Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability and electro-enhanced rejection performance

Xiaoying Wang , Haiguang Zhang , Xu Wang , Shuo Chen , Hongtao Yu , Xie Quan

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (1) : 1

PDF (11402KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (1) : 1 DOI: 10.1007/s11783-023-1601-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability and electro-enhanced rejection performance

Author information +
History +
PDF (11402KB)

Abstract

● Electroconductive RGO-MXene membranes were fabricated.

● Wettable membrane channels were established between RGO and MXene nanosheets.

● Hydrophilic MXene reduces the resistance of water entering the membrane channels.

● Water permeance of RGO-MXene membrane is 16.8 times higher than that of RGO membrane.

● Electro-assistance can enhance the dye rejection performance of RGO-MXene membrane.

Reduced graphene oxide (RGO) membranes are theoretically more conducive to the rapid transport of water molecules in their channels compared with graphene oxide (GO) membranes, as they have fewer oxygen-containing functional groups and more non-oxidized regions. However, the weak hydrophilicity of RGO membranes inhibits water entry into their channels, resulting in their low water permeability. In this work, we constructed wettable RGO-MXene channels by intercalating hydrophilic MXene nanosheets into the RGO membrane for improving the water permeance. The RGO-MXene composite membrane exhibits high pure water permeance of 62.1 L/(m2·h·bar), approximately 16.8 times that of the RGO membrane (3.7 L/(m2·h·bar)). Wettability test results and molecular dynamics simulations suggest that the improved water permeance results from the enhanced wettability of RGO-MXene membrane and increased rate of water molecules entering the RGO-MXene channels. Benefiting from good conductivity, the RGO-MXene membrane with electro-assistance exhibits significantly increased rejection rates for negatively charged dyes (from 56.0% at 0 V to 91.4% at 2.0 V for Orange G) without decreasing the permeate flux, which could be attributed to enhanced electrostatic repulsion under electro-assistance.

Graphical abstract

Keywords

Reduced graphene oxide / MXene / Membrane / Water permeance / Dye rejection / Electro-assistance

Cite this article

Download citation ▾
Xiaoying Wang, Haiguang Zhang, Xu Wang, Shuo Chen, Hongtao Yu, Xie Quan. Electroconductive RGO-MXene membranes with wettability-regulated channels: improved water permeability and electro-enhanced rejection performance. Front. Environ. Sci. Eng., 2023, 17(1): 1 DOI:10.1007/s11783-023-1601-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abaie E , Xu L , Shen Y X . (2021). Bioinspired and biomimetic membranes for water purification and chemical separation: a review. Frontiers of Environmental Science & Engineering, 15( 6): 124

[2]

Abraham J , Vasu K S , Williams C D , Gopinadhan K , Su Y , Cherian C T , Dix J , Prestat E , Haigh S J , Grigorieva I V , Carbone P , Geim A K , Nair R R . (2017). Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 12( 6): 546– 550

[3]

Ashok Kumar S Srinivasan G Govindaradjane S (2019). Development of a new blended polyethersulfone membrane for dye removal from synthetic wastewater. Environmental Nanotechnology, Monitoring & Management, 12: 100238

[4]

Dong L L , Li M H , Zhang S , Si X J , Bai Y X , Zhang C F . (2020a). NH2-Fe3O4-regulated graphene oxide membranes with well-defined laminar nanochannels for desalination of dye solutions. Desalination, 476 : 114227

[5]

Dong Y P , Lin C , Gao S J , Manoranjan N , Li W X , Fang W X , Jin J . (2020b). Single-layered GO/LDH hybrid nanoporous membranes with improved stability for salt and organic molecules rejection. Journal of Membrane Science, 607 : 118184

[6]

Fan X T , Cai C B , Gao J , Han X L , Li J D . (2020). Hydrothermal reduced graphene oxide membranes for dyes removing. Separation and Purification Technology, 241 : 116730

[7]

Huang L , Huang S , Venna S R , Lin H . (2018). Rightsizing nanochannels in reduced graphene oxide membranes by solvating for dye desalination. Environmental Science & Technology, 52( 21): 12649– 12655

[8]

Huang L L , Li Z Y , Luo Y , Zhang N , Qi W X , Jiang E , Bao J J , Zhang X P , Zheng W J , An B G , He G H . (2021). Low-pressure loose GO composite membrane intercalated by CNT for effective dye/salt separation. Separation and Purification Technology, 256 : 117839

[9]

Li W , Li X F , Chang W , Wu J , Liu P F , Wang J J , Yao X , Yu Z Z . (2020). Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Research, 13( 11): 3048– 3056

[10]

Li X P , Chen Y B , Hu X Y , Zhang Y F , Hu L J . (2014). Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. Journal of Membrane Science, 471 : 118– 129

[11]

Li Z K , Liu Y C , Li L B , Wei Y Y , Caro J , Wang H . (2019). Ultra-thin titanium carbide (MXene) sheet membranes for high-efficient oil/water emulsions separation. Journal of Membrane Science, 592 : 117361

[12]

Lian B , De Luca S , You Y , Alwarappan S , Yoshimura M , Sahajwalla V , Smith S C , Leslie G , Joshi R K . (2018). Extraordinary water adsorption characteristics of graphene oxide. Chemical Science, 9( 22): 5106– 5111

[13]

Liu Q , Chen M Q , Mao Y Y , Liu G P . (2021). Theoretical study on Janus graphene oxide membrane for water transport. Frontiers of Chemical Science and Engineering, 15( 4): 913– 921

[14]

Liu T , Liu X Y , Graham N , Yu W Z , Sun K N . (2020). Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. Journal of Membrane Science, 593 : 117431

[15]

Ming X , Guo A K , Zhang Q , Guo Z Z , Yu F , Hou B F , Wang Y , Homewood K P , Wang X B . (2020). 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification. Carbon, 167 : 285– 295

[16]

Naguib M , Kurtoglu M , Presser V , Lu J , Niu J , Heon M , Hultman L , Gogotsi Y , Barsoum M W . (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23( 37): 4248– 4253

[17]

Nair R R , Wu H A , Jayaram P N , Grigorieva I V , Geim A K . (2012). Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science, 335( 6067): 442– 444

[18]

Ounifi I , Guesmi Y , Ursino C , Castro-Muñoz R , Agougui H , Jabli M , Hafiane A , Figoli A , Ferjani E . (2022). Synthesis and characterization of a thin-film composite nanofiltration membrane based on polyamide-cellulose acetate: application for water purification. Journal of Polymers and the Environment, 30( 2): 707– 718

[19]

Pandey R P , Rasheed P A , Gomez T , Azam R S , Mahmoud K A . (2020). A fouling-resistant mixed-matrix nanofiltration membrane based on covalently cross-linked Ti3C2Tx (MXene)/cellulose acetate. Journal of Membrane Science, 607 : 118139

[20]

Park S , An J , Jung I , Piner R D , An S J , Li X , Velamakanni A , Ruoff R S . (2009). Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Letters, 9( 4): 1593– 1597

[21]

Sang X , Xie Y , Lin M W , Alhabeb M , Van Aken K L , Gogotsi Y , Kent P R C , Xiao K , Unocic R R . (2016). Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano, 10( 10): 9193– 9200

[22]

Su Y , Kravets V G , Wong S L , Waters J , Geim A K , Nair R R . (2014). Impermeable barrier films and protective coatings based on reduced graphene oxide. Nature Communications, 5( 1): 4843

[23]

Sun J Q , Hu C Z , Liu Z T , Liu H J , Qu J H . (2019). Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon, 145 : 140– 148

[24]

Velioğlu S , Han L , Chew J W . (2018). Understanding membrane pore-wetting in the membrane distillation of oil emulsions via molecular dynamics simulations. Journal of Membrane Science, 551 : 76– 84

[25]

Wang H , Gao B , Hou L A , Shon H K , Yue Q , Wang Z . (2021). Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of boron removal and energy consumption. Frontiers of Environmental Science & Engineering, 15( 6): 135

[26]

Wei G L , Dong J , Bai J , Zhao Y S , Li Y . (2019a). Structurally stable, antifouling, and easily renewable reduced graphene oxide membrane with a carbon nanotube protective layer. Environmental Science & Technology, 53( 20): 11896– 11903

[27]

Wei G L , Zhao Y S , Dong J , Gao M , Li C . (2020). Electrochemical cleaning of fouled laminar graphene membranes. Environmental Science & Technology Letters, 7( 10): 773– 778

[28]

Wei S , Du L , Chen S , Yu H T , Quan X . (2021). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science & Engineering, 15( 1): 11

[29]

Wei S C , Xie Y , Xing Y D , Wang L C , Ye H Q , Xiong X , Wang S , Han K . (2019b). Two-dimensional graphene oxide/MXene composite lamellar membranes for efficient solvent permeation and molecular separation. Journal of Membrane Science, 582 : 414– 422

[30]

Willcox J A , Kim H J . (2017a). Molecular dynamics study of water flow across multiple layers of pristine, oxidized, and mixed regions of graphene oxide: effect of graphene oxide layer-to-layer distance. Journal of Physical Chemistry C, 121( 42): 23659– 23668

[31]

Willcox J A L , Kim H J . (2017b). Molecular dynamics study of water flow across multiple layers of pristine, oxidized, and mixed regions of graphene oxide. ACS Nano, 11( 2): 2187– 2193

[32]

Wu Y , Fu C F , Huang Q , Zhang P , Cui P , Ran J , Yang J , Xu T . (2021). 2D heterostructured nanofluidic channels for enhanced desalination performance of graphene oxide membranes. ACS Nano, 15( 4): 7586– 7595

[33]

Xu W L , Fang C , Zhou F , Song Z , Liu Q , Qiao R , Yu M . (2017). Self-assembly: a facile way of forming ultrathin, high-performance graphene oxide membranes for water purification. Nano Letters, 17( 5): 2928– 2933

[34]

Xu W L , Zhou F L , Yu M . (2018). Tuning water nanofiltration performance of few-layered, reduced graphene oxide membranes by oxygen plasma. Industrial & Engineering Chemistry Research, 57( 47): 16103– 16109

[35]

Yi G , Chen S , Quan X , Wei G L , Fan X F , Yu H T . (2018). Enhanced separation performance of carbon nanotube-polyvinyl alcohol composite membranes for emulsified oily wastewater treatment under electrical assistance. Separation and Purification Technology, 197 : 107– 115

[36]

Zhang H , Quan X , Fan X , Yi G , Chen S , Yu H , Chen Y . (2019). Improving ion rejection of conductive nanofiltration membrane through electrically enhanced surface charge density. Environmental Science & Technology, 53( 2): 868– 877

[37]

Zhang J D , Zheng Y Q , Jiang G D , Yang C Z , Oyama M . (2008). Electrocatalytic evaluation of liquid phase deposited methylene blue/TiO2 hybrid films. Electrochemistry Communications, 10( 7): 1038– 1040

[38]

Zhao S , Wang Z . (2017). A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. Journal of Membrane Science, 524 : 214– 224

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (11402KB)

Supplementary files

FSE-22043-OF-WXY_suppl_1

4569

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/