Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

Hanqing Fan, Yuxuan Huang, Ngai Yin Yip

PDF(4218 KB)
PDF(4218 KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 25. DOI: 10.1007/s11783-023-1625-0
REVIEW ARTICLE
REVIEW ARTICLE

Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities

Author information +
History +

Highlights

● IEM ion/ion selectivities of charge, valence, & specific ion are critically assessed.

● Ion/molecule selectivities of ion/solvent and ion/uncharged solute are reviewed.

● Approaches to advance the selectivities through sorption and migration are analyzed.

● The permeability-selectivity tradeoff appears to be pervasive.

● Ion/molecule selectivities are comparatively underdeveloped and poorly understood.

Abstract

Ion-exchange membranes (IEMs) are utilized in numerous established, emergent, and emerging applications for water, energy, and the environment. This article reviews the five different types of IEM selectivity, namely charge, valence, specific ion, ion/solvent, and ion/uncharged solute selectivities. Technological pathways to advance the selectivities through the sorption and migration mechanisms of transport in IEM are critically analyzed. Because of the underlying principles governing transport, efforts to enhance selectivity by tuning the membrane structural and chemical properties are almost always accompanied by a concomitant decline in permeability of the desired ion. Suppressing the undesired crossover of solvent and neutral species is crucial to realize the practical implementation of several technologies, including bioelectrochemical systems, hypersaline electrodialysis desalination, fuel cells, and redox flow batteries, but the ion/solvent and ion/uncharged solute selectivities are relatively understudied, compared to the ion/ion selectivities. Deepening fundamental understanding of the transport phenomena, specifically the factors underpinning structure-property-performance relationships, will be vital to guide the informed development of more selective IEMs. Innovations in material and membrane design offer opportunities to utilize ion discrimination mechanisms that are radically different from conventional IEMs and potentially depart from the putative permeability-selectivity tradeoff. Advancements in IEM selectivity can contribute to meeting the aqueous separation needs of water, energy, and environmental challenges.

Graphical abstract

Keywords

Ion-exchange membranes / Selectivity / Separations

Cite this article

Download citation ▾
Hanqing Fan, Yuxuan Huang, Ngai Yin Yip. Advancing ion-exchange membranes to ion-selective membranes: principles, status, and opportunities. Front. Environ. Sci. Eng., 2023, 17(2): 25 https://doi.org/10.1007/s11783-023-1625-0

Ngai Yin Yip is the Lavon Duddleson Krumb Assistant Professor of Earth and Environmental Engineering at Columbia University, USA. He received his doctoral degree in Chemical and Environmental Engineering from Yale University, USA. His current research is focused on advancing physicochemical technologies and innovations for critical separation challenges in water, energy, and the environment, including high-salinity desalination, zero-liquid discharge, resource recovery from wastewaters, next-generation selective membranes, switchable solvents for water treatment, and low-grade heat utilization. For his research contributions, Dr. Yip has been recognized by the James J. Morgan Early Career Award of Environmental Science & Technology (Honorable Mention) and is featured as an Emerging Investigator by Environmental Science: Water Research & Technology. In addition to serving on the editorial boards of Desalination and Chemical Engineering Journal Advances, he is also an Early Career Board member for ACS ES&T Engineering. Yip has been a guest editor for special issues of Desalination and Water Science & Technology

References

[1]
Abdollahzadeh M, Chai M, Hosseini E, Zakertabrizi M, Mohammad M, Ahmadi H, Hou J, Lim S, Habibnejad Korayem A, Chen V, Asadnia M, Razmjou A. (2022). Designing angstrom-scale asymmetric MOF-on-MOF cavities for high monovalent ion selectivity. Advanced Materials, 34(9): 2107878
CrossRef Google scholar
[2]
Abraham J, Vasu K S, Williams C D, Gopinadhan K, Su Y, Cherian C T, Dix J, Prestat E, Haigh S J, Grigorieva I V, Carbone P, Geim A K, Nair R R. (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12(6): 546–550
CrossRef Google scholar
[3]
abu-Rjal R, Chinaryan V, Bazant M Z, Rubinstein I, Zaltzman B. (2014). Effect of concentration polarization on permselectivity. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 89(1): 012302
CrossRef Google scholar
[4]
Acar E T, Buchsbaum S F, Combs C, Fornasiero F, Siwy Z S. (2019). Biomimetic potassium-selective nanopores. Science Advances, 5(2): eaav2568
CrossRef Google scholar
[5]
Ahdab Y D, Rehman D, Lienhard J H. (2020). Brackish water desalination for greenhouses: Improving groundwater quality for irrigation using monovalent selective electrodialysis reversal. Journal of Membrane Science, 610: 118072
CrossRef Google scholar
[6]
Ahdab Y D, Rehman D, Schucking G, Barbosa M, Lienhard J H. (2021). Treating irrigation water using high-performance membranes for monovalent selective electrodialysis. ACS ES&T Water, 1(1): 117–124
CrossRef Google scholar
[7]
Ahmadi H, Zakertabrizi M, Hosseini E, Cha-Umpong W, Abdollahzadeh M, Korayem A H, Chen V, Shon H K, Asadnia M, Razmjou A. (2022). Heterogeneous asymmetric passable cavities within graphene oxide nanochannels for highly efficient lithium sieving. Desalination, 538: 115888
CrossRef Google scholar
[8]
Ahmed M, Dincer I. (2011). A review on methanol crossover in direct methanol fuel cells: challenges and achievements. International Journal of Energy Research, 35(14): 1213–1228
CrossRef Google scholar
[9]
Alvial-Hein G, Mahandra H, Ghahreman A. (2021). Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: a review. Journal of Cleaner Production, 297: 126592
CrossRef Google scholar
[10]
Amiri H, Khosravi M, Ejeian M, Razmjou A. (2021). Designing ion-selective membranes for vanadium redox flow batteries. Advanced Materials Technologies, 6(10): 2001308
CrossRef Google scholar
[11]
Amsden B. (1998). Solute diffusion within hydrogels: mechanisms and models. Macromolecules, 31(23): 8382–8395
CrossRef Google scholar
[12]
An S S, Liu J, Wang J H, Wang M C, Ji Z Y, Qi S S, Yuan J S. (2019). Synthesis and characterization of a plat sheet potassium ion sieve membrane and its performances for separation potassium. Separation and Purification Technology, 212: 834–842
CrossRef Google scholar
[13]
BakerR W (2012). Membrane Technology and Applications. Chichester: John Wiley & Sons
[14]
Bakonyi P, Kook L, Kumar G, Toth G, Rozsenberszki T, Nguyen D D, Chang S W, Zhen G Y, Belafi-Bako K, Nemestothy N. (2018). Architectural engineering of bioelectrochemical systems from the perspective of polymeric membrane separators: a comprehensive update on recent progress and future prospects. Journal of Membrane Science, 564: 508–522
CrossRef Google scholar
[15]
Barboiu M. (2018). Encapsulation versus self-aggregation toward highly selective artificial K+ channels. Accounts of Chemical Research, 51(11): 2711–2718
CrossRef Google scholar
[16]
Barboiu M, Le Duc Y, Gilles A, Cazade P A, Michau M, Legrand Y M, Van Der Lee A, Coasne B, Parvizi P, Post J, Fyles T. (2014). An artificial primitive mimic of the Gramicidin: a channel. Nature Communications, 5: 4142
CrossRef Google scholar
[17]
BardA J, Faulkner L R (2001). Electrochemical Methods: Fundamentals and Applications (2nd ed.). New York: Wiley
[18]
Barnett J W, Bilchak C R, Wang Y W, Benicewicz B C, Murdock L A, Bereau T, Kumar S K. (2020). Designing exceptional gas-separation polymer membranes using machine learning. Science Advances, 6(20): eaaz4301
CrossRef Google scholar
[19]
Bedrov D, Smith G D, Davande H, Li L. (2008). Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. Journal of Physical Chemistry B, 112(7): 2078–2084
CrossRef Google scholar
[20]
Ben-David A, Bason S, Jopp J, Oren Y, Freger V (2006a). Partitioning of organic solutes between water and polyamide layer of RO and NF membranes: correlation to rejection. Journal of Membrane Science, 281(1–2): 480–490
[21]
Ben-David A, Oren Y, Freger V. (2006b). Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes. Environmental Science & Technology, 40(22): 7023–7028
CrossRef Google scholar
[22]
Berezina N P, Kononenko N A, Dyomina O A, Gnusin N P (2008). Characterization of ion-exchange membrane materials: properties vs structure. Advances in Colloid and Interface Science, 139(1–2): 3–28
[23]
BraggB JCasey J ETroutJ B (1994). Primary Battery Design and Safety Guidelines Handbook. Houston, Texas: NASA Reference Publication
[24]
Cath T Y, Childress A E, Elimelech M (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1–2): 70–87
[25]
Chaudhury S, Bhattacharyya A, Goswami A. (2014). Electrodriven ion transport through crown ether-Nafion composite membrane: enhanced selectivity of Cs+ over Na+ by ion gating at the surface. Industrial & Engineering Chemistry Research, 53(21): 8804–8809
CrossRef Google scholar
[26]
Chen G Q, Wei K, Hassanvand A, Freeman B D, Kentish S E. (2020). Single and binary ion sorption equilibria of monovalent and divalent ions in commercial ion exchange membranes. Water Research, 175: 115681
CrossRef Google scholar
[27]
Chen L, Zhang R Y, He P, Kang Q J, He Y L, Tao W Q. (2018). Nanoscale simulation of local gas transport in catalyst layers of proton exchange membrane fuel cells. Journal of Power Sources, 400: 114–125
CrossRef Google scholar
[28]
Chen S, Luo H, Hou Y, Liu G, Zhang R, Qin B. (2015). Comparison of the removal of monovalent and divalent cations in the microbial desalination cell. Frontiers of Environmental Science & Engineering, 9(2): 317–323
[29]
Chen X, Boo C, Yip N Y. (2021). Influence of solute molecular diameter on permeability-selectivity tradeoff of thin-film composite polyamide membranes in aqueous separations. Water Research, 201: 117311
CrossRef Google scholar
[30]
ChuS (2011). Critical Materials Strategy. U.S. Department of Energy, Darby: DIANE publishing
[31]
ClarkS BBuchanan MWilmarthB (2016). Basic research needs for environmental management. Richland, WA (USA): Pacific Northwest National Lab. (PNNL)
[32]
Collong S, Kouta R. (2015). Fault tree analysis of proton exchange membrane fuel cell system safety. International Journal of Hydrogen Energy, 40(25): 8248–8260
CrossRef Google scholar
[33]
Cretin M, Fabry P (1997). Detection and selectivity properties of Li+-ion-selective electrodes based on NASICON-type ceramics. Analytica Chimica Acta, 354(1–3): 291–299
[34]
CruzG P TGaspillo P DTakahashiK (2000). Selective transport of Li-Na and Li-K binary systems across a cation exchange membrane under an electric field. Separation and Purification Technology, 19(1–2): 21–26
[35]
CusslerE LAris RBhownA (1989). On the limits of facilitated diffusion. Journal of Membrane Science, 43(2–3): 149–164
[36]
Darling R M, Weber A Z, Tucker M C, Perry M L. (2016). The influence of electric field on crossover in redox-flow batteries. Journal of the Electrochemical Society, 163(1): A5014–A5022
CrossRef Google scholar
[37]
De MarcoRClarke GPejcicB (2007). Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 19(19–20): 1987–2001
[38]
Deng H N, Zhao S J, Meng Q Q, Zhang W, Hu B S. (2014). A novel surface ion-imprinted cation-exchange membrane for selective separation of copper ion. Industrial & Engineering Chemistry Research, 53(39): 15230–15236
CrossRef Google scholar
[39]
Devanathan R, Venkatnathan A, Dupuis M. (2007). Atomistic simulation of nafion membrane: I. Effect of hydration on membrane nanostructure. Journal of Physical Chemistry B, 111(28): 8069–8079
CrossRef Google scholar
[40]
Dischinger S M, Gupta S, Carter B M, Miller D J. (2020). Transport of neutral and charged solutes in imidazolium-functionalized poly(phenylene oxide) membranes for artificial photosynthesis. Industrial & Engineering Chemistry Research, 59(12): 5257–5266
CrossRef Google scholar
[41]
Długołęcki P, Anet B, Metz S J, Nijmeijer K, Wessling M. (2010a). Transport limitations in ion exchange membranes at low salt concentrations. Journal of Membrane Science, 346(1): 163–171
CrossRef Google scholar
[42]
DługołęckiP NymeijerKMetz SWesslingM (2008). Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 319(1–2): 214–222
[43]
DługołęckiP OgonowskiPMetz S JSaakesMNijmeijerKWesslingM (2010b). On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. Journal of Membrane Science, 349(1–2): 369–379
[44]
Dresner L. (1972). Stability of the extended Nernst-Planck equations in the description of hyperfiltration through ion-exchange membranes. Journal of Physical Chemistry, 76(16): 2256–2267
CrossRef Google scholar
[45]
Dresner L. (1974). Ionic transport through porous ion-exchange membranes in hyperfiltration and piezodialysis. Desalination, 15(1): 109–125
CrossRef Google scholar
[46]
DuChanois R M, Heiranian M, Yang J, Porter C J, Li Q L, Zhang X, Verduzco R, Elimelech M. (2022). Designing polymeric membranes with coordination chemistry for high-precision ion separations. Science Advances, 8(9): eabm9436
CrossRef Google scholar
[47]
DuChanois R M, Porter C J, Violet C, Verduzco R, Elimelech M. (2021). Membrane materials for selective ion separations at the water-energy nexus. Advanced Materials, 33(38): 2101312
CrossRef Google scholar
[48]
Elser J, Bennett E. (2011). A broken biogeochemical cycle. Nature, 478(7367): 29–31
CrossRef Google scholar
[49]
Epsztein R, DuChanois R M, Ritt C L, Noy A, Elimelech M. (2020). Towards single-species selectivity of membranes with subnanometre pores. Nature Nanotechnology, 15(6): 426–436
CrossRef Google scholar
[50]
Erisman J W, Sutton M A, Galloway J, Klimont Z, Winiwarter W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10): 636–639
CrossRef Google scholar
[51]
Ersöz M. (1995). Diffusion and selective transport of alkali cations on cation-exchange membrane. Separation Science and Technology, 30(18): 3523–3533
CrossRef Google scholar
[52]
Fan H, Huang Y, Billinge I H, Bannon S M, Geise G M, Yip N Y. (2022). Counterion mobility in ion-exchange membranes: spatial effect and valency-dependent electrostatic interaction. ACS ES&T Engineering, 2: 1274–1286
[53]
Fan H, Huang Y, Yip N Y. (2020). Advancing the conductivity-permselectivity tradeoff of electrodialysis ion-exchange membranes with sulfonated CNT nanocomposites. Journal of Membrane Science, 610: 118259
CrossRef Google scholar
[54]
Fan H, Yip N Y. (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573: 668–681
CrossRef Google scholar
[55]
Fetanat M, Keshtiara M, Keyikoglu R, Khataee A, Daiyan R, Razmjou A. (2021). Machine learning for design of thin-film nanocomposite membranes. Separation and Purification Technology, 270: 118383
CrossRef Google scholar
[56]
Fonseca A D, Crespo J G, Almeida J S, Reis M A. (2000). Drinking water denitrification using a novel ion-exchange membrane bioreactor. Environmental Science & Technology, 34(8): 1557–1562
CrossRef Google scholar
[57]
FountainM SKurath D ESevignyG JPoloskiA PPendleton JBalagopalSQuistMClayD (2008). Caustic recycle from Hanford tank waste using NaSICON ceramic membranes. Separation Science and Technology, 43(9–10): 2321–2342
[58]
Freeman B D. (1999). Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules, 32(2): 375–380
CrossRef Google scholar
[59]
Freger V. (2020). Ion partitioning and permeation in charged low-T* membranes. Advances in Colloid and Interface Science, 277: 102107
CrossRef Google scholar
[60]
Ge L, Wu B, Yu D B, Mondal A N, Hou L X, Afsar N U, Li Q H, Xu T T, Miao J B, Xu T W. (2017). Monovalent cation perm-selective membranes (MCPMs): new developments and perspectives. Chinese Journal of Chemical Engineering, 25(11): 1606–1615
CrossRef Google scholar
[61]
Geise G M. (2020). Experimental characterization of polymeric membranes for selective ion transport. Current Opinion in Chemical Engineering, 28: 36–42
CrossRef Google scholar
[62]
Geise G M, Curtis A J, Hatzell M C, Hickner M A, Logan B E. (2014a). Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters, 1(1): 36–39
CrossRef Google scholar
[63]
Geise G M, Hickner M A, Logan B E. (2013). Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Applied Materials & Interfaces, 5(20): 10294–10301
CrossRef Google scholar
[64]
GeiseG MPark H BSagleA CFreemanB DMcgrathJ E (2011). Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of Membrane Science, 369(1–2): 130–138
[65]
Geise G M, Paul D R, Freeman B D. (2014b). Fundamental water and salt transport properties of polymeric materials. Progress in Polymer Science, 39(1): 1–42
CrossRef Google scholar
[66]
Gilles A, Barboiu M. (2016). Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. Journal of the American Chemical Society, 138(1): 426–432
CrossRef Google scholar
[67]
Goswami A, Acharya A, Pandey A K. (2001). Study of self-diffusion of monovalent and divalent cations in Nafion-117 ion-exchange membrane. Journal of Physical Chemistry B, 105(38): 9196–9201
CrossRef Google scholar
[68]
Gouaux E, MacKinnon R. (2005). Principles of selective ion transport in channels and pumps. Science, 310(5753): 1461–1465
CrossRef Google scholar
[69]
Grzegorzek M, Majewska-Nowak K, Ahmed A E. (2020). Removal of fluoride from multicomponent water solutions with the use of monovalent selective ion-exchange membranes. Science of the Total Environment, 722: 137681
CrossRef Google scholar
[70]
Güler E, Elizen R, Vermaas D A, Saakes M, Nijmeijer K. (2013). Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 446: 266–276
CrossRef Google scholar
[71]
Güler E, Zhang Y L, Saakes M, Nijmeijer K. (2012). Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis. ChemSusChem, 5(11): 2262–2270
CrossRef Google scholar
[72]
Guo Y, Ying Y L, Mao Y Y, Peng X S, Chen B L. (2016). Polystyrene sulfonate threaded through a metal-organic framework membrane for fast and selective lithium-ion separation. Angewandte Chemie International Edition, 55(48): 15120–15124
CrossRef Google scholar
[73]
Han L, Galier S, Roux-De Balmann H. (2015). Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution. Desalination, 373: 38–46
CrossRef Google scholar
[74]
Han L, Galier S, Roux-De Balmann H. (2016). Transfer of neutral organic solutes during desalination by electrodialysis: influence of the salt composition. Journal of Membrane Science, 511: 207–218
CrossRef Google scholar
[75]
Harnisch F, Wirth S, Schroder U. (2009). Effects of substrate and metabolite crossover on the cathodic oxygen reduction reaction in microbial fuel cells: Platinum vs. iron(II) phthalocyanine based electrodes. Electrochemistry Communications, 11(11): 2253–2256
CrossRef Google scholar
[76]
HeintzAWiedemann EZieglerJ (1997). Ion exchange diffusion in electromembranes and its description using the Maxwell-Stefan formalism. Journal of Membrane Science, 137(1–2): 121–132
[77]
Heinzel A, Barragan V M. (1999). A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. Journal of Power Sources, 84(1): 70–74
CrossRef Google scholar
[78]
HelfferichF (1995). Ion Exchange. Mineola: Dover Publications
[79]
Huang Z, Zhu J, Qiu R J, Ruan J J, Qiu R L. (2019). A cleaner and energy-saving technology of vacuum step-by-step reduction for recovering cobalt and nickel from spent lithium-ion batteries. Journal of Cleaner Production, 229: 1148–1157
CrossRef Google scholar
[80]
Ismail A F, Matsuura T. (2018). Progress in transport theory and characterization method of Reverse Osmosis (RO) membrane in past fifty years. Desalination, 434: 2–11
CrossRef Google scholar
[81]
Jarin M, Dou Z, Gao H, Chen Y, Xie X. (2023). Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water. Frontiers of Environmental Science & Engineering, 17(2): 16
[82]
Jaroszek H, Dydo P. (2016). Ion-exchange membranes in chemical synthesis: a review. Open Chemistry, 14(1): 1–19
CrossRef Google scholar
[83]
KamcevJ (2016). Ion sorption and transport in ion exchange membranes: importance of counter-ion condensation. Dissertation for the Doctoral Degree. Austin: The University of Texas at Austin
[84]
Kamcev J. (2021). Reformulating the permselectivity-conductivity tradeoff relation in ion-exchange membranes. Journal of Polymer Science, 59(21): 2510–2520
CrossRef Google scholar
[85]
Kamcev J, Paul D R, Manning G S, Freeman B D. (2017). Predicting salt permeability coefficients in highly swollen, highly charged ion exchange membranes. ACS Applied Materials & Interfaces, 9(4): 4044–4056
CrossRef Google scholar
[86]
Kamcev J, Paul D R, Manning G S, Freeman B D. (2018a). Ion diffusion coefficients in ion exchange membranes: significance of counterion condensation. Macromolecules, 51(15): 5519–5529
CrossRef Google scholar
[87]
Kamcev J, Sujanani R, Jang E S, Yan N, Moe N, Paul D R, Freeman B D. (2018b). Salt concentration dependence of ionic conductivity in ion exchange membranes. Journal of Membrane Science, 547: 123–133
CrossRef Google scholar
[88]
KananiD MFissell W HRoySDubnishevaAFleischman AZydneyA L (2010). Permeability-selectivity analysis for ultrafiltration: Effect of pore geometry. Journal of Membrane Science, 349(1–2): 405–410
[89]
Karal M A, Islam M K, Mahbub Z B. (2020). Study of molecular transport through a single nanopore in the membrane of a giant unilamellar vesicle using COMSOL simulation. European Biophysics Journal, 49(1): 59–69
CrossRef Google scholar
[90]
Kato S, Nagahama K, Asai H. (1992). Permeation rates of aqueous alcohol-solutions in pervaporation through Nafion membranes. Journal of Membrane Science, 72(1): 31–41
CrossRef Google scholar
[91]
Kim J, Tsouris C, Mayes R T, Oyola Y, Saito T, Janke C J, Dai S, Schneider E, Sachde D. (2013). Recovery of uranium from seawater: a review of current status and future research needs. Separation Science and Technology, 48(3): 367–387
CrossRef Google scholar
[92]
Kim J M, Beckingham B S. (2021). Transport and co-transport of carboxylate ions and alcohols in cation exchange membranes. Journal of Polymer Science, 59(21): 2545–2558
CrossRef Google scholar
[93]
Kim J M, Lin Y H, Hunter B, Beckingham B S. (2021a). Transport and co-transport of carboxylate ions and ethanol in anion exchange membranes. Polymers, 13(17): 2885
CrossRef Google scholar
[94]
Kim J M, Mazumder A, Li J, Jiang Z H, Beckingham B S. (2022a). Impact of PEGMA on transport and co-transport of methanol and acetate in PEGDA-AMPS cation exchange membranes. Journal of Membrane Science, 642: 119950
CrossRef Google scholar
[95]
Kim J R, Jung S H, Regan J M, Logan B E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98(13): 2568–2577
CrossRef Google scholar
[96]
Kim N, Jeong S, Go W, Kim Y. (2022b). A Na+ ion-selective desalination system utilizing a NASICON ceramic membrane. Water Research, 215: 118250
CrossRef Google scholar
[97]
Kim S, Nguyen B T D, Ko H, Kim M, Kim K, Nam S, Kim J F. (2021b). Accurate evaluation of hydrogen crossover in water electrolysis systems for wetted membranes. International Journal of Hydrogen Energy, 46(29): 15135–15144
CrossRef Google scholar
[98]
Kim Y, Walker W S, Lawler D F. (2012). Competitive separation of di- vs. mono-valent cations in electrodialysis: Effects of the boundary layer properties. Water Research, 46(7): 2042–2056
CrossRef Google scholar
[99]
Kingsbury R, Wang J, Coronell O. (2020). Comparison of water and salt transport properties of ion exchange, reverse osmosis, and nanofiltration membranes for desalination and energy applications. Journal of Membrane Science, 604: 117998
CrossRef Google scholar
[100]
Kingsbury R S, Coronell O. (2021). Modeling and validation of concentration dependence of ion exchange membrane permselectivity: Significance of convection and Manning’s counter-ion condensation theory. Journal of Membrane Science, 620: 118411
CrossRef Google scholar
[101]
Kitto D, Kamcev J. (2022). Manning condensation in ion exchange membranes: a review on ion partitioning and diffusion models. Journal of Polymer Science, 2022: 1–45
CrossRef Google scholar
[102]
Knauth P, Pasquini L, Narducci R, Sgreccia E, Becerra-Arciniegas R A, Di Vona M L. (2021). Effective ion mobility in anion exchange ionomers: relations with hydration, porosity, tortuosity, and percolation. Journal of Membrane Science, 617: 118622
CrossRef Google scholar
[103]
Kocherginsky N M, Yang Q, Seelam L. (2007). Recent advances in supported liquid membrane technology. Separation and Purification Technology, 53(2): 171–177
CrossRef Google scholar
[104]
Koh D Y, Mccool B A, Deckman H W, Lively R P. (2016). Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science, 353(6301): 804–807
CrossRef Google scholar
[105]
Kong L, Palacios E, Guan X, Shen M, Liu X. (2022). Mechanisms for enhanced transport selectivity of like-charged ions in hydrophobic-polymer-modified ion-exchange membranes. Journal of Membrane Science, 658: 120645
CrossRef Google scholar
[106]
Kreuer K D. (2014). Ion conducting membranes for fuel cells and other electrochemical devices. Chemistry of Materials, 26(1): 361–380
CrossRef Google scholar
[107]
Kreuer K D, Münchinger A. (2021). Fast and selective ionic transport: from ion-conducting channels to ion exchange membranes for flow batteries. Annual Review of Materials Research, 51: 21–46
CrossRef Google scholar
[108]
Kreuer K D, Paddison S J, Spohr E, Schuster M. (2004). Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chemical Reviews, 104(10): 4637–4678
CrossRef Google scholar
[109]
Krödel M, Carter B M, Rall D, Lohaus J, Wessling M, Miller D J. (2020). Rational design of ion exchange membrane material properties limits the crossover of CO2 reduction products in artificial photosynthesis devices. ACS Applied Materials & Interfaces, 12(10): 12030–12042
CrossRef Google scholar
[110]
Lakshminarayanaiah N. (1965). Transport phenomena in artificial membranes. Chemical Reviews, 65(5): 491–565
CrossRef Google scholar
[111]
Li C Y, Chen H, Chen Q S, Shi H, Yang X H, Wang K M, Liu J B. (2020). Lipophilic G-quadruplex isomers as biomimetic ion channels for conformation-dependent selective transmembrane transport. Analytical Chemistry, 92(14): 10169–10176
CrossRef Google scholar
[112]
Li H, Tang Y H, Wang Z W, Shi Z, Wu S H, Song D T, Zhang J L, Fatih K, Zhang J J, Wang H J, Liu Z S, Abouatallah R, Mazza A. (2008). A review of water flooding issues in the proton exchange membrane fuel cell. Journal of Power Sources, 178(1): 103–117
CrossRef Google scholar
[113]
Li W W, Sheng G P, Liu X W, Yu H Q. (2011). Recent advances in the separators for microbial fuel cells. Bioresource Technology, 102(1): 244–252
CrossRef Google scholar
[114]
Li W W, Yu H Q, Rittmann B E. (2015). Chemistry: reuse water pollutants. Nature, 528(7580): 29–31
CrossRef Google scholar
[115]
Li X Y, Hill M R, Wang H T, Zhang H C. (2021). Metal-organic framework-based ion-selective membranes. Advanced Materials Technologies, 6(10): 2000790
CrossRef Google scholar
[116]
Liu F Q, Lu G Q, Wang C Y. (2006). Low crossover of methanol and water through thin membranes in direct methanol fuel cells. Journal of the Electrochemical Society, 153(3): A543–A553
CrossRef Google scholar
[117]
Liu H, She Q H. (2022). Influence of membrane structure-dependent water transport on conductivity-permselectivity trade-off and salt/water selectivity in electrodialysis: Implications for osmotic electrodialysis using porous ion exchange membranes. Journal of Membrane Science, 650: 120398
CrossRef Google scholar
[118]
Liu Y C, Yeh L H, Zheng M J, Wu K C W. (2021). Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Science Advances, 7(10): eabe9924
CrossRef Google scholar
[119]
Luo H X, Agata W A S, Geise G M. (2020). Connecting the ion separation factor to the sorption and diffusion selectivity of ion exchange membranes. Industrial & Engineering Chemistry Research, 59(32): 14189–14206
CrossRef Google scholar
[120]
Luo T, Abdu S, Wessling M. (2018). Selectivity of ion exchange membranes: a review. Journal of Membrane Science, 555: 429–454
CrossRef Google scholar
[121]
Marchetti P, Jimenez Solomon M F, Szekely G, Livingston A G. (2014). Molecular separation with organic solvent nanofiltration: a critical review. Chemical Reviews, 114(21): 10735–10806
CrossRef Google scholar
[122]
MarchettiP, Livingston A G (2015). Predictive membrane transport models for organic solvent nanofiltration: How complex do we need to be? Journal of Membrane Science, 476: 530–553
[123]
MatosC TFortunato RVelizarovSReisM A MCrespoJ G (2008). Removal of mono-valent oxyanions from water in an ion exchange membrane bioreactor: Influence of membrane permselectivity. Water Research, 42(6-7): 1785–1795
[124]
Matos C T, Velizarov S, Crespo J G, Reis M A M. (2006). Simultaneous removal of perchlorate and nitrate from drinking water using the ion exchange membrane bioreactor concept. Water Research, 40(2): 231–240
CrossRef Google scholar
[125]
Mauvy F, Gondran C, Siebert E. (1999). Potentiometric selectivity and impedance characteristics of a NASICON-based ion selective electrode. Electrochimica Acta, 44(13): 2219–2226
CrossRef Google scholar
[126]
McCartney S N, Watanabe N S, Yip N Y. (2021). Emerging investigator series: thermodynamic and energy analysis of nitrogen and phosphorous recovery from wastewaters. Environmental Science. Water Research & Technology, 7(11): 2075–2088
CrossRef Google scholar
[127]
Meares P. (1986). Synthetic Membranes: Science, Engineering and Applications. Dordrecht: Springer, 169–179
[128]
Medford A J, Vojvodic A, Hummelshoj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Norskov J K. (2015). From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. Journal of Catalysis, 328: 36–42
CrossRef Google scholar
[129]
MehtaAZydney A L (2005). Permeability and selectivity analysis for ultrafiltration membranes. Journal of Membrane Science, 249(1–2): 245–249
[130]
Miyoshi H. (1997). Diffusion coefficients of ions through ion-exchange membranes for Donnan dialysis using ions of the same valence. Chemical Engineering Science, 52(7): 1087–1096
CrossRef Google scholar
[131]
Mubita T, Porada S, Aerts P, Van Der Wal A. (2020). Heterogeneous anion exchange membranes with nitrate selectivity and low electrical resistance. Journal of Membrane Science, 607: 118000
CrossRef Google scholar
[132]
Münchinger A, Kreuer K D. (2019). Selective ion transport through hydrated cation and anion exchange membranes I. The effect of specific interactions. Journal of Membrane Science, 592: 117372
CrossRef Google scholar
[133]
NationalAcademies of Sciences E Medicine (2019). A Research Agenda for Transforming Separation Science. Washington, DC National Academies Press
[134]
Nie X Y, Sun S Y, Song X F, Yu J G. (2017a). Further investigation into lithium recovery from salt lake brines with different feed characteristics by electrodialysis. Journal of Membrane Science, 530: 185–191
CrossRef Google scholar
[135]
Nie X Y, Sun S Y, Sun Z, Song X F, Yu J G. (2017b). Ion-fractionation of lithium ions from magnesium ions by electrodialysis using monovalent selective ion-exchange membranes. Desalination, 403: 128–135
CrossRef Google scholar
[136]
Nightingale E R Jr. (1959). Phenomenological theory of ion solvation - effective radii of hydrated ions. Journal of Physical Chemistry, 63(9): 1381–1387
CrossRef Google scholar
[137]
Noskov S Y, Berneche S, Roux B. (2004). Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature, 431(7010): 830–834
CrossRef Google scholar
[138]
Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office (2020). Critical Materials Rare Earths Supply Chain: A Situational White Paper. Washington, DC: U.S. Department of Energy
[139]
Oh K, Moazzam M, Gwak G, Ju H. (2019). Water crossover phenomena in all-vanadium redox flow batteries. Electrochimica Acta, 297: 101–111
CrossRef Google scholar
[140]
Ohya H, Masaoka K, Aihara M, Negishi Y. (1998). Properties of new inorganic membranes prepared by metal alkoxide methods. Part III: New inorganic lithium permselective ion exchange membrane. Journal of Membrane Science, 146(1): 9–13
CrossRef Google scholar
[141]
Parhi P K. (2013). Supported liquid membrane principle and its practices: a short review. Journal of Chemistry, 2013: 618236
[142]
Park H B, Kamcev J, Robeson L M, Elimelech M, Freeman B D. (2017). Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
CrossRef Google scholar
[143]
Parnamae R, Mareev S, Nikonenko V, Melnikov S, Sheldeshov N, Zabolotskii V, Hamelers H V M, Tedesco M. (2021). Bipolar membranes: a review on principles, latest developments, and applications. Journal of Membrane Science, 617: 118538
CrossRef Google scholar
[144]
Paul D R. (2004). Reformulation of the solution-diffusion theory of reverse osmosis. Journal of Membrane Science, 241(2): 371–386
CrossRef Google scholar
[145]
Paul M, Park H B, Freeman B D, Roy A, Mcgrath J E, Riffle J S. (2008). Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer, 49(9): 2243–2252
CrossRef Google scholar
[146]
Porada S, Van Egmond W J, Post J W, Saakes M, Hamelers H V M. (2018). Tailoring ion exchange membranes to enable low osmotic water transport and energy efficient electrodialysis. Journal of Membrane Science, 552: 22–30
CrossRef Google scholar
[147]
Qian Z X, Miedema H, Pintossi D, Ouma M, Sudholter E J R. (2022). Selective removal of sodium ions from greenhouse drainage water: a combined experimental and theoretical approach. Desalination, 536: 115844
CrossRef Google scholar
[148]
Qian Z X, Miedema H, Sahin S, De Smet L C P M, Sudholter E J R. (2020). Separation of alkali metal cations by a supported liquid membrane (SLM) operating under electro dialysis (ED) conditions. Desalination, 495: 114631
CrossRef Google scholar
[149]
Ran J, Wu L, He Y B, Yang Z J, Wang Y M, Jiang C X, Ge L, Bakangura E, Xu T W. (2017). Ion exchange membranes: new developments and applications. Journal of Membrane Science, 522: 267–291
CrossRef Google scholar
[150]
Razmjou A, Asadnia M, Hosseini E, Habibnejad Korayem A, Chen V. (2019). Design principles of ion selective nanostructured membranes for the extraction of lithium ions. Nature Communications, 10(1): 1–15
CrossRef Google scholar
[151]
Ren C L, Shen J, Zeng H Q. (2017). Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers. Journal of the American Chemical Society, 139(36): 12338–12341
CrossRef Google scholar
[152]
Ren X M, Gottesfeld S. (2001). Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes. Journal of the Electrochemical Society, 148(1): A87–A93
CrossRef Google scholar
[153]
Ritt C L, Liu M J, Pham T A, Epsztein R, Kulik H J, Elimelech M. (2022). Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Science Advances, 8(2): eabl5771
CrossRef Google scholar
[154]
RobesonL M (2008). The upper bound revisited. Journal of Membrane Science, 320(1–2): 390–400
[155]
RobinsonR AStokes R H (2002). Electrolyte Solutions (2nd revised ed.). Mineola: Dover Publications
[156]
Rommerskirchen A, Roth H, Linnartz C J, Egidi F, Kneppeck C, Roghmans F, Wessling M. (2021). Mitigating water crossover by crosslinked coating of cation-exchange membranes for brine concentration. Advanced Materials Technologies, 6(10): 2100202
CrossRef Google scholar
[157]
Rottiers T, Ghyselbrecht K, Meesschaert B, Van der Bruggen B, Pinoy L. (2014). Influence of the type of anion membrane on solvent flux and back diffusion in electrodialysis of concentrated NaCl solutions. Chemical Engineering Science, 113: 95–100
CrossRef Google scholar
[158]
Rubinstein I. (1990). Theory of concentration polarization effects in electrodialysis on counter-ion selectivity of ion-exchange membranes with differing counter-ion distribution coefficients. Journal of the Chemical Society, Faraday Transactions, 86(10): 1857–1861
CrossRef Google scholar
[159]
Russell S T, Pereira R, Vardner J T, Jones G N, Dimarco C, West A C, Kumar S K. (2020). Hydration effects on the permselectivity-conductivity trade-off in polymer electrolytes. Macromolecules, 53(3): 1014–1023
CrossRef Google scholar
[160]
Sachar H S, Zofchak E S, Marioni N, Zhang Z, Kadulkar S, Duncan T J, Freeman B D, Ganesan V. (2022). Impact of cation–ligand interactions on the permselectivity of ligand-functionalized polymer membranes in single and mixed salt systems. Macromolecules, 55: 4821–4831
CrossRef Google scholar
[161]
San Román M F, Bringas E, Ibanez R, Ortiz I. (2010). Liquid membrane technology: fundamentals and review of its applications. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 85(1): 2–10
CrossRef Google scholar
[162]
Saracco G. (1997). Transport properties of monovalent-ion-permselective membranes. Chemical Engineering Science, 52(17): 3019–3031
CrossRef Google scholar
[163]
Sata T. (2000). Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis — effect of hydrophilicity of anion exchange membranes on permselectivity of anions. Journal of Membrane Science, 167(1): 1–31
CrossRef Google scholar
[164]
SataT (2004). Ion Exchange Membranes Preparation, Characterization, Modification and Application. Cambridge: Royal Society of Chemistry
[165]
SataTSata TYangW (SataTSataT YangW). Studies on cation-exchange membranes having permselectivity between cations in electrodialysis. Journal of Membrane Science, 206(1–2): 31–60
[166]
Shao P, Huang R. (2007). Polymeric membrane pervaporation. Journal of Membrane Science, 287(2): 162–179
CrossRef Google scholar
[167]
Sharma P P, Yadav V, Rajput A, Gupta H, Saravaia H, Kulshrestha V. (2020). Sulfonated poly (ether ether ketone) composite cation exchange membrane for selective recovery of lithium by electrodialysis. Desalination, 496: 114755
CrossRef Google scholar
[168]
Shehzad M A, Wang Y M, Yasmin A, Ge X L, He Y B, Liang X, Zhu Y, Hu M, Xiao X L, Ge L, Jiang C X, Yang Z J, Guiver M D, Wu L, Xu T W. (2019). Biomimetic nanocones that enable high ion permselectivity. Angewandte Chemie International Edition, 58(36): 12646–12654
CrossRef Google scholar
[169]
Shen Y X, Saboe P O, Sines I T, Erbakan M, Kumar M. (2014). Biomimetic membranes: a review. Journal of Membrane Science, 454: 359–381
CrossRef Google scholar
[170]
Sheng C J, Wijeratne S, Cheng C, Baker G L, Bruening M L. (2014). Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. Journal of Membrane Science, 459: 169–176
CrossRef Google scholar
[171]
Siddiqui M U, Arif A F M, Bashmal S. (2016). Permeability-selectivity analysis of microfiltration and ultrafiltration membranes: Effect of pore size and shape distribution and membrane stretching. Membranes (Basel), 6(3): 40
CrossRef Google scholar
[172]
Silva P, Han S J, Livingston A G (2005). Solvent transport in organic solvent nanofiltration membranes. Journal of Membrane Science, 262(1–2): 49−59
[173]
Song Y M, Pan F S, Li Y, Quan K D, Jiang Z Y. (2019). Mass transport mechanisms within pervaporation membranes. Frontiers of Chemical Science and Engineering, 13(3): 458–474
CrossRef Google scholar
[174]
Spiegler K S. (1958). Transport processes in ionic membranes. Transactions of the Faraday Society, 54(9): 1408–1428
CrossRef Google scholar
[175]
StrathmannH (2004). Ion-Exchange Membrane Separation Processes. Amsterdam: Elsevier
[176]
Strathmann H. (2010). Electrodialysis, a mature technology with a multitude of new applications. Desalination, 264(3): 268–288
CrossRef Google scholar
[177]
Strathmann H, Grabowski A, Eigenberger G. (2013). Ion-exchange membranes in the chemical process industry. Industrial & Engineering Chemistry Research, 52(31): 10364–10379
CrossRef Google scholar
[178]
Sujanani R, Landsman M R, Jiao S, Moon J D, Shell M S, Lawler D F, Katz L E, Freeman B D. (2020). Designing solute-tailored selectivity in membranes: perspectives for water reuse and resource recovery. ACS Macro Letters, 9(11): 1709–1717
CrossRef Google scholar
[179]
Sun P, Zheng F, Zhu M, Song Z, Wang K, Zhong M, Wu D, Little R B, Xu Z, Zhu H. (2014). Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation−π interactions. ACS Nano, 8(1): 850–859
CrossRef Google scholar
[180]
Takamuku S, Wohlfarth A, Manhart A, Rader P, Jannasch P. (2015). Hypersulfonated polyelectrolytes: preparation, stability and conductivity. Polymer Chemistry, 6(8): 1267–1274
CrossRef Google scholar
[181]
TanakaY (2003). Mass transport and energy consumption in ion-exchange membrane electrodialysis of seawater. Journal of Membrane Science, 215(1–2): 265–279
[182]
TanakaY (2015). Ion Exchange Membranes: Fundamentals and Applications. Waltham: Elsevier
[183]
Tang C, Bondarenko M P, Yaroshchuk A, Bruening M L. (2021). Highly selective ion separations based on counter-flow electromigration in nanoporous membranes. Journal of Membrane Science, 638: 119684
CrossRef Google scholar
[184]
Tang C, Bruening M L. (2020). Ion separations with membranes. Journal of Polymer Science, 58(20): 2831–2856
CrossRef Google scholar
[185]
Tang C, Yaroshchuk A, Bruening M L. (2020). Flow through negatively charged, nanoporous membranes separates Li+ and K+ due to induced electromigration. Chemical Communications (Cambridge), 56(74): 10954–10957
CrossRef Google scholar
[186]
Tas S, Zoetebier B, Hempenius M A, Vancso G J, Nijmeijer K. (2016). Monovalent cation selective crown ether containing poly(arylene ether ketone)/SPEEK blend membranes. RSC Advances, 6(60): 55635–55642
CrossRef Google scholar
[187]
TheWhite House (2018). A federal strategy to ensure secure and reliable supplies of critical minerals. Washington, DC: The White House
[188]
The White House (2022). FACT SHEET: Securing a Made in America Supply Chain for Critical Minerals. Washington, DC: The White House
[189]
TirrellMHubbard SShollDPetersonETsapatsis MMaherKTumasWGiammarD GilbertBLoo Y L (2017). Basic Research Needs for Energy and Water: Report of the Office of Basic Energy Sciences Basic Research Needs Workshop for Energy and Water. Washington DC: USDOE Office of Science
[190]
Tong X, Zhang B P, Chen Y S. (2016). Fouling resistant nanocomposite cation exchange membrane with enhanced power generation for reverse electrodialysis. Journal of Membrane Science, 516: 162–171
CrossRef Google scholar
[191]
Tongwen X. (2002). Electrodialysis processes with bipolar membranes (EDBM) in environmental protection: a review. Resources, Conservation and Recycling, 37(1): 1–22
CrossRef Google scholar
[192]
Tran A T K, Zhang Y, De Corte D, Hannes J B, Ye W Y, Mondal P, Jullok N, Meesschaert B, Pinoy L, Van der Bruggen B. (2014). P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. Journal of Cleaner Production, 77: 140–151
CrossRef Google scholar
[193]
Trinke P, Keeley G P, Carmo M, Bensmann B, Hanke-Rauschenbach R. (2019). Elucidating the effect of mass transport resistances on hydrogen crossover and cell performance in PEM water electrolyzers by varying the cathode ionomer content. Journal of the Electrochemical Society, 166(8): F465–F471
CrossRef Google scholar
[194]
Tu Y M, Samineni L, Ren T W, Schantz A B, Song W, Sharma S, Kumar M. (2021). Prospective applications of nanometer-scale pore size biomimetic and bioinspired membranes. Journal of Membrane Science, 620: 118968
CrossRef Google scholar
[195]
Uliana A A, Bui N T, Kamcev J, Taylor M K, Urban J J, Long J R. (2021). Ion-capture electrodialysis using multifunctional adsorptive membranes. Science, 372(6539): 296–299
CrossRef Google scholar
[196]
Van der Bruggen B, Koninckx A, Vandecasteele C. (2004). Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Research, 38(5): 1347–1353
CrossRef Google scholar
[197]
Vandezande P, Gevers L E M, Vankelecom I F J. (2008). Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 37(2): 365–405
CrossRef Google scholar
[198]
VermaasD ASaakes MNijmeijerK (2011). Power generation using profiled membranes in reverse electrodialysis. Journal of Membrane Science, 385-386(1–2): 234–242
[199]
VielstichWLamm AGasteigerH A (2003). Handbook of Fuel Cells: Fundamentals, Technology, Applications. Hoboken: Wiley
[200]
Vlasov V, Gvozdik N, Mokrousov M, Ryazantsev S, Luchkin S Y, Gorin D, Stevenson K. (2022). Ion-exchange membrane impact on preferential water transfer in all-vanadium redox flow battery. Journal of Power Sources, 540: 231640
CrossRef Google scholar
[201]
Wang J, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C, Mamba B B, Freger V, Verliefde A R, Hoek E M. (2014a). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
CrossRef Google scholar
[202]
Wang J W, Dlamini D S, Mishra A K, Pendergast M T M, Wong M C Y, Mamba B B, Freger V, Verliefde A R D, Hoek E M V. (2014b). A critical review of transport through osmotic membranes. Journal of Membrane Science, 454: 516–537
[203]
Wang P F, Wang M, Liu F, Ding S Y, Wang X, Du G H, Liu J, Apel P, Kluth P, Trautmann C, Wang Y G. (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications, 9(1): 569
CrossRef Google scholar
[204]
Wang R Y, Lin S H. (2021). Pore model for nanofiltration: History, theoretical framework, key predictions, limitations, and prospects. Journal of Membrane Science, 620: 118809
CrossRef Google scholar
[205]
Wang W, Zhang Y, Li F, Chen Y, Mojallali Rostami S M, Hosseini S S, Shao L. (2022a). Mussel-inspired polyphenol/polyethyleneimine assembled membranes with highly positive charged surface for unprecedented high cation perm-selectivity. Journal of Membrane Science, 658: 120703
CrossRef Google scholar
[206]
Wang W, Zhang Y, Tan M, Xue C, Zhou W, Bao H, Hon Lau C, Yang X, Ma J, Shao L. (2022b). Recent advances in monovalent ion selective membranes towards environmental remediation and energy harvesting. Separation and Purification Technology, 297: 121520
CrossRef Google scholar
[207]
WangWZhang YYangXSunHWuY ShaoL (2022c). Monovalent cation exchange membranes with janus charged structure for ion separation. Engineering.
[208]
Wang X, Li N, Li J, Feng J, Ma Z, Xu Y, Sun Y, Xu D, Wang J, Gao X. (2019). Fluoride removal from secondary effluent of the graphite industry using electrodialysis: optimization with response surface methodology. Frontiers of Environmental Science & Engineering, 13(4): 51
[209]
Wang Z Y, Meng Q H, Ma R C, Wang Z K, Yang Y J, Sha H Y, Ma X J, Ruan X H, Zou X Q, Yuan Y. . (2020). Constructing an ion pathway for uranium extraction from seawater. Chem, 6(7): 1683–1691
CrossRef Google scholar
[210]
Warnock S J, Sujanani R, Zofchak E S, Zhao S, Dilenschneider T J, Hanson K G, Mukherjee S, Ganesan V, Freeman B D, Abu-Omar M M, Bates C M. (2021). Engineering Li/Na selectivity in 12-crown-4-functionalized polymer membranes. Proceedings of the National Academy of Sciences of the United States of America, 118(37): e2022197118
CrossRef Google scholar
[211]
WarrenP (2021). Techno-economic analysis of lithium extraction from geothermal brines. Golden: National Renewable Energy Lab.(NREL)
[212]
Wen Q, Yan D X, Liu F, Wang M, Ling Y, Wang P F, Kluth P, Schauries D, Trautmann C, Apel P. . (2016). Highly selective ionic transport through subnanometer pores in polymer films. Advanced Functional Materials, 26(32): 5796–5803
CrossRef Google scholar
[213]
Wiedemann E, Heintz A, Lichtenthaler R N. (1998). Transport properties of vanadium ions in cation exchange membranes: Determination of diffusion coefficients using a dialysis cell. Journal of Membrane Science, 141(2): 215–221
CrossRef Google scholar
[214]
WijmansJ GBaker R W (1995). The solution-diffusion model: a review. Journal of Membrane Science, 107(1–2): 1–21
[215]
Xi Y H, Liu Z, Ji J Y, Wang Y, Faraj Y, Zhu Y D, Xie R, Ju X J, Wang W, Lu X H. . (2018). Graphene-based membranes with uniform 2D nanochannels for precise sieving of mono-/multi-valent metal ions. Journal of Membrane Science, 550: 208–218
CrossRef Google scholar
[216]
Xiao H, Chai M, Abdollahzadeh M, Ahmadi H, Chen V, Gore D B, Asadnia M, Razmjou A. (2022). A lithium ion selective membrane synthesized from a double layered Zr based metalorganic framework (MOF-on-MOF) thin film. Desalination, 532: 115733
CrossRef Google scholar
[217]
Xie W, Cook J, Park H B, Freeman B D, Lee C H, Mcgrath J E. (2011). Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Polymer, 52(9): 2032–2043
CrossRef Google scholar
[218]
Xin W W, Fu J R, Qian Y C, Fu L, Kong X Y, Ben T, Jiang L, Wen L P. (2022). Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving. Nature Communications, 13(1): 1701
CrossRef Google scholar
[219]
Xu D, Li Y, Yin L, Ji Y, Niu J, Yu Y. (2018). Electrochemical removal of nitrate in industrial wastewater. Frontiers of Environmental Science & Engineering, 12(1): 9
[220]
XuT W (2005). Ion exchange membranes: state of their development and perspective. Journal of Membrane Science, 263(1–2): 1–29
[221]
YanH YWang Y MWuLShehzadM AJiangC X FuR QLiu Z MXuT W (2019). Multistage-batch electrodialysis to concentrate high-salinity solutions: process optimisation, water transport, and energy consumption. Journal of Membrane Science, 570-571: 245–257
[222]
YanJ, WangH, FuR, FuR, LiR, ChenB, JiangC, Ge L, LiuZ, WangY, XuT (2022). Ion exchange membranes for acid recovery: Diffusion Dialysis (DD) or Selective Electrodialysis (SED)? Desalination, 531: 115690
[223]
Yaroshchuk A. (2000a). Asymptotic behaviour in the pressure-driven separations of ions of different mobilities in charged porous membranes. Journal of Membrane Science, 167(2): 163–185
CrossRef Google scholar
[224]
Yaroshchuk A. (2000b). Optimal charged membranes for the pressure-driven separations of ions of different mobilities: theoretical analysis. Journal of Membrane Science, 167(2): 149–161
CrossRef Google scholar
[225]
YaroshchukA E (2008). Negative rejection of ions in pressure-driven membrane processes. Advances in Colloid and Interface Science, 139(1–2): 150–173
[226]
YaroshchukA EVovkogonY A (1994a). Phenomenological theory of pressure-driven transport of ternary electrolyte solutions with a common coin and its specification for capillary space—charge model. Journal of Membrane Science, 86(1–2): 1–18
[227]
YaroshchukA EVovkogonY A (1994b). Pressure-driven transport of ternary electrolyte solutions with a common coion through charged membranes: numerical analysis. Journal of Membrane Science, 86(1–2): 19–37
[228]
Yasuda H, Ikenberry L, Lamaze C. (1969). Permeability of solutes through hydrated polymer membranes. Part II. Permeability of water soluble organic solutes. Die Makromolekulare Chemie, 125(1): 108–118
CrossRef Google scholar
[229]
Yasuda H, Lamaze C, Ikenberry L. (1968). Permeability of solutes through hydrated polymer membranes. Part I. Diffusion of sodium chloride. Die Makromolekulare Chemie, 118(1): 19–35
CrossRef Google scholar
[230]
Yasuda H, Lamaze C E, Peterlin A. (1971). Diffusive and hydraulic permeabilities of water in water-swollen polymer membranes. Journal of Polymer Science Part A: 2-Polymer Physics, 9(6): 1117–1131
CrossRef Google scholar
[231]
Ye Y, Ngo H H, Guo W, Chang S W, Nguyen D D, Zhang X, Zhang J, Liang S. (2020). Nutrient recovery from wastewater: From technology to economy. Bioresource Technology Reports, 11: 100425
CrossRef Google scholar
[232]
ZabolotskyV IManzanaresJ ANikonenko V VLebedevK ALovtsovE G (2002). Space charge effect on competitive ion transport through ion-exchange membranes. Desalination, 147(1–3): 387–392
[233]
Zhang H C, Hou J, Hu Y X, Wang P Y, Ou R W, Jiang L, Liu J Z, Freeman B D, Hill A J, Wang H T. (2018). Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 4(2): eaaq0066
CrossRef Google scholar
[234]
ZhangYVan der Bruggen BPinoyLMeesschaertB (2009). Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis. Journal of Membrane Science, 332(1–2): 104–112
[235]
Zhou M, Chen X, Pan J, Yang S, Han B, Xue L, Shen J, Gao C, Van der Bruggen B. (2017a). A novel UV-crosslinked sulphonated polysulfone cation exchange membrane with improved dimensional stability for electrodialysis. Desalination, 415: 29–39
CrossRef Google scholar
[236]
Zhou X B, Liu G D, Yamato K, Shen Y, Cheng R X, Wei X X, Bai W L, Gao Y, Li H, Liu Y. . (2012). Self-assembling subnanometer pores with unusual mass-transport properties. Nature Communications, 3(1): 949
CrossRef Google scholar
[237]
Zhou X L, Zhao T S, An L, Zeng Y K, Wei L. (2017b). Critical transport issues for improving the performance of aqueous redox flow batteries. Journal of Power Sources, 339: 1–12
CrossRef Google scholar
[238]
Zhu J, Liao J, Jin W, Luo B, Shen P, Sotto A, Shen J, Gao C. (2019). Effect of functionality of cross-linker on sulphonated polysulfone cation exchange membranes for electrodialysis. Reactive & Functional Polymers, 138: 104–113
CrossRef Google scholar
[239]
Zlotorowicz A, Strand R V, Burheim O S, Wilhelmsen O, Kjelstrup S. (2017). The permselectivity and water transference number of ion exchange membranes in reverse electrodialysis. Journal of Membrane Science, 523: 402–408
CrossRef Google scholar
[240]
Zofchak E S, Zhang Z D, Marioni N, Duncan T J, Sachar H S, Chamseddine A, Freeman B D, Ganesan V. (2022). Cation-ligand interactions dictate salt partitioning and diffusivity in ligand-functionalized polymer membranes. Macromolecules, 55(6): 2260–2270
CrossRef Google scholar
[241]
Zou Z Y, Ma N, Wang A P, Ran Y B, Song T, Jiao Y, Liu J P, Zhou H, Shi W, He B. . (2020). Relationships between Na+ distribution, concerted migration, and diffusion properties in rhombohedral NASICON. Advanced Energy Materials, 10(30): 2001486
CrossRef Google scholar

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2023 The Author(s) . This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(4218 KB)

Accesses

Citations

Detail

Sections
Recommended

/