Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water

Mourin Jarin , Zeou Dou , Haiping Gao , Yongsheng Chen , Xing Xie

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 16

PDF (9208KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 16 DOI: 10.1007/s11783-023-1616-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water

Author information +
History +
PDF (9208KB)

Abstract

● Present a general concept called “salinity exchange”.

● Salts transferred from seawater to treated wastewater until completely switch.

● Process demonstrated using a laboratory-scale electrodialysis system.

● High-quality desalinated water obtained at ~1 mL/min consuming < 1 kWh/m 3 energy.

Two-thirds of the world’s population has limited access to potable water. As we continue to use up our freshwater resources, new and improved techniques for potable water production are warranted. Here, we present a general concept called “salinity exchange” that transfers salts from seawater or brackish water to treated wastewater until their salinity values approximately switch, thus producing wastewater with an increased salinity for discharge and desalinated seawater as the potable water source. We have demonstrated this process using electrodialysis. Salinity exchange has been successfully achieved between influents of different salinities under various operating conditions. Laboratory-scale salinity exchange electrodialysis (SEE) systems can produce high-quality desalinated water at ~1 mL/min with an energy consumption less than 1 kWh/m3. SEE has also been operated using real water, and the challenges of its implementation at a larger scale are evaluated.

Graphical abstract

Keywords

Desalination / Potable water reuse / Ion-exchange membrane / Salinity gradient energy / Wastewater discharge

Cite this article

Download citation ▾
Mourin Jarin, Zeou Dou, Haiping Gao, Yongsheng Chen, Xing Xie. Salinity exchange between seawater/brackish water and domestic wastewater through electrodialysis for potable water. Front. Environ. Sci. Eng., 2023, 17(2): 16 DOI:10.1007/s11783-023-1616-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AchilliA, CathT Y, ChildressA E ( 2009). Power generation with pressure retarded osmosis: a n experimental and theoretical investigation. Journal of Membrane Science, 343( 1– 2): 42– 52

[2]

Al-KaraghouliA, RenneD, KazmerskiL L. (2010). Technical and economic assessment of photovoltaic-driven desalination systems. Renewable Energy, 35( 2): 323– 328

[3]

BaggettS, JeffreyP, JeffersonB. (2006). Risk perception in participatory planning for water reuse. Desalination, 187( 1–3): 149– 158

[4]

BitawT N, ParkK, YangD R. (2016). Optimization on a new hybrid forward osmosis-electrodialysis-reverse osmosis seawater desalination process. Desalination, 398 : 265– 281

[5]

BlandinG, VerliefdeA R D, ComasJ, Rodriguez-RodaI, Le-ClechP. (2016). Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: a critical review. Membranes (Basel), 6( 3): 37

[6]

BraunsE ( 2010). An alternative hybrid concept combining seawater desalination, solar energy and reverse electrodialysis for a sustainable production of sweet water and electrical energy. Desalination and Water Treatment, 13( 1– 3): 53– 62

[7]

CipollinaA, MicaleG, TamburiniA, TedescoM, GurreriL, VeermanJ, GrasmanS. (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 135– 180

[8]

DiegoC O S ( 2013). Water Purification Demonstration Project. Project Report

[9]

DolnicarS, HurlimannA, GrünB ( 2011). What affects public acceptance of recycled and desalinated water? Water Research, 45( 2): 933– 943

[10]

Dolnicar S, Schäfer A I (2006). Public perception of desalinated versus recycled water in Australia

[11]

DolnicarS, SchäferA I. (2009). Desalinated versus recycled water: public perceptions and profiles of the accepters. Journal of Environmental Management, 90( 2): 888– 900

[12]

Du PisaniP, MengeJ G. (2013). Direct potable reclamation in Windhoek: a critical review of the design philosophy of new Goreangab drinking water reclamation plant. Water Science and Technology: Water Supply, 13( 2): 214– 226

[13]

EkeJ, YusufA, GiwaA, SodiqA. (2020). The global status of desalination: an assessment of current desalination technologies, plants and capacity. Desalination, 495 : 114633

[14]

ElimelechM, PhillipW A. (2011). The future of seawater desalination: energy, technology, and the environment. Science, 333( 6043): 712– 717

[15]

ElsaidK, SayedE T, AbdelkareemM A, MahmoudM S, RamadanM, OlabiA G. (2020). Environmental impact of emerging desalination technologies: a preliminary evaluation. Journal of Environmental Chemical Engineering, 8( 5): 104099

[16]

EnglehardtJ D, WuT, BloetscherF, DengY, Du PisaniP, EilertS, ElmirS, GuoT, JacangeloJ, LechevallierM, LeverenzH, ManchaE, Plater-ZyberkE, SheikhB, Steinle-DarlingE, TchobanoglousG. (2016). Net-zero water management: achieving energy-positive municipal water supply. Environmental Science. Water Research & Technology, 2( 2): 250– 260

[17]

FanH, YipN Y. (2019). Elucidating conductivity-permselectivity tradeoffs in electrodialysis and reverse electrodialysis by structure-property analysis of ion-exchange membranes. Journal of Membrane Science, 573 : 668– 681

[18]

Fernandez-GonzalezC, Dominguez-RamosA, IbañezR, IrabienA. (2019). Current Trends and Future Developments on (Bio-) Membranes. Boston: Elsevier, 111– 131

[19]

FritzmannC, LöwenbergJ, WintgensT, MelinT. (2007). State-of-the-art of reverse osmosis desalination. Desalination, 216( 1): 1– 76

[20]

GalamaA H, SaakesM, BruningH, RijnaartsH H M, PostJ W. (2014). Seawater predesalination with electrodialysis. Desalination, 342 : 61– 69

[21]

GhernaoutD, ElboughdiriN, AlghamdiA. (2019). Direct potable reuse: the Singapore NEWater project as a role model. OAlib, 6( 12): 1– 10

[22]

GilstrapM C ( 2013). Renewable Electricity from Salinity Gradients Using Reverse Electrodialysis. Atlanta: Georgia Institute of Technology

[23]

GrantS B, SaphoresJ D, FeldmanD L, HamiltonA J, FletcherT D, CookP L M, StewardsonM, SandersB F, LevinL A, AmbroseR F. . (2012). Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science, 337( 6095): 681– 686

[24]

GuoT, EnglehardtJ D. (2015). Principles for scaling of distributed direct potable water reuse systems: a modeling study. Water Research, 75 : 146– 163

[25]

IndusekharV K, KrishnaswamyN. (1985). Water transport studies on interpolymer ion-exchange membranes. Desalination, 52( 3): 309– 316

[26]

JohnsonA S, HillestadH O, ShanholtzerS F, ShanholtzerG F, ServiceU S N P ( 1974). An Ecological Survey of the Coastal Region of Georgia. Atlanta: National Park Service

[27]

KalogirouS A. (2005). Seawater desalination using renewable energy sources. Progress in Energy and Combustion Science, 31( 3): 242– 281

[28]

KuriharaM. (2021). Current status and future trend of dominant commercial reverse osmosis membranes. Membranes (Basel), 11( 11): 906

[29]

LefebvreO. (2018). Beyond NEWater: an insight into Singapore’s water reuse prospects. Current Opinion in Environmental Science & Health, 2 : 26– 31

[30]

LeverenzH L, TchobanoglousG, AsanoT. (2011). Direct potable reuse: a future imperative. Journal of Water Reuse and Desalination, 1( 1): 2– 10

[31]

LiW, KrantzW B, CornelissenE R, PostJ W, VerliefdeA R D, TangC Y. (2013). A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 104 : 592– 602

[32]

LiuY, NieC, LiuX, XuX, SunZ, PanL. (2015). Review on carbon-based composite materials for capacitive deionization. RSC Advances, 5( 20): 15205– 15225

[33]

LoganB E, ElimelechM. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488( 7411): 313– 319

[34]

LuoF, WangY, JiangC, WuB, FengH, XuT. (2017). A power free electrodialysis (PFED) for desalination. Desalination, 404 : 138– 146

[35]

MarksJ S ( 2006). Taking the public seriously: the case of potable and non potable reuse. Desalination, 187( 1– 3): 137– 147

[36]

MekonnenM M, HoekstraA Y. (2016). Four billion people facing severe water scarcity. Science Advances, 2( 2): e1500323

[37]

MorelA, ZuoK, XiaX, WeiJ, LuoX, LiangP, HuangX. (2012). Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Reviews in Chemical Engineering, 118( 1): 43– 48

[38]

NamJ Y, HwangK S, KimH C, JeongH, KimH, JwaE, YangS, ChoiJ, KimC S, HanJ H, JeongN. (2019). Assessing the behavior of the feed-water constituents of a pilot-scale 1000-cell-pair reverse electrodialysis with seawater and municipal wastewater effluent. Water Research, 148 : 261– 271

[39]

PatelC G, BaradD, SwaminathanJ. (2022). Desalination using pressure or electric field? a fundamental comparison of RO and electrodialysis. Desalination, 530 : 115620

[40]

PatelS K, BiesheuvelP M, ElimelechM. (2021). Energy Consumption of Brackish Water Desalination: Identifying the Sweet Spots for Electrodialysis and Reverse Osmosis. ACS ES&T Engineering, 1( 5): 851– 864

[41]

PecsonB M, TrioloS C, OlivieriS, ChenE C, PisarenkoA N, YangC C, OlivieriA, HaasC N, TrussellR S, TrussellR R. (2017). Reliability of pathogen control in direct potable reuse: Performance evaluation and QMRA of a full-scale 1 MGD advanced treatment train. Water Research, 122 : 258– 268

[42]

PellegrinoJ, GormanC, RichardsL. (2007). A speculative hybrid reverse osmosis/electrodialysis unit operation. Desalination, 214( 1): 11– 30

[43]

PilatB. (2001). Practice of water desalination by electrodialysis. Desalination, 139( 1): 385– 392

[44]

QasimM, BadrelzamanM, DarwishN N, DarwishN A, HilalN. (2019). Reverse osmosis desalination: a state-of-the-art review. Desalination, 459 : 59– 104

[45]

RajindarS ( 2015). Membrane Technology and Engineering for Water Purification, 2nd ed. Oxford: Butterworth-Heinemann

[46]

RamonG Z, FeinbergB J, HoekE M V. (2011). Membrane-based production of salinity-gradient power. Energy & Environmental Science, 4( 11): 4423– 4434

[47]

RomanM, GutierrezL, Van DijkL H, VanoppenM, PostJ W, WolsB A, CornelissenE R, VerliefdeA R D. (2020). Effect of pH on the transport and adsorption of organic micropollutants in ion-exchange membranes in electrodialysis-based desalination. Separation and Purification Technology, 252 : 117487

[48]

RomanM, Van DijkL H, GutierrezL, VanoppenM, PostJ W, WolsB A, CornelissenE R, VerliefdeA R D. (2019). Key physicochemical characteristics governing organic micropollutant adsorption and transport in ion-exchange membranes during reverse electrodialysis. Desalination, 468 : 114084

[49]

SadrzadehM, MohammadiT. (2009). Treatment of sea water using electrodialysis: current efficiency evaluation. Desalination, 249( 1): 279– 285

[50]

SemiatR. (2008). Energy issues in desalination processes. Environmental Science & Technology, 42( 22): 8193– 8201

[51]

SemiatR, HassonD ( 2012). Water desalination. Reviews in Chemical Engineering, 28( 1): 43– 60

[52]

SetoT, EharaL, KomoriR, YamaguchiA, MiwaT. (1978). Seawater desalination by electrodialysis. Desalination, 25( 1): 1– 7

[53]

SinghR, HankinsN P ( 2016). Emerging Membrane Technology for Sustainable Water Treatment. Boston: Elsevier

[54]

SkilhagenS E, DugstadJ E, AabergR J ( 2008). Osmotic power—power production based on the osmotic pressure difference between waters with varying salt gradients. Desalination, 220( 1– 3): 476– 482

[55]

SpieglerK S, El-SayedY M. (2001). The energetics of desalination processes. Desalination, 134( 1): 109– 128

[56]

SMCAPHA, AWWA, WEF( 2005). Standard Methods for the Examination of Water and Wastewater. New York: Standard Methods Committee of the American Public Health Association, American Water Works Association, Water Environment Federation

[57]

SubramaniA, JacangeloJ G. (2015). merging desalination technologies for water treatment: a critical review. Water Research, 75 : 164– 187

[58]

ThampyS K, NarayananP K, HarkareW P, GovindanK P. (1988). Seawater desalination by electrodialysis. Part II: a novel approach to combat scaling in seawater desalination by electrodialysis. Desalination, 69( 3): 261– 273

[59]

Valladares LinaresR, LiZ, SarpS, BucsS S, AmyG, VrouwenvelderJ S. (2014). Forward osmosis niches in seawater desalination and wastewater reuse. Water Research, 66 : 122– 139

[60]

VanoppenM, BlandinG, DereseS, Le ClechP, PostJ, VerliefdeA R D. (2016). Sustainable Energy from Salinity Gradients. Cambridge: Woodhead Publishing, 281– 313

[61]

VanoppenM, Van VoorenT, GutierrezL, RomanM, CrouéL J P, VerbekenK, PhilipsJ, VerliefdeA R D ( 2019). Secondary treated domestic wastewater in reverse electrodialysis: What is the best pre-treatment? Separation and Purification Technology, 218: 25– 42

[62]

VolfkovichY M. (2020). Capacitive deionization of water: a review. Russian Journal of Electrochemistry, 56( 1): 18– 51

[63]

Yangali-QuintanillaV, LiZ, Valladares R, LiQ, AmyG ( 2011). Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse. Desalination, 280( 1– 3): 160– 166

[64]

YipN Y, ElimelechM. (2012). Thermodynamic and energy efficiency analysis of power generation from natural salinity gradients by pressure retarded osmosis. Environmental Science & Technology, 46( 9): 5230– 5239

[65]

YoussefP G, Al-DadahR K, MahmoudS M. (2014). Comparative analysis of desalination technologies. Energy Procedia, 61 : 2604– 2607

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (9208KB)

Supplementary files

FSE-22062-OF-JM_suppl_1

3093

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/