Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein

Samal Kaumbekova , Mehdi Amouei Torkmahalleh , Naoya Sakaguchi , Masakazu Umezawa , Dhawal Shah

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 15

PDF (7863KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 15 DOI: 10.1007/s11783-023-1615-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein

Author information +
History +
PDF (7863KB)

Abstract

● B[a]P, nicotine and phenanthrene molecules altered the secondary structure of Aβ42.

● β-content of the peptide was significantly enhanced in the presence of the PAHs.

● Nicotine made stable cluster with Aβ42 peptide via hydrogen bonds.

● Phenanthrene due to its small size, interfered with the Aβ42 monomer more strongly.

Recent studies have correlated the chronic impact of ambient environmental pollutants like polycyclic aromatic hydrocarbons (PAHs) with the progression of neurodegenerative disorders, either by using statistical data from various cities, or via tracking biomarkers during in-vivo experiments. Among different neurodegenerative disorders, PAHs are known to cause increased risk for Alzheimer’s disease, related to the development of amyloid beta (Aβ) peptide oligomers. However, the complex molecular interactions between peptide monomers and organic pollutants remains obscured. In this work, we performed an atomistic molecular dynamics study via GROMACS to investigate the structure of Aβ42 peptide monomer in the presence of benzo[a]pyrene, nicotine, and phenanthrene. Interestingly the results revealed strong hydrophobic, and hydrogen-bond based interactions between Aβ peptides and these environmental pollutants that resulted in the formation of stable intermolecular clusters. The strong interactions affected the secondary structure of the Aβ42 peptide in the presence of the organic pollutants, with almost 50 % decrease in the α-helix and 2 %–10 % increase in the β-sheets of the peptide. Overall, the undergoing changes in the secondary structure of the peptide monomer in the presence of the pollutants under the study indicates an enhanced formation of Aβ peptide oligomers, and consequent progression of Alzheimer’s disease.

Graphical abstract

Keywords

Polycyclic aromatic hydrocarbons / Nicotine / toxicology / 42 peptide / Alzheimer’s disease / Molecular dynamics simulations / Environmental pollution

Cite this article

Download citation ▾
Samal Kaumbekova, Mehdi Amouei Torkmahalleh, Naoya Sakaguchi, Masakazu Umezawa, Dhawal Shah. Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein. Front. Environ. Sci. Eng., 2023, 17(2): 15 DOI:10.1007/s11783-023-1615-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

VAbrahamM J, Van Der SpoelD, LindahlE, HessB ( 2019). GROMACS User Manual Version 2019. 6

[2]

AitkenJ F, LoomesK M, KonarkowskaB, CooperG J. (2003). Suppression by polycyclic compounds of the conversion of human amylin into insoluble amyloid. Biochemical Journal, 374( 3): 779– 784

[3]

Amouei TorkmahallehM, NaseriM, NurzhanS, GabdrashovaR, BekezhankyzyZ, GimnkhanA, MalekipirbazariM, JouzizadehM, TabeshM, FarrokhiH, et al. ( 2022). Human exposure to aerosol from indoor gas stove cooking and the resulting nervous system responses. Indoor Air, 32( 2): e12983

[4]

BerhanuW M, HansmannU H ( 2012). Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One, 7( 7): e41479

[5]

Calderón-GarcidueñasL ( 2016). Smoking and cerebral oxidative stress and air pollution: a dreadful equation with particulate matter involved and one more powerful reason not to smoke anything! Journal of Alzheimer’s Disease , 54( 1): 109– 112

[6]

ChakrabortyS, DasP ( 2017). Emergence of alternative structures in amyloid beta 1-42 monomeric landscape by n-terminal hexapeptide amyloid inhibitors . Scientific Reports, 7( 1): 9941(1:12)

[7]

ChenG F, XuT H, YanY, ZhouY R, JiangY, MelcherK, XuH E. (2017). Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38( 9): 1205– 1235

[8]

ChoJ, Sohn J, NohJ, JangH, KimW, Cho S K, SeoH, SeoG, Lee S K, NohY , et al. ( 2020). Association between exposure to polycyclic aromatic hydrocarbons and brain cortical thinning: the Environmental Pollution-Induced Neurological EFfects (EPINEF) study. Science of the Total Environment, 737: 140097

[9]

de GelderS, SundhH, PelgrimT N M, RasingerJ D, van DaalL, FlikG, BerntssenM H G, KlarenP H M. (2018). Transepithelial transfer of phenanthrene, but not of benzo[a]pyrene, is inhibited by fatty acids in the proximal intestine of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 204 : 97– 105

[10]

EdwardsS C, JedrychowskiW, ButscherM, CamannD, KieltykaA, MrozE, FlakE, LiZ, WangS, RauhV, PereraF. (2010). Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environmental Health Perspectives, 118( 9): 1326– 1331

[11]

GaoD, Wu M, WangC, WangY, ZuoZ ( 2015). Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish ( Danio rerio ). Aquatic Toxicology (Amsterdam, Netherlands), 167: 200– 208

[12]

GerbenS R, LemkulJ A, BrownA M, BevanD R. (2014). Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer’s amyloid β-peptide. Journal of Biomolecular Structure and Dynamics, 32( 11): 1817– 1832

[13]

HahadO, LelieveldJ, BirkleinF, LiebK, DaiberA, MünzelT ( 2020). Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. International Journal of Molecular Sciences, 21( 12): 4306

[14]

HamleyI W. (2012). The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chemical Reviews, 112( 10): 5147– 5192

[15]

HessB, BekkerH, BerendsenH J C, FraaijeJ G E M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18( 12): 1463– 1472

[16]

HeusinkveldH J, WahleT, CampbellA, WesterinkR H S, TranL, JohnstonH, StoneV, CasseeF R, SchinsR P F. (2016). Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology, 56 : 94– 106

[17]

HolmeJ A, BrinchmannB C, RefsnesM, LågM, ØvrevikJ ( 2019). Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environmental Health, 18( 1): 74

[18]

HumphreyW, DalkeA, SchultenK ( 1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14( 1): 33– 38, 27–28

[19]

IelpoP, TaurinoM R, BuccolieriR, PlacentinoC M, GalloneF, AnconaV, Di SabatinoS. (2018). Polycyclic aromatic hydrocarbons in a bakery indoor air: trends, dynamics, and dispersion. Environmental Science and Pollution Research International, 25( 29): 28760– 28771

[20]

JokarS, ErfaniM, BaviO, KhazaeiS, SharifzadehM, HajiramezanaliM, BeikiD, ShamlooA ( 2020). Design of peptide-based inhibitor agent against amyloid-β aggregation: molecular docking, synthesis and in vitro evaluation . Bioorganic Chemistry, 102: 104050

[21]

KeppK P. (2012). Bioinorganic chemistry of Alzheimer’s disease. Chemical Reviews, 112( 10): 5193– 5239

[22]

KlepeisN E, NelsonW C, OttW R, RobinsonJ P, TsangA M, SwitzerP, BeharJ V, HernS C, EngelmannW H. (2001). The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Biomolecular Structure and Dynamics, 11( 3): 231– 252

[23]

KwonH S, RyuM H, CarlstenC. (2020). Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine, 52( 3): 318– 328

[24]

LiuD, Zhao Y, QiY, GaoY, Tu D, WangY, GaoH M, ZhouH ( 2020). Benzo(a)pyrene exposure induced neuronal loss, plaque deposition, and cognitive decline in APP/PS1 mice. Journal of Neuroinflammation, 17( 1): 258

[25]

MaldeA K, ZuoL, BreezeM, StroetM, PogerD, NairP C, OostenbrinkC, MarkA E. (2011). An Automated force field Topology Builder (ATB) and repository: version 1.0. Journal of Chemical Theory and Computation, 7( 12): 4026– 4037

[26]

MandelkowE M, MandelkowE ( 2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor Perspectives in Medicine, 2( 7): a006247

[27]

MurrayB, SharmaB, BelfortG. (2017). N-terminal hypothesis for Alzheimer’s disease. ACS Chemical Neuroscience, 8( 3): 432– 434

[28]

NaufalZ, ZhiwenL, ZhuL, ZhouG D, McDonaldT, HeL Y, MitchellL, RenA, ZhuH, FinnellR, DonnellyK C. (2010). Biomarkers of exposure to combustion by-products in a human population in Shanxi, China. Journal of Exposure Science & Environmental Epidemiology, 20( 4): 310– 319

[29]

NiuQ, ZhangH, LiX, LiM. (2010). Benzo[a]pyrene-induced neurobehavioral function and neurotransmitter alterations in coke oven workers. Occupational and Environmental Medicine, 67( 7): 444– 448

[30]

OberdörsterG, SharpZ, AtudoreiV, ElderA, GeleinR, KreylingW, CoxC. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16( 6–7): 437– 445

[31]

SeeS W, BalasubramanianR. (2008). Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42( 39): 8852– 8862

[32]

Shang K , Chen Z, Liu Z , Song L , Zheng W , Yang B , Liu S , YinL ( 2021). Haze prediction model using deep recurrent neural network. Atmosphere (Basel), 12( 12): 1625

[33]

SharmaC, KimS R ( 2021). Linking oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants(Basel), 10( 8): 1231

[34]

StrandbergB, ÖstermanC, Koca AkdevaH, MoldanováJ, LangerS ( 2020). The use of polyurethane foam (PUF) passive air samplers in exposure studies to PAHs in Swedish seafarers. Polycyclic Aromatic Compounds, 42( 2): 448– 459

[35]

TolarM, AbushakraS, SabbaghM. (2020). The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement, 16( 11): 1553– 1560

[36]

TomaselliS, EspositoV, VangoneP, van NulandN A, BonvinA M J J, GuerriniR, TancrediT, TemussiP A, PiconeD. (2006). The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem, 7( 2): 257– 267

[37]

VermaR, PatelK S, VermaS K. (2016). Indoor polycyclic aromatic hydrocarbon concentration in Central India. Polycyclic Aromatic Compounds, 36( 2): 152– 168

[38]

WallinC, SholtsS B, ÖsterlundN, LuoJ, Jarvet J, RoosP M, IlagL, GräslundA, WärmländerS K T S ( 2017). Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Scientific Reports, 7( 1): 14423 (1-14)

[39]

YoungL M, AshcroftA E, RadfordS E. (2017). Small molecule probes of protein aggregation. Current Opinion in Chemical Biology, 39 : 90– 99

[40]

ZhangZ, TianJ, HuangW, YinL, Zheng W, LiuS ( 2021). A haze prediction method based on one-dimensional convolutional neural network. Atmosphere (Basel), 12( 10): 1327

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7863KB)

Supplementary files

FSE-22057-OF-KS_suppl_1

2854

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/