Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein
Samal Kaumbekova, Mehdi Amouei Torkmahalleh, Naoya Sakaguchi, Masakazu Umezawa, Dhawal Shah
Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein
● B[a]P, nicotine and phenanthrene molecules altered the secondary structure of Aβ42.
● β-content of the peptide was significantly enhanced in the presence of the PAHs.
● Nicotine made stable cluster with Aβ42 peptide via hydrogen bonds.
● Phenanthrene due to its small size, interfered with the Aβ42 monomer more strongly.
Recent studies have correlated the chronic impact of ambient environmental pollutants like polycyclic aromatic hydrocarbons (PAHs) with the progression of neurodegenerative disorders, either by using statistical data from various cities, or via tracking biomarkers during in-vivo experiments. Among different neurodegenerative disorders, PAHs are known to cause increased risk for Alzheimer’s disease, related to the development of amyloid beta (Aβ) peptide oligomers. However, the complex molecular interactions between peptide monomers and organic pollutants remains obscured. In this work, we performed an atomistic molecular dynamics study via GROMACS to investigate the structure of Aβ42 peptide monomer in the presence of benzo[a]pyrene, nicotine, and phenanthrene. Interestingly the results revealed strong hydrophobic, and hydrogen-bond based interactions between Aβ peptides and these environmental pollutants that resulted in the formation of stable intermolecular clusters. The strong interactions affected the secondary structure of the Aβ42 peptide in the presence of the organic pollutants, with almost 50 % decrease in the α-helix and 2 %–10 % increase in the β-sheets of the peptide. Overall, the undergoing changes in the secondary structure of the peptide monomer in the presence of the pollutants under the study indicates an enhanced formation of Aβ peptide oligomers, and consequent progression of Alzheimer’s disease.
Polycyclic aromatic hydrocarbons / Nicotine / toxicology / Aβ42 peptide / Alzheimer’s disease / Molecular dynamics simulations / Environmental pollution
[1] |
VAbrahamM J, Van Der SpoelD, LindahlE, HessB ( 2019). GROMACS User Manual Version 2019. 6
|
[2] |
AitkenJ F, LoomesK M, KonarkowskaB, CooperG J. (2003). Suppression by polycyclic compounds of the conversion of human amylin into insoluble amyloid. Biochemical Journal, 374( 3): 779– 784
CrossRef
Pubmed
Google scholar
|
[3] |
Amouei TorkmahallehM, NaseriM, NurzhanS, GabdrashovaR, BekezhankyzyZ, GimnkhanA, MalekipirbazariM, JouzizadehM, TabeshM, FarrokhiH, et al. ( 2022). Human exposure to aerosol from indoor gas stove cooking and the resulting nervous system responses. Indoor Air, 32( 2): e12983
CrossRef
Pubmed
Google scholar
|
[4] |
BerhanuW M, HansmannU H ( 2012). Structure and dynamics of amyloid-β segmental polymorphisms. PLoS One, 7( 7): e41479
CrossRef
Pubmed
Google scholar
|
[5] |
Calderón-GarcidueñasL ( 2016). Smoking and cerebral oxidative stress and air pollution: a dreadful equation with particulate matter involved and one more powerful reason not to smoke anything! Journal of Alzheimer’s Disease , 54( 1): 109– 112
CrossRef
Pubmed
Google scholar
|
[6] |
ChakrabortyS, DasP ( 2017). Emergence of alternative structures in amyloid beta 1-42 monomeric landscape by n-terminal hexapeptide amyloid inhibitors . Scientific Reports, 7( 1): 9941(1:12)
CrossRef
Pubmed
Google scholar
|
[7] |
ChenG F, XuT H, YanY, ZhouY R, JiangY, MelcherK, XuH E. (2017). Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38( 9): 1205– 1235
CrossRef
Pubmed
Google scholar
|
[8] |
ChoJ, Sohn J, NohJ, JangH, KimW, Cho S K, SeoH, SeoG, Lee S K, NohY , et al. ( 2020). Association between exposure to polycyclic aromatic hydrocarbons and brain cortical thinning: the Environmental Pollution-Induced Neurological EFfects (EPINEF) study. Science of the Total Environment, 737: 140097
CrossRef
Pubmed
Google scholar
|
[9] |
de GelderS, SundhH, PelgrimT N M, RasingerJ D, van DaalL, FlikG, BerntssenM H G, KlarenP H M. (2018). Transepithelial transfer of phenanthrene, but not of benzo[a]pyrene, is inhibited by fatty acids in the proximal intestine of rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 204 : 97– 105
CrossRef
Pubmed
Google scholar
|
[10] |
EdwardsS C, JedrychowskiW, ButscherM, CamannD, KieltykaA, MrozE, FlakE, LiZ, WangS, RauhV, PereraF. (2010). Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children’s intelligence at 5 years of age in a prospective cohort study in Poland. Environmental Health Perspectives, 118( 9): 1326– 1331
CrossRef
Pubmed
Google scholar
|
[11] |
GaoD, Wu M, WangC, WangY, ZuoZ ( 2015). Chronic exposure to low benzo[a]pyrene level causes neurodegenerative disease-like syndromes in zebrafish ( Danio rerio ). Aquatic Toxicology (Amsterdam, Netherlands), 167: 200– 208
CrossRef
Pubmed
Google scholar
|
[12] |
GerbenS R, LemkulJ A, BrownA M, BevanD R. (2014). Comparing atomistic molecular mechanics force fields for a difficult target: a case study on the Alzheimer’s amyloid β-peptide. Journal of Biomolecular Structure and Dynamics, 32( 11): 1817– 1832
CrossRef
Pubmed
Google scholar
|
[13] |
HahadO, LelieveldJ, BirkleinF, LiebK, DaiberA, MünzelT ( 2020). Ambient air pollution increases the risk of cerebrovascular and neuropsychiatric disorders through induction of inflammation and oxidative stress. International Journal of Molecular Sciences, 21( 12): 4306
CrossRef
Pubmed
Google scholar
|
[14] |
HamleyI W. (2012). The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chemical Reviews, 112( 10): 5147– 5192
CrossRef
Pubmed
Google scholar
|
[15] |
HessB, BekkerH, BerendsenH J C, FraaijeJ G E M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18( 12): 1463– 1472
CrossRef
Google scholar
|
[16] |
HeusinkveldH J, WahleT, CampbellA, WesterinkR H S, TranL, JohnstonH, StoneV, CasseeF R, SchinsR P F. (2016). Neurodegenerative and neurological disorders by small inhaled particles. Neurotoxicology, 56 : 94– 106
CrossRef
Pubmed
Google scholar
|
[17] |
HolmeJ A, BrinchmannB C, RefsnesM, LågM, ØvrevikJ ( 2019). Potential role of polycyclic aromatic hydrocarbons as mediators of cardiovascular effects from combustion particles. Environmental Health, 18( 1): 74
CrossRef
Pubmed
Google scholar
|
[18] |
HumphreyW, DalkeA, SchultenK ( 1996). VMD: visual molecular dynamics. Journal of Molecular Graphics, 14( 1): 33– 38, 27–28
CrossRef
Pubmed
Google scholar
|
[19] |
IelpoP, TaurinoM R, BuccolieriR, PlacentinoC M, GalloneF, AnconaV, Di SabatinoS. (2018). Polycyclic aromatic hydrocarbons in a bakery indoor air: trends, dynamics, and dispersion. Environmental Science and Pollution Research International, 25( 29): 28760– 28771
CrossRef
Pubmed
Google scholar
|
[20] |
JokarS, ErfaniM, BaviO, KhazaeiS, SharifzadehM, HajiramezanaliM, BeikiD, ShamlooA ( 2020). Design of peptide-based inhibitor agent against amyloid-β aggregation: molecular docking, synthesis and in vitro evaluation . Bioorganic Chemistry, 102: 104050
CrossRef
Pubmed
Google scholar
|
[21] |
KeppK P. (2012). Bioinorganic chemistry of Alzheimer’s disease. Chemical Reviews, 112( 10): 5193– 5239
CrossRef
Pubmed
Google scholar
|
[22] |
KlepeisN E, NelsonW C, OttW R, RobinsonJ P, TsangA M, SwitzerP, BeharJ V, HernS C, EngelmannW H. (2001). The national human activity pattern survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Biomolecular Structure and Dynamics, 11( 3): 231– 252
CrossRef
Pubmed
Google scholar
|
[23] |
KwonH S, RyuM H, CarlstenC. (2020). Ultrafine particles: unique physicochemical properties relevant to health and disease. Experimental & Molecular Medicine, 52( 3): 318– 328
CrossRef
Pubmed
Google scholar
|
[24] |
LiuD, Zhao Y, QiY, GaoY, Tu D, WangY, GaoH M, ZhouH ( 2020). Benzo(a)pyrene exposure induced neuronal loss, plaque deposition, and cognitive decline in APP/PS1 mice. Journal of Neuroinflammation, 17( 1): 258
CrossRef
Pubmed
Google scholar
|
[25] |
MaldeA K, ZuoL, BreezeM, StroetM, PogerD, NairP C, OostenbrinkC, MarkA E. (2011). An Automated force field Topology Builder (ATB) and repository: version 1.0. Journal of Chemical Theory and Computation, 7( 12): 4026– 4037
CrossRef
Pubmed
Google scholar
|
[26] |
MandelkowE M, MandelkowE ( 2012). Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harbor Perspectives in Medicine, 2( 7): a006247
CrossRef
Pubmed
Google scholar
|
[27] |
MurrayB, SharmaB, BelfortG. (2017). N-terminal hypothesis for Alzheimer’s disease. ACS Chemical Neuroscience, 8( 3): 432– 434
CrossRef
Pubmed
Google scholar
|
[28] |
NaufalZ, ZhiwenL, ZhuL, ZhouG D, McDonaldT, HeL Y, MitchellL, RenA, ZhuH, FinnellR, DonnellyK C. (2010). Biomarkers of exposure to combustion by-products in a human population in Shanxi, China. Journal of Exposure Science & Environmental Epidemiology, 20( 4): 310– 319
CrossRef
Pubmed
Google scholar
|
[29] |
NiuQ, ZhangH, LiX, LiM. (2010). Benzo[a]pyrene-induced neurobehavioral function and neurotransmitter alterations in coke oven workers. Occupational and Environmental Medicine, 67( 7): 444– 448
CrossRef
Pubmed
Google scholar
|
[30] |
OberdörsterG, SharpZ, AtudoreiV, ElderA, GeleinR, KreylingW, CoxC. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16( 6–7): 437– 445
CrossRef
Pubmed
Google scholar
|
[31] |
SeeS W, BalasubramanianR. (2008). Chemical characteristics of fine particles emitted from different gas cooking methods. Atmospheric Environment, 42( 39): 8852– 8862
CrossRef
Google scholar
|
[32] |
Shang K , Chen Z, Liu Z , Song L , Zheng W , Yang B , Liu S , YinL ( 2021). Haze prediction model using deep recurrent neural network. Atmosphere (Basel), 12( 12): 1625
CrossRef
Google scholar
|
[33] |
SharmaC, KimS R ( 2021). Linking oxidative stress and proteinopathy in Alzheimer’s disease. Antioxidants(Basel), 10( 8): 1231
CrossRef
Pubmed
Google scholar
|
[34] |
StrandbergB, ÖstermanC, Koca AkdevaH, MoldanováJ, LangerS ( 2020). The use of polyurethane foam (PUF) passive air samplers in exposure studies to PAHs in Swedish seafarers. Polycyclic Aromatic Compounds, 42( 2): 448– 459
|
[35] |
TolarM, AbushakraS, SabbaghM. (2020). The path forward in Alzheimer’s disease therapeutics: reevaluating the amyloid cascade hypothesis. Alzheimers Dement, 16( 11): 1553– 1560
CrossRef
Pubmed
Google scholar
|
[36] |
TomaselliS, EspositoV, VangoneP, van NulandN A, BonvinA M J J, GuerriniR, TancrediT, TemussiP A, PiconeD. (2006). The alpha-to-beta conformational transition of Alzheimer’s Abeta-(1–42) peptide in aqueous media is reversible: a step by step conformational analysis suggests the location of beta conformation seeding. Chembiochem, 7( 2): 257– 267
CrossRef
Pubmed
Google scholar
|
[37] |
VermaR, PatelK S, VermaS K. (2016). Indoor polycyclic aromatic hydrocarbon concentration in Central India. Polycyclic Aromatic Compounds, 36( 2): 152– 168
CrossRef
Google scholar
|
[38] |
WallinC, SholtsS B, ÖsterlundN, LuoJ, Jarvet J, RoosP M, IlagL, GräslundA, WärmländerS K T S ( 2017). Alzheimer’s disease and cigarette smoke components: effects of nicotine, PAHs, and Cd(II), Cr(III), Pb(II), Pb(IV) ions on amyloid-β peptide aggregation. Scientific Reports, 7( 1): 14423 (1-14)
CrossRef
Pubmed
Google scholar
|
[39] |
YoungL M, AshcroftA E, RadfordS E. (2017). Small molecule probes of protein aggregation. Current Opinion in Chemical Biology, 39 : 90– 99
CrossRef
Pubmed
Google scholar
|
[40] |
ZhangZ, TianJ, HuangW, YinL, Zheng W, LiuS ( 2021). A haze prediction method based on one-dimensional convolutional neural network. Atmosphere (Basel), 12( 10): 1327
CrossRef
Google scholar
|
/
〈 | 〉 |