A hybrid Wavelet-CNN-LSTM deep learning model for short-term urban water demand forecasting
Zhengheng Pu , Jieru Yan , Lei Chen , Zhirong Li , Wenchong Tian , Tao Tao , Kunlun Xin
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 22
A hybrid Wavelet-CNN-LSTM deep learning model for short-term urban water demand forecasting
● A novel deep learning framework for short-term water demand forecasting. ● Model prediction accuracy outperforms other traditional deep learning models. ● Wavelet multi-resolution analysis automatically extracts key water demand features. ● An analysis is performed to explain the improved mechanism of the proposed method.
Short-term water demand forecasting provides guidance on real-time water allocation in the water supply network, which help water utilities reduce energy cost and avoid potential accidents. Although a variety of methods have been proposed to improve forecast accuracy, it is still difficult for statistical models to learn the periodic patterns due to the chaotic nature of the water demand data with high temporal resolution. To overcome this issue from the perspective of improving data predictability, we proposed a hybrid Wavelet-CNN-LSTM model, that combines time-frequency decomposition characteristics of Wavelet Multi-Resolution Analysis (MRA) and implement it into an advanced deep learning model, CNN-LSTM. Four models - ANN, Conv1D, LSTM, GRUN - are used to compare with Wavelet-CNN-LSTM, and the results show that Wavelet-CNN-LSTM outperforms the other models both in single-step and multi-steps prediction. Besides, further mechanistic analysis revealed that MRA produce significant effect on improving model accuracy.
Short-term water demand forecasting / Long-short term memory neural network / Convolutional Neural Network / Wavelet multi-resolution analysis / Data-driven models
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
Sundermeyer M, Ney H, Schlüter R (2015). From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 23(3): 517−529 |
| [40] |
|
| [41] |
Ullah A, Ahmad J, Muhammad K, Sajjad M, Baik S W (2018). Action recognition in video sequences using deep bi-directional LSTM with CNN features. IEEE Access: Practical Innovations, Open Solutions, 6: 1155−1166 |
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
Higher Education Press
/
| 〈 |
|
〉 |