PDF
(4218KB)
Abstract
● IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed.
● Ion/molecule selectivities of ion/solvent and ion/uncharged solute are reviewed.
● Approaches to advance the selectivities through sorption and migration are analyzed.
● The permeability-selectivity tradeoff appears to be pervasive.
● Ion/molecule selectivities are comparatively underdeveloped and poorly understood.
Ion-exchange membranes (IEMs) are utilized in numerous established, emergent, and emerging applications for water, energy, and the environment. This article reviews the five different types of IEM selectivity, namely charge, valence, specific ion, ion/solvent, and ion/uncharged solute selectivities. Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed. Because of the underlying principles governing transport, efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion. Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies, including bioelectrochemical systems, hypersaline electrodialysis desalination, fuel cells, and redox flow batteries, but the ion/solvent and ion/uncharged solute selectivities are relatively understudied, compared to the ion/ion selectivities. Deepening fundamental understanding of the transport phenomena, specifically the factors underpinning structure-property-performance relationships, will be vital to guide the informed development of more selective IEMs. Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff. Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water, energy, and environmental challenges.
Graphical abstract
Keywords
Ion-exchange membranes
/
Selectivity
/
Separations
Cite this article
Download citation ▾
Hanqing Fan, Yuxuan Huang, Ngai Yin Yip.
Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities.
Front. Environ. Sci. Eng., 2023, 17(2): 25 DOI:10.1007/s11783-023-1625-0
| [1] |
Abdollahzadeh M, Chai M, Hosseini E, Zakertabrizi M, Mohammad M, Ahmadi H, Hou J, Lim S, Habibnejad Korayem A, Chen V, Asadnia M, Razmjou A. (2022). Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Advanced Materials, 34(9): 2107878
|
| [2] |
Abraham J, Vasu K S, Williams C D, Gopinadhan K, Su Y, Cherian C T, Dix J, Prestat E, Haigh S J, Grigorieva I V, Carbone P, Geim A K, Nair R R. (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12(6): 546–550
|
| [3] |
abu-Rjal R, Chinaryan V, Bazant M Z, Rubinstein I, Zaltzman B. (2014). Effect of concentration polarization on permselectivity. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 89(1): 012302
|
| [4] |
Acar E T, Buchsbaum S F, Combs C, Fornasiero F, Siwy Z S. (2019). Biomimetic potassium-selective nanopores. Science Advances, 5(2): eaav2568
|
| [5] |
Ahdab Y D, Rehman D, Lienhard J H. (2020). Brackish water desalination for greenhouses: Improving groundwater quality for irrigation using monovalent selective electrodialysis reversal. Journal of Membrane Science, 610: 118072
|
| [6] |
Ahdab Y D, Rehman D, Schucking G, Barbosa M, Lienhard J H. (2021). Treating irrigation water using high-performance membranes for monovalent selective electrodialysis. ACS ES&T Water, 1(1): 117–124
|
| [7] |
Ahmadi H, Zakertabrizi M, Hosseini E, Cha-Umpong W, Abdollahzadeh M, Korayem A H, Chen V, Shon H K, Asadnia M, Razmjou A. (2022). Heterogeneous asymmetric passable cavities within graphene oxide nanochannels for highly efficient lithium sieving. Desalination, 538: 115888
|
| [8] |
Ahmed M, Dincer I. (2011). A review on methanol crossover in direct methanol fuel cells: challenges and achievements. International Journal of Energy Research, 35(14): 1213–1228
|
| [9] |
Alvial-Hein G, Mahandra H, Ghahreman A. (2021). Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: a review. Journal of Cleaner Production, 297: 126592
|
| [10] |
Amiri H, Khosravi M, Ejeian M, Razmjou A. (2021). Designing ion-selective membranes for vanadium redox flow batteries. Advanced Materials Technologies, 6(10): 2001308
|
| [11] |
Amsden B. (1998). Solute diffusion within hydrogels: mechanisms and models. Macromolecules, 31(23): 8382–8395
|
| [12] |
An S S, Liu J, Wang J H, Wang M C, Ji Z Y, Qi S S, Yuan J S. (2019). Synthesis and characterization of a plat sheet potassium ion sieve membrane and its performances for separation potassium. Separation and Purification Technology, 212: 834–842
|
| [13] |
BakerR W (2012). Membrane Technology and Applications. Chichester: John Wiley & Sons
|
| [14] |
Bakonyi P, Kook L, Kumar G, Toth G, Rozsenberszki T, Nguyen D D, Chang S W, Zhen G Y, Belafi-Bako K, Nemestothy N. (2018). Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: a comprehensive update on recent progress and future prospects. Journal of Membrane Science, 564: 508–522
|
| [15] |
Barboiu M. (2018). Encapsulation versus self-aggregation toward highly selective artificial K+ channels. Accounts of Chemical Research, 51(11): 2711–2718
|
| [16] |
Barboiu M, Le Duc Y, Gilles A, Cazade P A, Michau M, Legrand Y M, Van Der Lee A, Coasne B, Parvizi P, Post J, Fyles T. (2014). An artificial primitive mimic of the Gramicidin: a channel. Nature Communications, 5: 4142
|
| [17] |
BardA J, Faulkner L R (2001). Electrochemical Methods: Fundamentals and Applications (2nd ed.). New York: Wiley
|
| [18] |
Barnett J W, Bilchak C R, Wang Y W, Benicewicz B C, Murdock L A, Bereau T, Kumar S K. (2020). Designing exceptional gas-separation polymer membranes using machine learning. Science Advances, 6(20): eaaz4301
|
| [19] |
Bedrov D, Smith G D, Davande H, Li L. (2008). Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. Journal of Physical Chemistry B, 112(7): 2078–2084
|
| [20] |
Ben-David A, Bason S, Jopp J, Oren Y, Freger V (2006a). Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection. Journal of Membrane Science, 281(1–2): 480–490
|
| [21] |
Ben-David A, Oren Y, Freger V. (2006b). Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes. Environmental Science & Technology, 40(22): 7023–7028
|
| [22] |
Berezina N P, Kononenko N A, Dyomina O A, Gnusin N P (2008). Characterization of ion-exchange membrane materials: properties vs structure. Advances in Colloid and Interface Science, 139(1–2): 3–28
|
| [23] |
BraggB JCasey J ETroutJ B (1994). Primary Battery Design and Safety Guidelines Handbook. Houston, Texas: NASA Reference Publication
|
| [24] |
Cath T Y, Childress A E, Elimelech M (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2): 70–87
|
| [25] |
Chaudhury S, Bhattacharyya A, Goswami A. (2014). Electrodriven ion transport through crown ether-Nafion composite membrane: enhanced selectivity of Cs+ over Na+ by ion gating at the surface. Industrial & Engineering Chemistry Research, 53(21): 8804–8809
|
| [26] |
Chen G Q, Wei K, Hassanvand A, Freeman B D, Kentish S E. (2020). Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. Water Research, 175: 115681
|
| [27] |
Chen L, Zhang R Y, He P, Kang Q J, He Y L, Tao W Q. (2018). Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources, 400: 114–125
|
| [28] |
Chen S, Luo H, Hou Y, Liu G, Zhang R, Qin B. (2015). Comparison of the removal of monovalent and divalent cations in the microbial desalination cell. Frontiers of Environmental Science & Engineering, 9(2): 317–323
|
| [29] |
Chen X, Boo C, Yip N Y. (2021). Influence of solute molecular diameter on permeability-selectivity tradeoff of thin-film composite polyamide membranes in aqueous separations. Water Research, 201: 117311
|
| [30] |
ChuS (2011). Critical Materials Strategy. U.S. Department of Energy, Darby: DIANE publishing
|
| [31] |
ClarkS BBuchanan MWilmarthB (2016). Basic research needs for environmental management. Richland, WA (USA): Pacific Northwest National Lab. (PNNL)
|
| [32] |
Collong S, Kouta R. (2015). Fault tree analysis of proton exchange membrane fuel cell system safety. International Journal of Hydrogen Energy, 40(25): 8248–8260
|
| [33] |
Cretin M, Fabry P (1997). Detection and selectivity properties of Li+-ion-selective electrodes based on NASICON-type ceramics. Analytica Chimica Acta, 354(1–3): 291–299
|
| [34] |
CruzG P TGaspillo P DTakahashiK (2000). Selective transport of Li-Na and Li-K binary systems across a cation exchange membrane under an electric field. Separation and Purification Technology, 19(1–2): 21–26
|
| [35] |
CusslerE LAris RBhownA (1989). On the limits of facilitated diffusion. Journal of Membrane Science, 43(2–3): 149–164
|
| [36] |
Darling R M, Weber A Z, Tucker M C, Perry M L. (2016). The influence of electric field on crossover in redox-flow batteries. Journal of the Electrochemical Society, 163(1): A5014–A5022
|
| [37] |
De MarcoRClarke GPejcicB (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19(19–20): 1987–2001
|
| [38] |
Deng H N, Zhao S J, Meng Q Q, Zhang W, Hu B S. (2014). A novel surface ion-imprinted cation-exchange membrane for selective separation of copper ion. Industrial & Engineering Chemistry Research, 53(39): 15230–15236
|
| [39] |
Devanathan R, Venkatnathan A, Dupuis M. (2007). Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. Journal of Physical Chemistry B, 111(28): 8069–8079
|
| [40] |
Dischinger S M, Gupta S, Carter B M, Miller D J. (2020). Transport of neutral and charged solutes in imidazolium-functionalized poly(phenylene oxide) membranes for artificial photosynthesis. Industrial & Engineering Chemistry Research, 59(12): 5257–5266
|
| [41] |
Długołęcki P, Anet B, Metz S J, Nijmeijer K, Wessling M. (2010a). Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science, 346(1): 163–171
|
| [42] |
DługołęckiP NymeijerKMetz SWesslingM (2008). Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 319(1–2): 214–222
|
| [43] |
DługołęckiP OgonowskiPMetz S JSaakesMNijmeijerKWesslingM (2010b). On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349(1–2): 369–379
|
| [44] |
Dresner L. (1972). Stability of the extended Nernst-Planck equations in the description of hyperfiltration through ion-exchange membranes. Journal of Physical Chemistry, 76(16): 2256–2267
|
| [45] |
Dresner L. (1974). Ionic transport through porous ion-exchange membranes in hyperfiltration and piezodialysis. Desalination, 15(1): 109–125
|
| [46] |
DuChanois R M, Heiranian M, Yang J, Porter C J, Li Q L, Zhang X, Verduzco R, Elimelech M. (2022). Designing polymeric membranes with coordination chemistry for high-precision ion separations. Science Advances, 8(9): eabm9436
|
| [47] |
DuChanois R M, Porter C J, Violet C, Verduzco R, Elimelech M. (2021). Membrane materials for selective ion separations at the water-energy nexus. Advanced Materials, 33(38): 2101312
|
| [48] |
Elser J, Bennett E. (2011). A broken biogeochemical cycle. Nature, 478(7367): 29–31
|
| [49] |
Epsztein R, DuChanois R M, Ritt C L, Noy A, Elimelech M. (2020). Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 15(6): 426–436
|
| [50] |
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10): 636–639
|
| [51] |
Ersöz M. (1995). Diffusion and selective transport of alkali cations on cation-exchange membrane. Separation Science and Technology, 30(18): 3523–3533
|
| [52] |
Fan H, Huang Y, Billinge I H, Bannon S M, Geise G M, Yip N Y. (2022). Counterion mobility in ion-exchange membranes: spatial effect and valency-dependent electrostatic interaction. ACS ES&T Engineering, 2: 1274–1286
|
| [53] |
Fan H, Huang Y, Yip N Y. (2020). Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites. Journal of Membrane Science, 610: 118259
|
| [54] |
Fan H, Yip N Y. (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573: 668–681
|
| [55] |
Fetanat M, Keshtiara M, Keyikoglu R, Khataee A, Daiyan R, Razmjou A. (2021). Machine learning for design of thin-film nanocomposite membranes. Separation and Purification Technology, 270: 118383
|
| [56] |
Fonseca A D, Crespo J G, Almeida J S, Reis M A. (2000). Drinking water denitrification using a novel ion-exchange membrane bioreactor. Environmental Science & Technology, 34(8): 1557–1562
|
| [57] |
FountainM SKurath D ESevignyG JPoloskiA PPendleton JBalagopalSQuistMClayD (2008). Caustic recycle from Hanford tank waste using NaSICON ceramic membranes. Separation Science and Technology, 43(9–10): 2321–2342
|
| [58] |
Freeman B D. (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2): 375–380
|
| [59] |
Freger V. (2020). Ion partitioning and permeation in charged low-T* membranes. Advances in Colloid and Interface Science, 277: 102107
|
| [60] |
Ge L, Wu B, Yu D B, Mondal A N, Hou L X, Afsar N U, Li Q H, Xu T T, Miao J B, Xu T W. (2017). Monovalent cation perm-selective membranes (MCPMs): new developments and perspectives. Chinese Journal of Chemical Engineering, 25(11): 1606–1615
|
| [61] |
Geise G M. (2020). Experimental characterization of polymeric membranes for selective ion transport. Current Opinion in Chemical Engineering, 28: 36–42
|
| [62] |
Geise G M, Curtis A J, Hatzell M C, Hickner M A, Logan B E. (2014a). Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters, 1(1): 36–39
|
| [63] |
Geise G M, Hickner M A, Logan B E. (2013). Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Applied Materials & Interfaces, 5(20): 10294–10301
|
| [64] |
GeiseG MPark H BSagleA CFreemanB DMcgrathJ E (2011). Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of Membrane Science, 369(1–2): 130–138
|
| [65] |
Geise G M, Paul D R, Freeman B D. (2014b). Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 39(1): 1–42
|
| [66] |
Gilles A, Barboiu M. (2016). Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 138(1): 426–432
|
| [67] |
Goswami A, Acharya A, Pandey A K. (2001). Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. Journal of Physical Chemistry B, 105(38): 9196–9201
|
| [68] |
Gouaux E, MacKinnon R. (2005). Principles of selective ion transport in channels and pumps. Science, 310(5753): 1461–1465
|
| [69] |
Grzegorzek M, Majewska-Nowak K, Ahmed A E. (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Science of the Total Environment, 722: 137681
|
| [70] |
Güler E, Elizen R, Vermaas D A, Saakes M, Nijmeijer K. (2013). Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 446: 266–276
|
| [71] |
Güler E, Zhang Y L, Saakes M, Nijmeijer K. (2012). Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem, 5(11): 2262–2270
|
| [72] |
Guo Y, Ying Y L, Mao Y Y, Peng X S, Chen B L. (2016). Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 55(48): 15120–15124
|
| [73] |
Han L, Galier S, Roux-De Balmann H. (2015). Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution. Desalination, 373: 38–46
|
| [74] |
Han L, Galier S, Roux-De Balmann H. (2016). Transfer of neutral organic solutes during desalination by electrodialysis: influence of the salt composition. Journal of Membrane Science, 511: 207–218
|
| [75] |
Harnisch F, Wirth S, Schroder U. (2009). Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes. Electrochemistry Communications, 11(11): 2253–2256
|
| [76] |
HeintzAWiedemann EZieglerJ (1997). Ion exchange diffusion in electromembranes and its description using the Maxwell-Stefan formalism. Journal of Membrane Science, 137(1–2): 121–132
|
| [77] |
Heinzel A, Barragan V M. (1999). A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 84(1): 70–74
|
| [78] |
HelfferichF (1995). Ion Exchange. Mineola: Dover Publications
|
| [79] |
Huang Z, Zhu J, Qiu R J, Ruan J J, Qiu R L. (2019). A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries. Journal of Cleaner Production, 229: 1148–1157
|
| [80] |
Ismail A F, Matsuura T. (2018). Progress in transport theory and characterization method of Reverse Osmosis (RO) membrane in past fifty years. Desalination, 434: 2–11
|
| [81] |
Jarin M, Dou Z, Gao H, Chen Y, Xie X. (2023). Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water. Frontiers of Environmental Science & Engineering, 17(2): 16
|
| [82] |
Jaroszek H, Dydo P. (2016). Ion-exchange membranes in chemical synthesis: a review. Open Chemistry, 14(1): 1–19
|
| [83] |
KamcevJ (2016). Ion sorption and transport in ion exchange membranes: importance of counter-ion condensation. Dissertation for the Doctoral Degree. Austin: The University of Texas at Austin
|
| [84] |
Kamcev J. (2021). Reformulating the permselectivity-conductivity tradeoff relation in ion-exchange membranes. Journal of Polymer Science, 59(21): 2510–2520
|
| [85] |
Kamcev J, Paul D R, Manning G S, Freeman B D. (2017). Predicting salt permeability coefficients in highly swollen, highly charged ion exchange membranes. ACS Applied Materials & Interfaces, 9(4): 4044–4056
|
| [86] |
Kamcev J, Paul D R, Manning G S, Freeman B D. (2018a). Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules, 51(15): 5519–5529
|
| [87] |
Kamcev J, Sujanani R, Jang E S, Yan N, Moe N, Paul D R, Freeman B D. (2018b). Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 547: 123–133
|
| [88] |
KananiD MFissell W HRoySDubnishevaAFleischman AZydneyA L (2010). Permeability-selectivity analysis for ultrafiltration: Effect of pore geometry. Journal of Membrane Science, 349(1–2): 405–410
|
| [89] |
Karal M A, Islam M K, Mahbub Z B. (2020). Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. European Biophysics Journal, 49(1): 59–69
|
| [90] |
Kato S, Nagahama K, Asai H. (1992). Permeation rates of aqueous alcohol-solutions in pervaporation through Nafion membranes. Journal of Membrane Science, 72(1): 31–41
|
| [91] |
Kim J, Tsouris C, Mayes R T, Oyola Y, Saito T, Janke C J, Dai S, Schneider E, Sachde D. (2013). Recovery of uranium from seawater: a review of current status and future research needs. Separation Science and Technology, 48(3): 367–387
|
| [92] |
Kim J M, Beckingham B S. (2021). Transport and co-transport of carboxylate ions and alcohols in cation exchange membranes. Journal of Polymer Science, 59(21): 2545–2558
|
| [93] |
Kim J M, Lin Y H, Hunter B, Beckingham B S. (2021a). Transport and co-transport of carboxylate ions and ethanol in anion exchange membranes. Polymers, 13(17): 2885
|
| [94] |
Kim J M, Mazumder A, Li J, Jiang Z H, Beckingham B S. (2022a). Impact of PEGMA on transport and co-transport of methanol and acetate in PEGDA-AMPS cation exchange membranes. Journal of Membrane Science, 642: 119950
|
| [95] |
Kim J R, Jung S H, Regan J M, Logan B E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13): 2568–2577
|
| [96] |
Kim N, Jeong S, Go W, Kim Y. (2022b). A Na+ ion-selective desalination system utilizing a NASICON ceramic membrane. Water Research, 215: 118250
|
| [97] |
Kim S, Nguyen B T D, Ko H, Kim M, Kim K, Nam S, Kim J F. (2021b). Accurate evaluation of hydrogen crossover in water electrolysis systems for wetted membranes. International Journal of Hydrogen Energy, 46(29): 15135–15144
|
| [98] |
Kim Y, Walker W S, Lawler D F. (2012). Competitive separation of di- vs. mono-valent cations in electrodialysis: Effects of the boundary layer properties. Water Research, 46(7): 2042–2056
|
| [99] |
Kingsbury R, Wang J, Coronell O. (2020). Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. Journal of Membrane Science, 604: 117998
|
| [100] |
Kingsbury R S, Coronell O. (2021). Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and Manning’s counter-ion condensation theory. Journal of Membrane Science, 620: 118411
|
| [101] |
Kitto D, Kamcev J. (2022). Manning condensation in ion exchange membranes: a review on ion partitioning and diffusion models. Journal of Polymer Science, 2022: 1–45
|
| [102] |
Knauth P, Pasquini L, Narducci R, Sgreccia E, Becerra-Arciniegas R A, Di Vona M L. (2021). Effective ion mobility in anion exchange ionomers: relations with hydration, porosity, tortuosity, and percolation. Journal of Membrane Science, 617: 118622
|
| [103] |
Kocherginsky N M, Yang Q, Seelam L. (2007). Recent advances in supported liquid membrane technology. Separation and Purification Technology, 53(2): 171–177
|
| [104] |
Koh D Y, Mccool B A, Deckman H W, Lively R P. (2016). Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science, 353(6301): 804–807
|
| [105] |
Kong L, Palacios E, Guan X, Shen M, Liu X. (2022). Mechanisms for enhanced transport selectivity of like-charged ions in hydrophobic-polymer-modified ion-exchange membranes. Journal of Membrane Science, 658: 120645
|
| [106] |
Kreuer K D. (2014). Ion conducting membranes for fuel cells and other electrochemical devices. Chemistry of Materials, 26(1): 361–380
|
| [107] |
Kreuer K D, Münchinger A. (2021). Fast and selective ionic transport: from ion-conducting channels to ion exchange membranes for flow batteries. Annual Review of Materials Research, 51: 21–46
|
| [108] |
Kreuer K D, Paddison S J, Spohr E, Schuster M. (2004). Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews, 104(10): 4637–4678
|
| [109] |
Krödel M, Carter B M, Rall D, Lohaus J, Wessling M, Miller D J. (2020). Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Applied Materials & Interfaces, 12(10): 12030–12042
|
| [110] |
Lakshminarayanaiah N. (1965). Transport phenomena in artificial membranes. Chemical Reviews, 65(5): 491–565
|
| [111] |
Li C Y, Chen H, Chen Q S, Shi H, Yang X H, Wang K M, Liu J B. (2020). Lipophilic G-quadruplex isomers as biomimetic ion channels for conformation-dependent selective transmembrane transport. Analytical Chemistry, 92(14): 10169–10176
|
| [112] |
Li H, Tang Y H, Wang Z W, Shi Z, Wu S H, Song D T, Zhang J L, Fatih K, Zhang J J, Wang H J, Liu Z S, Abouatallah R, Mazza A. (2008). A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 178(1): 103–117
|
| [113] |
Li W W, Sheng G P, Liu X W, Yu H Q. (2011). Recent advances in the separators for microbial fuel cells. Bioresource Technology, 102(1): 244–252
|
| [114] |
Li W W, Yu H Q, Rittmann B E. (2015). Chemistry: reuse water pollutants. Nature, 528(7580): 29–31
|
| [115] |
Li X Y, Hill M R, Wang H T, Zhang H C. (2021). Metal-organic framework-based ion-selective membranes. Advanced Materials Technologies, 6(10): 2000790
|
| [116] |
Liu F Q, Lu G Q, Wang C Y. (2006). Low crossover of methanol and water through thin membranes in direct methanol fuel cells. Journal of the Electrochemical Society, 153(3): A543–A553
|
| [117] |
Liu H, She Q H. (2022). Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. Journal of Membrane Science, 650: 120398
|
| [118] |
Liu Y C, Yeh L H, Zheng M J, Wu K C W. (2021). Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Science Advances, 7(10): eabe9924
|
| [119] |
Luo H X, Agata W A S, Geise G M. (2020). Connecting the ion separation factor to the sorption and diffusion selectivity of ion exchange membranes. Industrial & Engineering Chemistry Research, 59(32): 14189–14206
|
| [120] |
Luo T, Abdu S, Wessling M. (2018). Selectivity of ion exchange membranes: a review. Journal of Membrane Science, 555: 429–454
|
| [121] |
Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G. (2014). Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 114(21): 10735–10806
|
| [122] |
MarchettiP, Livingston A G (2015). Predictive membrane transport models for organic solvent nanofiltration: How complex do we need to be? Journal of Membrane Science, 476: 530–553
|
| [123] |
MatosC TFortunato RVelizarovSReisM A MCrespoJ G (2008). Removal of mono-valent oxyanions from water in an ion exchange membrane bioreactor: Influence of membrane permselectivity. Water Research, 42(6-7): 1785–1795
|
| [124] |
Matos C T, Velizarov S, Crespo J G, Reis M A M. (2006). Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research, 40(2): 231–240
|
| [125] |
Mauvy F, Gondran C, Siebert E. (1999). Potentiometric selectivity and impedance characteristics of a NASICON-based ion selective electrode. Electrochimica Acta, 44(13): 2219–2226
|
| [126] |
McCartney S N, Watanabe N S, Yip N Y. (2021). Emerging investigator series: thermodynamic and energy analysis of nitrogen and phosphorous recovery from wastewaters. Environmental Science. Water Research & Technology, 7(11): 2075–2088
|
| [127] |
Meares P. (1986). Synthetic Membranes: Science, Engineering and Applications. Dordrecht: Springer, 169–179
|
| [128] |
Medford A J, Vojvodic A, Hummelshoj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Norskov J K. (2015). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 328: 36–42
|
| [129] |
MehtaAZydney A L (2005). Permeability and selectivity analysis for ultrafiltration membranes. Journal of Membrane Science, 249(1–2): 245–249
|
| [130] |
Miyoshi H. (1997). Diffusion coefficients of ions through ion-exchange membranes for Donnan dialysis using ions of the same valence. Chemical Engineering Science, 52(7): 1087–1096
|
| [131] |
Mubita T, Porada S, Aerts P, Van Der Wal A. (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. Journal of Membrane Science, 607: 118000
|
| [132] |
Münchinger A, Kreuer K D. (2019). Selective ion transport through hydrated cation and anion exchange membranes I. The effect of specific interactions. Journal of Membrane Science, 592: 117372
|
| [133] |
NationalAcademies of Sciences E Medicine (2019). A Research Agenda for Transforming Separation Science. Washington, DC National Academies Press
|
| [134] |
Nie X Y, Sun S Y, Song X F, Yu J G. (2017a). Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. Journal of Membrane Science, 530: 185–191
|
| [135] |
Nie X Y, Sun S Y, Sun Z, Song X F, Yu J G. (2017b). Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination, 403: 128–135
|
| [136] |
Nightingale E R Jr. (1959). Phenomenological theory of ion solvation - effective radii of hydrated ions. Journal of Physical Chemistry, 63(9): 1381–1387
|
| [137] |
Noskov S Y, Berneche S, Roux B. (2004). Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 431(7010): 830–834
|
| [138] |
Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (2020). Critical Materials Rare Earths Supply Chain: A Situational White Paper. Washington, DC: U.S. Department of Energy
|
| [139] |
Oh K, Moazzam M, Gwak G, Ju H. (2019). Water crossover phenomena in all-vanadium redox flow batteries. Electrochimica Acta, 297: 101–111
|
| [140] |
Ohya H, Masaoka K, Aihara M, Negishi Y. (1998). Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane. Journal of Membrane Science, 146(1): 9–13
|
| [141] |
Parhi P K. (2013). Supported liquid membrane principle and its practices: a short review. Journal of Chemistry, 2013: 618236
|
| [142] |
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
|
| [143] |
Parnamae R, Mareev S, Nikonenko V, Melnikov S, Sheldeshov N, Zabolotskii V, Hamelers H V M, Tedesco M. (2021). Bipolar membranes: a review on principles, latest developments, and applications. Journal of Membrane Science, 617: 118538
|
| [144] |
Paul D R. (2004). Reformulation of the solution-diffusion theory of reverse osmosis. Journal of Membrane Science, 241(2): 371–386
|
| [145] |
Paul M, Park H B, Freeman B D, Roy A, Mcgrath J E, Riffle J S. (2008). Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer, 49(9): 2243–2252
|
| [146] |
Porada S, Van Egmond W J, Post J W, Saakes M, Hamelers H V M. (2018). Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis. Journal of Membrane Science, 552: 22–30
|
| [147] |
Qian Z X, Miedema H, Pintossi D, Ouma M, Sudholter E J R. (2022). Selective removal of sodium ions from greenhouse drainage water: a combined experimental and theoretical approach. Desalination, 536: 115844
|
| [148] |
Qian Z X, Miedema H, Sahin S, De Smet L C P M, Sudholter E J R. (2020). Separation of alkali metal cations by a supported liquid membrane (SLM) operating under electro dialysis (ED) conditions. Desalination, 495: 114631
|
| [149] |
Ran J, Wu L, He Y B, Yang Z J, Wang Y M, Jiang C X, Ge L, Bakangura E, Xu T W. (2017). Ion exchange membranes: new developments and applications. Journal of Membrane Science, 522: 267–291
|
| [150] |
Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V. (2019). Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nature Communications, 10(1): 1–15
|
| [151] |
Ren C L, Shen J, Zeng H Q. (2017). Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 139(36): 12338–12341
|
| [152] |
Ren X M, Gottesfeld S. (2001). Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes. Journal of the Electrochemical Society, 148(1): A87–A93
|
| [153] |
Ritt C L, Liu M J, Pham T A, Epsztein R, Kulik H J, Elimelech M. (2022). Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Science Advances, 8(2): eabl5771
|
| [154] |
RobesonL M (2008). The upper bound revisited. Journal of Membrane Science, 320(1–2): 390–400
|
| [155] |
RobinsonR AStokes R H (2002). Electrolyte Solutions (2nd revised ed.). Mineola: Dover Publications
|
| [156] |
Rommerskirchen A, Roth H, Linnartz C J, Egidi F, Kneppeck C, Roghmans F, Wessling M. (2021). Mitigating water crossover by crosslinked coating of cation-exchange membranes for brine concentration. Advanced Materials Technologies, 6(10): 2100202
|
| [157] |
Rottiers T, Ghyselbrecht K, Meesschaert B, Van der Bruggen B, Pinoy L. (2014). Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions. Chemical Engineering Science, 113: 95–100
|
| [158] |
Rubinstein I. (1990). Theory of concentration polarization effects in electrodialysis on counter-ion selectivity of ion-exchange membranes with differing counter-ion distribution coefficients. Journal of the Chemical Society, Faraday Transactions, 86(10): 1857–1861
|
| [159] |
Russell S T, Pereira R, Vardner J T, Jones G N, Dimarco C, West A C, Kumar S K. (2020). Hydration effects on the permselectivity-conductivity trade-off in polymer electrolytes. Macromolecules, 53(3): 1014–1023
|
| [160] |
Sachar H S, Zofchak E S, Marioni N, Zhang Z, Kadulkar S, Duncan T J, Freeman B D, Ganesan V. (2022). Impact of cation–ligand interactions on the permselectivity of ligand-functionalized polymer membranes in single and mixed salt systems. Macromolecules, 55: 4821–4831
|
| [161] |
San Román M F, Bringas E, Ibanez R, Ortiz I. (2010). Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 85(1): 2–10
|
| [162] |
Saracco G. (1997). Transport properties of monovalent-ion-permselective membranes. Chemical Engineering Science, 52(17): 3019–3031
|
| [163] |
Sata T. (2000). Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis — effect of hydrophilicity of anion exchange membranes on permselectivity of anions. Journal of Membrane Science, 167(1): 1–31
|
| [164] |
SataT (2004). Ion Exchange Membranes Preparation, Characterization, Modification and Application. Cambridge: Royal Society of Chemistry
|
| [165] |
SataTSata TYangW (SataTSataT YangW). Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. Journal of Membrane Science, 206(1–2): 31–60
|
| [166] |
Shao P, Huang R. (2007). Polymeric membrane pervaporation. Journal of Membrane Science, 287(2): 162–179
|
| [167] |
Sharma P P, Yadav V, Rajput A, Gupta H, Saravaia H, Kulshrestha V. (2020). Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination, 496: 114755
|
| [168] |
Shehzad M A, Wang Y M, Yasmin A, Ge X L, He Y B, Liang X, Zhu Y, Hu M, Xiao X L, Ge L, Jiang C X, Yang Z J, Guiver M D, Wu L, Xu T W. (2019). Biomimetic nanocones that enable high ion permselectivity. Angewandte Chemie International Edition, 58(36): 12646–12654
|
| [169] |
Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M. (2014). Biomimetic membranes: a review. Journal of Membrane Science, 454: 359–381
|
| [170] |
Sheng C J, Wijeratne S, Cheng C, Baker G L, Bruening M L. (2014). Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. Journal of Membrane Science, 459: 169–176
|
| [171] |
Siddiqui M U, Arif A F M, Bashmal S. (2016). Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: Effect of pore size and shape distribution and membrane stretching. Membranes (Basel), 6(3): 40
|
| [172] |
Silva P, Han S J, Livingston A G (2005). Solvent transport in organic solvent nanofiltration membranes. Journal of Membrane Science, 262(1–2): 49−59
|
| [173] |
Song Y M, Pan F S, Li Y, Quan K D, Jiang Z Y. (2019). Mass transport mechanisms within pervaporation membranes. Frontiers of Chemical Science and Engineering, 13(3): 458–474
|
| [174] |
Spiegler K S. (1958). Transport processes in ionic membranes. Transactions of the Faraday Society, 54(9): 1408–1428
|
| [175] |
StrathmannH (2004). Ion-Exchange Membrane Separation Processes. Amsterdam: Elsevier
|
| [176] |
Strathmann H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3): 268–288
|
| [177] |
Strathmann H, Grabowski A, Eigenberger G. (2013). Ion-exchange membranes in the chemical process industry. Industrial & Engineering Chemistry Research, 52(31): 10364–10379
|
| [178] |
Sujanani R, Landsman M R, Jiao S, Moon J D, Shell M S, Lawler D F, Katz L E, Freeman B D. (2020). Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery. ACS Macro Letters, 9(11): 1709–1717
|
| [179] |
Sun P, Zheng F, Zhu M, Song Z, Wang K, Zhong M, Wu D, Little R B, Xu Z, Zhu H. (2014). Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation−π interactions. ACS Nano, 8(1): 850–859
|
| [180] |
Takamuku S, Wohlfarth A, Manhart A, Rader P, Jannasch P. (2015). Hypersulfonated polyelectrolytes: preparation, stability and conductivity. Polymer Chemistry, 6(8): 1267–1274
|
| [181] |
TanakaY (2003). Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater. Journal of Membrane Science, 215(1–2): 265–279
|
| [182] |
TanakaY (2015). Ion Exchange Membranes: Fundamentals and Applications. Waltham: Elsevier
|
| [183] |
Tang C, Bondarenko M P, Yaroshchuk A, Bruening M L. (2021). Highly selective ion separations based on counter-flow electromigration in nanoporous membranes. Journal of Membrane Science, 638: 119684
|
| [184] |
Tang C, Bruening M L. (2020). Ion separations with membranes. Journal of Polymer Science, 58(20): 2831–2856
|
| [185] |
Tang C, Yaroshchuk A, Bruening M L. (2020). Flow through negatively charged, nanoporous membranes separates Li+ and K+ due to induced electromigration. Chemical Communications (Cambridge), 56(74): 10954–10957
|
| [186] |
Tas S, Zoetebier B, Hempenius M A, Vancso G J, Nijmeijer K. (2016). Monovalent cation selective crown ether containing poly(arylene ether ketone)/SPEEK blend membranes. RSC Advances, 6(60): 55635–55642
|
| [187] |
TheWhite House (2018). A federal strategy to ensure secure and reliable supplies of critical minerals. Washington, DC: The White House
|
| [188] |
The White House (2022). FACT SHEET: Securing a Made in America Supply Chain for Critical Minerals. Washington, DC: The White House
|
| [189] |
TirrellMHubbard SShollDPetersonETsapatsis MMaherKTumasWGiammarD GilbertBLoo Y L (2017). Basic Research Needs for Energy and Water: Report of the Office of Basic Energy Sciences Basic Research Needs Workshop for Energy and Water. Washington DC: USDOE Office of Science
|
| [190] |
Tong X, Zhang B P, Chen Y S. (2016). Fouling resistant nanocomposite cation exchange membrane with enhanced power generation for reverse electrodialysis. Journal of Membrane Science, 516: 162–171
|
| [191] |
Tongwen X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection: a review. Resources, Conservation and Recycling, 37(1): 1–22
|
| [192] |
Tran A T K, Zhang Y, De Corte D, Hannes J B, Ye W Y, Mondal P, Jullok N, Meesschaert B, Pinoy L, Van der Bruggen B. (2014). P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. Journal of Cleaner Production, 77: 140–151
|
| [193] |
Trinke P, Keeley G P, Carmo M, Bensmann B, Hanke-Rauschenbach R. (2019). Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content. Journal of the Electrochemical Society, 166(8): F465–F471
|
| [194] |
Tu Y M, Samineni L, Ren T W, Schantz A B, Song W, Sharma S, Kumar M. (2021). Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 620: 118968
|
| [195] |
Uliana A A, Bui N T, Kamcev J, Taylor M K, Urban J J, Long J R. (2021). Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 372(6539): 296–299
|
| [196] |
Van der Bruggen B, Koninckx A, Vandecasteele C. (2004). Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research, 38(5): 1347–1353
|
| [197] |
Vandezande P, Gevers L E M, Vankelecom I F J. (2008). Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 37(2): 365–405
|
| [198] |
VermaasD ASaakes MNijmeijerK (2011). Power generation using profiled membranes in reverse electrodialysis. Journal of Membrane Science, 385-386(1–2): 234–242
|
| [199] |
VielstichWLamm AGasteigerH A (2003). Handbook of Fuel Cells: Fundamentals, Technology, Applications. Hoboken: Wiley
|
| [200] |
Vlasov V, Gvozdik N, Mokrousov M, Ryazantsev S, Luchkin S Y, Gorin D, Stevenson K. (2022). Ion-exchange membrane impact on preferential water transfer in all-vanadium redox flow battery. Journal of Power Sources, 540: 231640
|
| [201] |
Wang J, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C, Mamba B B, Freger V, Verliefde A R, Hoek E M. (2014a). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
|
| [202] |
Wang J W, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C Y, Mamba B B, Freger V, Verliefde A R D, Hoek E M V. (2014b). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
|
| [203] |
Wang P F, Wang M, Liu F, Ding S Y, Wang X, Du G H, Liu J, Apel P, Kluth P, Trautmann C, Wang Y G. (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications, 9(1): 569
|
| [204] |
Wang R Y, Lin S H. (2021). Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects. Journal of Membrane Science, 620: 118809
|
| [205] |
Wang W, Zhang Y, Li F, Chen Y, Mojallali Rostami S M, Hosseini S S, Shao L. (2022a). Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. Journal of Membrane Science, 658: 120703
|
| [206] |
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. (2022b). Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Separation and Purification Technology, 297: 121520
|
| [207] |
WangWZhang YYangXSunHWuY ShaoL (2022c). Monovalent cation exchange membranes with janus charged structure for ion separation. Engineering.
|
| [208] |
Wang X, Li N, Li J, Feng J, Ma Z, Xu Y, Sun Y, Xu D, Wang J, Gao X. (2019). Fluoride removal from secondary effluent of the graphite industry using electrodialysis: optimization with response surface methodology. Frontiers of Environmental Science & Engineering, 13(4): 51
|
| [209] |
Wang Z Y, Meng Q H, Ma R C, Wang Z K, Yang Y J, Sha H Y, Ma X J, Ruan X H, Zou X Q, Yuan Y. . (2020). Constructing an ion pathway for uranium extraction from seawater. Chem, 6(7): 1683–1691
|
| [210] |
Warnock S J, Sujanani R, Zofchak E S, Zhao S, Dilenschneider T J, Hanson K G, Mukherjee S, Ganesan V, Freeman B D, Abu-Omar M M, Bates C M. (2021). Engineering Li/Na selectivity in 12-crown-4-functionalized polymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2022197118
|
| [211] |
WarrenP (2021). Techno-economic analysis of lithium extraction from geothermal brines. Golden: National Renewable Energy Lab.(NREL)
|
| [212] |
Wen Q, Yan D X, Liu F, Wang M, Ling Y, Wang P F, Kluth P, Schauries D, Trautmann C, Apel P. . (2016). Highly selective ionic transport through subnanometer pores in polymer films. Advanced Functional Materials, 26(32): 5796–5803
|
| [213] |
Wiedemann E, Heintz A, Lichtenthaler R N. (1998). Transport properties of vanadium ions in cation exchange membranes: Determination of diffusion coefficients using a dialysis cell. Journal of Membrane Science, 141(2): 215–221
|
| [214] |
WijmansJ GBaker R W (1995). The solution-diffusion model: a review. Journal of Membrane Science, 107(1–2): 1–21
|
| [215] |
Xi Y H, Liu Z, Ji J Y, Wang Y, Faraj Y, Zhu Y D, Xie R, Ju X J, Wang W, Lu X H. . (2018). Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membrane Science, 550: 208–218
|
| [216] |
Xiao H, Chai M, Abdollahzadeh M, Ahmadi H, Chen V, Gore D B, Asadnia M, Razmjou A. (2022). A lithium ion selective membrane synthesized from a double layered Zr based metalorganic framework (MOF-on-MOF) thin film. Desalination, 532: 115733
|
| [217] |
Xie W, Cook J, Park H B, Freeman B D, Lee C H, Mcgrath J E. (2011). Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer, 52(9): 2032–2043
|
| [218] |
Xin W W, Fu J R, Qian Y C, Fu L, Kong X Y, Ben T, Jiang L, Wen L P. (2022). Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nature Communications, 13(1): 1701
|
| [219] |
Xu D, Li Y, Yin L, Ji Y, Niu J, Yu Y. (2018). Electrochemical removal of nitrate in industrial wastewater. Frontiers of Environmental Science & Engineering, 12(1): 9
|
| [220] |
XuT W (2005). Ion exchange membranes: state of their development and perspective. Journal of Membrane Science, 263(1–2): 1–29
|
| [221] |
YanH YWang Y MWuLShehzadM AJiangC X FuR QLiu Z MXuT W (2019). Multistage-batch electrodialysis to concentrate high-salinity solutions: process optimisation, water transport, and energy consumption. Journal of Membrane Science, 570-571: 245–257
|
| [222] |
YanJ, WangH, FuR, FuR, LiR, ChenB, JiangC, Ge L, LiuZ, WangY, XuT (2022). Ion exchange membranes for acid recovery: Diffusion Dialysis (DD) or Selective Electrodialysis (SED)? Desalination, 531: 115690
|
| [223] |
Yaroshchuk A. (2000a). Asymptotic behaviour in the pressure-driven separations of ions of different mobilities in charged porous membranes. Journal of Membrane Science, 167(2): 163–185
|
| [224] |
Yaroshchuk A. (2000b). Optimal charged membranes for the pressure-driven separations of ions of different mobilities: theoretical analysis. Journal of Membrane Science, 167(2): 149–161
|
| [225] |
YaroshchukA E (2008). Negative rejection of ions in pressure-driven membrane processes. Advances in Colloid and Interface Science, 139(1–2): 150–173
|
| [226] |
YaroshchukA EVovkogonY A (1994a). Phenomenological theory of pressure-driven transport of ternary electrolyte solutions with a common coin and its specification for capillary space—charge model. Journal of Membrane Science, 86(1–2): 1–18
|
| [227] |
YaroshchukA EVovkogonY A (1994b). Pressure-driven transport of ternary electrolyte solutions with a common coion through charged membranes: numerical analysis. Journal of Membrane Science, 86(1–2): 19–37
|
| [228] |
Yasuda H, Ikenberry L, Lamaze C. (1969). Permeability of solutes through hydrated polymer membranes. Part II. Permeability of water soluble organic solutes. Die Makromolekulare Chemie, 125(1): 108–118
|
| [229] |
Yasuda H, Lamaze C, Ikenberry L. (1968). Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Die Makromolekulare Chemie, 118(1): 19–35
|
| [230] |
Yasuda H, Lamaze C E, Peterlin A. (1971). Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. Journal of Polymer Science Part A: 2-Polymer Physics, 9(6): 1117–1131
|
| [231] |
Ye Y, Ngo H H, Guo W, Chang S W, Nguyen D D, Zhang X, Zhang J, Liang S. (2020). Nutrient recovery from wastewater: From technology to economy. Bioresource Technology Reports, 11: 100425
|
| [232] |
ZabolotskyV IManzanaresJ ANikonenko V VLebedevK ALovtsovE G (2002). Space charge effect on competitive ion transport through ion-exchange membranes. Desalination, 147(1–3): 387–392
|
| [233] |
Zhang H C, Hou J, Hu Y X, Wang P Y, Ou R W, Jiang L, Liu J Z, Freeman B D, Hill A J, Wang H T. (2018). Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 4(2): eaaq0066
|
| [234] |
ZhangYVan der Bruggen BPinoyLMeesschaertB (2009). Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis. Journal of Membrane Science, 332(1–2): 104–112
|
| [235] |
Zhou M, Chen X, Pan J, Yang S, Han B, Xue L, Shen J, Gao C, Van der Bruggen B. (2017a). A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis. Desalination, 415: 29–39
|
| [236] |
Zhou X B, Liu G D, Yamato K, Shen Y, Cheng R X, Wei X X, Bai W L, Gao Y, Li H, Liu Y. . (2012). Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 3(1): 949
|
| [237] |
Zhou X L, Zhao T S, An L, Zeng Y K, Wei L. (2017b). Critical transport issues for improving the performance of aqueous redox flow batteries. Journal of Power Sources, 339: 1–12
|
| [238] |
Zhu J, Liao J, Jin W, Luo B, Shen P, Sotto A, Shen J, Gao C. (2019). Effect of functionality of cross-linker on sulphonated polysulfone cation exchange membranes for electrodialysis. Reactive & Functional Polymers, 138: 104–113
|
| [239] |
Zlotorowicz A, Strand R V, Burheim O S, Wilhelmsen O, Kjelstrup S. (2017). The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. Journal of Membrane Science, 523: 402–408
|
| [240] |
Zofchak E S, Zhang Z D, Marioni N, Duncan T J, Sachar H S, Chamseddine A, Freeman B D, Ganesan V. (2022). Cation-ligand interactions dictate salt partitioning and diffusivity in ligand-functionalized polymer membranes. Macromolecules, 55(6): 2260–2270
|
| [241] |
Zou Z Y, Ma N, Wang A P, Ran Y B, Song T, Jiao Y, Liu J P, Zhou H, Shi W, He B. . (2020). Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Advanced Energy Materials, 10(30): 2001486
|
RIGHTS & PERMISSIONS
The Author(s) . This article is published with open access at link.springer.com and journal.hep.com.cn