Electrocatalytic reduction of nitrate using Pd-Cu modified carbon nanotube membranes
Zhijun Liu , Xi Luo , Senlin Shao , Xue Xia
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (4) : 40
Electrocatalytic reduction of nitrate using Pd-Cu modified carbon nanotube membranes
● Pd-Cu modified CNT membranes were prepared successfully by electrodeposition method. ● The deposition voltage and deposition time were optimized for Pd-Cu co-deposition. ● NO3−-N was removed efficiently from water by Pd-Cu modified CNT membranes. ● The presence of dissolved oxygen did not affect the nitrate reduction performance. ● Mass transfer rate was promoted significantly with the increase in membrane flux.
Excessive nitrate in water is harmful to the ecological environment and human health. Electrocatalytic reduction is a promising technology for nitrate removal. Herein, a Pd-Cu modified carbon nanotube membrane was fabricated with an electrodeposition method and used to reduce nitrate in a flow-through electrochemical reactor. The optimal potential and duration for codeposition of Pd and Cu were −0.7 V and 5 min, respectively, according to linear scan voltammetry results. The membrane obtained with a Pd:Cu ratio of 1:1 exhibited a relatively high nitrate removal efficiency and N2 selectivity. Nitrate was almost completely reduced (~99 %) by the membrane at potentials lower than −1.2 V. However, −0.8 V was the optimal potential for nitrate reduction in terms of both nitrate removal efficiency and product selectivity. The nitrate removal efficiency was 56.2 %, and the N2 selectivity was 23.8 % for the Pd:Cu=1:1 membrane operated at −0.8 V. Nitrate removal was enhanced under acidic conditions, while N2 selectivity was decreased. The concentrations of Cl− ions and dissolved oxygen showed little effect on nitrate reduction. The mass transfer rate constant was greatly improved by 6.6 times from 1.14 × 10−3 m/h at a membrane flux of 1 L/(m2·h) to 8.71 × 10−3 m/h at a membrane flux of 15 L/(m2·h), which resulted in a significant increase in the nitrate removal rate from 13.6 to 133.5 mg/(m2·h). These findings show that the Pd-Cu modified CNT membrane is an efficient material for nitrate reduction.
Pd-Cu modified CNT membrane / Nitrate reduction / Flow-through / Electrodeposition / Electrocatalytic reduction
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |