[74] |
Wu K, Yang X Y, Chen D, Gu S, Lu Y Q, Jiang Q, Wang K, Ou Y H, Qian Y, Shao P.
CrossRef
Google scholar
|
[75] |
Xu J X, Zhu F H, Wang S, Zhao X Y, Zhang M, Ge X L, Wang J F, Tian W X, Wang L W, Yang L.
CrossRef
Google scholar
|
[76] |
Xu L, Du L, Tsona N T, Ge M F. (2021). Anthropogenic effects on biogenic secondary organic aerosol formation. Advances in Atmospheric Sciences, 38(7): 1053–1084
CrossRef
Google scholar
|
[77] |
Xu L, Guo H Y, Boyd C M, Klein M, Bougiatioti A, Cerully K M, Hite J R, Isaacman-Vanwertz G, Kreisberg N M, Knote C.
CrossRef
Google scholar
|
[78] |
Xu L, Lingaswamy A P, Zhang Y X, Liu L, Wang Y Y, Zhang J, Ma Q L, Li W J. (2019b). Morphology, composition, and sources of individual aerosol particles at a regional background site of the YRD, China. Journal of Environmental Sciences (China), 77: 354–362
CrossRef
Google scholar
|
[79] |
Xu W Q, Zhou W, Li Z J, Wang Q Q, Du A D, You B, Qi L, Prevot A S H, Cao J J, Wang Z F.
CrossRef
Google scholar
|
[80] |
Xu Z N, Huang X, Nie W, Chi X G, Xu Z, Zheng L F, Sun P, Ding A J. (2017). Influence of synoptic condition and holiday effects on VOCs and ozone production in the Yangtze River Delta region, China. Atmospheric Environment, 168: 112–124
CrossRef
Google scholar
|
[81] |
Yang L W, Nie W, Liu Y L, Xu Z N, Xiao M, Qi X M, Li Y Y, Wang R X, Zou J, Paasonen P.
CrossRef
Google scholar
|
[82] |
Yang Y, Wang Y H, Yao D, Zhao S M, Yang S H, Ji D S, Sun J, Wang Y H, Liu Z R, Hu B.
CrossRef
Google scholar
|
[83] |
Ye Z L, Liu J S, Gu A J, Feng F F, Liu Y H, Bi C L, Xu J Z, Li L, Chen H, Chen Y F.
CrossRef
Google scholar
|
[84] |
Yu Y, Wang H, Wang T T, Song K, Tan T Y, Wan Z C, Gao Y Q, Dong H B, Chen S Y, Zeng L M.
CrossRef
Google scholar
|
[85] |
Zhang J K, Wang Y S, Huang X J, Liu Z R, Ji D S, Sun Y. (2015a). Characterization of organic aerosols in Beijing using an aerodyne high-resolution aerosol mass spectrometer. Advances in Atmospheric Sciences, 32(6): 877–888
CrossRef
Google scholar
|
[86] |
Zhang Q, Geng G. (2019). Impact of clean air action on PM2.5 pollution in China. Science China. Earth Sciences, 62(12): 1845–1846
CrossRef
Google scholar
|
[87] |
Zhang Q, Jimenez J L, Canagaratna M R, Ulbrich I M, Ng N L, Worsnop D R, Sun Y L. (2011). Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and Bioanalytical Chemistry, 401(10): 3045–3067
CrossRef
Google scholar
|
[88] |
Zhang Q, Worsnop D R, Canagaratna M R, Jimenez J L. (2005). Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics, 5(12): 3289–3311
CrossRef
Google scholar
|
[89] |
Zhang Q, Zheng Y X, Tong D, Shao M, Wang S X, Zhang Y H, Xu X D, Wang J N, He H, Liu W Q.
CrossRef
Google scholar
|
[90] |
Zhang Y J, Tang L L, Wang Z, Yu H X, Sun Y L, Liu D, Qin W, Canonaco F, Prevot A S H, Zhang H L.
CrossRef
Google scholar
|
[91] |
Zhang Y J, Tang L L, Yu H X, Wang Z, Sun Y L, Qin W, Chen W T, Chen C H, Ding A J, Wu J.
CrossRef
Google scholar
|
[92] |
Zhang Y W, Zhang X Y, Zhang Y M, Shen X J, Sun J Y, Ma Q L, Yu X M, Zhu J L, Zhang L, Che H C. (2015d). Significant concentration changes of chemical components of PM1 in the Yangtze River Delta area of China and the implications for the formation mechanism of heavy haze-fog pollution. Science of the Total Environment, 538: 7–15
CrossRef
Google scholar
|
[93] |
Zhao D F, Pullinen I, Fuchs H, Schrade S, Wu R R, Acir I H, Tillmann R, Rohrer F, Wildt J, Guo Y D.
CrossRef
Google scholar
|
[94] |
Zhao J, Du W, Zhang Y J, Wang Q Q, Chen C, Xu W Q, Han T T, Wang Y Y, Fu P Q, Wang Z F.
CrossRef
Google scholar
|
[95] |
Zhao Q B, Huo J T, Yang X, Fu Q Y, Duan Y S, Liu Y X, Lin Y F, Zhang Q. (2020). Chemical characterization and source identification of submicron aerosols from a year-long real-time observation at a rural site of Shanghai using an Aerosol Chemical Speciation Monitor. Atmospheric Research, 246: 105154
CrossRef
Google scholar
|
[96] |
Zheng G J, Duan F K, Ma Y L, Zhang Q, Huang T, Kimoto T, Cheng Y F, Su H, He K B. (2016). Episode-based evolution pattern analysis of haze pollution: method development and results from Beijing, China. Environmental Science & Technology, 50(9): 4632–4641
CrossRef
Google scholar
|
[97] |
ZhouM, Nie W, QiaoL, HuangD D, ZhuS, LouS, WangH, WangQ, Tao S, SunP, et al. (2022a). Elevated formation of particulate nitrate from N2O5 hydrolysis in the Yangtze River delta region from 2011 to 2019. Geophysical Research Letters, 49(9)
CrossRef
Google scholar
|
[98] |
Zhou W, Xu W Q, Wang Q Q, Li Y, Lei L, Yang Y, Zhang Z Q, Fu P Q, Wang Z F, Sun Y L. (2022b). Machine learning elucidates the impact of short-term emission changes on air pollution in Beijing. Atmospheric Environment, 283: 119192
CrossRef
Google scholar
|
/
〈 | 〉 |