Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective
Shilpa, Nitai Basak, Sumer Singh Meena
Microbial biodegradation of plastics: Challenges, opportunities, and a critical perspective
● Health hazards of plastic waste on environment are discussed.
● Microbial species involved in biodegradation of plastics are being reviewed.
● Enzymatic biodegradation mechanism of plastics is outlined.
● Analytical techniques to evaluate the plastic biodegradation are presented.
The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the pre-existing traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.
Plastic-waste / Polymers / Health-hazards / Biodegradation / Microorganisms / Enzymes
[1] |
AbrahamJ, GhoshE, MukherjeeP, GajendiranA. (2017). Microbial degradation of low density polyethylene. Environmental Progress & Sustainable Energy, 36( 1): 147– 154
CrossRef
Google scholar
|
[2] |
AceroE H, RibitschD, SteinkellnerG, GruberK, GreimelK, EiteljoergI, TrotschaE, WeiR, ZimmermannW, ZinnM, Cavaco-PauloA, FreddiG, SchwabO H, GuebitzG. (2011). Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecular Rapid Communications, 44 : 4632– 4640
|
[3] |
AhmedT, ShahidM, AzeemF, RasulI, ShahA A, NomanM, HameedA, ManzoorN, ManzoorI, MuhammadS. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research International, 25( 8): 7287– 7298
CrossRef
Google scholar
|
[4] |
Al-SalemS M, Al-Hazza’aA, KaramH J, Al-WadiM H, Al-DhafeeriA T, Al-RowaihA A. (2019). Insights into the evaluation of the abiotic and biotic degradation rate of commercial pro-oxidant filled polyethylene (PE) thin films. Journal of Environmental Management, 250 : 109475
CrossRef
Google scholar
|
[5] |
AliM I, AhmedS, JavedI, AliN, AtiqN, HameedA, RobsonG. (2014). Biodegradation of starch blended polyvinyl chloride films by isolated Phanerochaete chrysosporium PV1. International Journal of Environmental Science and Technology, 11( 2): 339– 348
CrossRef
Google scholar
|
[6] |
AlimbaC G, FaggioC. (2019). Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology, 68 : 61– 74
CrossRef
Google scholar
|
[7] |
AlmeidaE L, CarrilloRincón A F, JacksonS A, DobsonA D W. (2019). In silico screening and heterologous expression of a polyethylene terephthalate hydrolase (PETase)-like enzyme (SM14est) with polycaprolactone (PCL)-degrading activity, from the marine sponge-derived strain Streptomyces sp. SM14. Frontiers in Microbiology, 10( 2019): 2187
CrossRef
Google scholar
|
[8] |
AlshehreiF. (2017). Biodegradation of synthetic and natural plastic by microorganisms. Journal of Applied & Environmental Microbiology, 5( 1): 8– 19
|
[9] |
AmobonyeA, BhagwatP, SinghS, PillaiS. (2021). Plastic biodegradation: Frontline microbes and their enzymes. Science of the Total Environment, 759 : 143536
CrossRef
Google scholar
|
[10] |
AndradyA L, NealM A. (2009). Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364( 1526): 1977– 1984
CrossRef
Google scholar
|
[11] |
AntipovaT V, ZhelifonovaV P, ZaitsevK V, NedorezovaP M, AladyshevA M, KlyamkinaA N, KostyukS V, DanilogorskayaA A, KozlovskyA G. (2018). Biodegradation of poly-ε-caprolactones and poly-l-lactides by fungi. Journal of Polymers and the Environment, 26( 12): 4350– 4359
CrossRef
Google scholar
|
[12] |
ArumugamK, RenganathanS, BabalolaO O, MuthunarayananV. (2018). Investigation on paper cup waste degradation by bacterial consortium and Eudrillus eugeinea through vermicomposting. Waste Management, 74 : 185– 193
CrossRef
Google scholar
|
[13] |
AustinH P, AllenM D, DonohoeB S, RorrerN A, KearnsF L, SilveiraR L, PollardB C, DominickG, DumanR, El OmariK, MykhaylykV, WagnerA, MichenerW E, AmoreA, SkafM S, CrowleyM F, ThorneA W, JohnsonC W, WoodcockH L, McGeehanJ E, BeckhamG T. (2018). Characterization and engineering of a plastic-degrading aromatic polyesterase. Proceedings of the National Academy of Sciences, USA, 115( 19): E4350– E4357
CrossRef
Google scholar
|
[14] |
BahlS, DolmaJ, Jyot SinghJ, SehgalS. (2021). Biodegradation of plastics: A state of the art review. Materials Today: Proceedings, 39 : 31– 34
CrossRef
Google scholar
|
[15] |
BanerjeeS, MaitiT K, RoyR N. (2022). Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Critical Reviews in Biotechnology, 42( 3): 384– 402
CrossRef
Google scholar
|
[16] |
BarbeşL, RădulescuC, StihiC. (2014). ATR-FTIR spectrometry characterisation of polymeric materials. Romanian Reports in Physics, 66( 3): 765– 777
|
[17] |
BardajíD K R, FurlanJ P R, StehlingE G. (2019). Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Archives of Microbiology, 201( 5): 699– 704
CrossRef
Google scholar
|
[18] |
BelhouariY FarnumB JenkinsC KieserJ LópezDe Román A MccauleyD RochmanC SchreiberR SchwartzE TaylorH (2017). International Coastal Cleanup 2017 Report. Washington, DC: Ocean Conservancy
|
[19] |
BhagwatG, O’connorW, GraingeI, PalanisamiT. (2021). Understanding the fundamental basis for biofilm formation on plastic surfaces: Role of conditioning films. Frontiers in Microbiology, 12( 2021): 1– 10
|
[20] |
BhardwajH, GuptaR, TiwariA. (2013). Communities of microbial enzymes associated with biodegradation of plastics. Journal of Polymers and the Environment, 21( 2): 575– 579
CrossRef
Google scholar
|
[21] |
BhatiaM, GirdharA, TiwariA, NayarisseriA. (2014). Implications of a novel Pseudomonas species on low density polyethylene biodegradation: an in vitro to in silico approach. SpringerPlus, 3( 1): 497
CrossRef
Google scholar
|
[22] |
BollingerA, ThiesS, Knieps-GrünhagenE, GertzenC, KobusS, HöppnerA, FerrerM, GohlkeH, SmitsS H J, JaegerK E. (2020). A novel polyester hydrolase from the marine bacterium Pseudomonas aestusnigri - structural and functional insights. Frontiers in Microbiology, 11 : 114
CrossRef
Google scholar
|
[23] |
BombelliP, HoweC J, BertocchiniF. (2017). Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 27( 8): R292– R293
CrossRef
Google scholar
|
[24] |
BrandonA M, GaoS H, TianR, NingD, YangS S, ZhouJ, WuW M, CriddleC S. (2018). Biodegradation of polyethylene and plastic mixtures in mealworms (Larvae of Tenebrio molitor) and effects on the gut microbiome. Environmental Science & Technology, 52( 11): 6526– 6533
CrossRef
Google scholar
|
[25] |
BriassoulisD. (2004). Mechanical design requirements for low tunnel biodegradable and conventional films. Biosystems Engineering, 87( 2): 209– 223
CrossRef
Google scholar
|
[26] |
BriassoulisD. (2006). Mechanical behaviour of biodegradable agricultural films under real field conditions. Polymer Degradation & Stability, 91( 6): 1256– 1272
CrossRef
Google scholar
|
[27] |
BrydsonJ A. (1999). Plastics Materials. Oxford: Butterworth-Heinemann,
|
[28] |
BubpachatT, SombatsompopN, PrapagdeeB. (2018). Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polymer Degradation & Stability, 152 : 75– 85
CrossRef
Google scholar
|
[29] |
CapitainC, Ross-JonesJ, MöhringS, TippkötterN. (2020). Differential scanning calorimetry for quantification of polymer biodegradability in compost. International Biodeterioration & Biodegradation, 149 : 104914
CrossRef
Google scholar
|
[30] |
CassoneB J, GroveH C, ElebuteO, VillanuevaS M P, LemoineC M R. (2020). Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella. Proceedings of the Royal Society B: Biological Sciences, 287( 1922): 9– 11
|
[31] |
Castro-AguirreE, AurasR, SelkeS, RubinoM, MarshT. (2017). Insights on the aerobic biodegradation of polymers by analysis of evolved carbon dioxide in simulated composting conditions. Polymer Degradation & Stability, 137 : 251– 271
CrossRef
Google scholar
|
[32] |
CelinaM, OttesenD K, GillenK T, CloughR L. (1997). FTIR emission spectroscopy applied to polymer degradation. Polymer Degradation & Stability, 58( 1-2): 15– 31
CrossRef
Google scholar
|
[33] |
ChamasA, MoonH, ZhengJ, QiuY, TabassumT, JangJ H, Abu-OmarM, ScottS L, SuhS. (2020). Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering, 8( 9): 3494– 3511
CrossRef
Google scholar
|
[34] |
ChandaM (2017). Plastics Technology Handbook. Boca Raton: CRC Press
|
[35] |
ChauhanD, AgrawalG, DeshmukhS, RoyS S, PriyadarshiniR. (2018). Biofilm formation by Exiguobacterium sp. DR11 and DR14 alter polystyrene surface properties and initiate biodegradation. RSC Advances, 8( 66): 37590– 37599
CrossRef
Google scholar
|
[36] |
ChaurasiaM. (2020). Analytical review on biodegradation of plastics. eLifePress, 1( 1): 1– 8
|
[37] |
ChenZ, WangY, ChengY, WangX, TongS, YangH, WangZ. (2020). Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. Science of the Total Environment, 709 : 136138
CrossRef
Google scholar
|
[38] |
ChinagliaS TosinM Degli-InnocentiF ( 2018). Biodegradation rate of biodegradable plastics at molecular level. Polymer Degradation and Stability, 147 (December 2017): 237– 244
|
[39] |
ChristianV, ShrivastavaR, ShuklaD, ModiH A, VyasB R M. (2005). Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: Enzymology and mechanisms involved. Indian Journal of Experimental Biology, 43( 4): 301– 312
|
[40] |
CIEL
|
[41] |
daLuz J M R, PaesS A, BazzolliD M S, TótolaM R, DemunerA J, KasuyaM C M. (2014). Abiotic and biotic degradation of oxo-biodegradable plastic bags by Pleurotus ostreatus. PLoS One, 9( 11): e107438
CrossRef
Google scholar
|
[42] |
DaftardarA, ShahR, GandhiP, GargH. (2017). Use of waste plastic as a construction material. International Journal of Engineering and Applied Sciences, 4( 11): 148– 151
|
[43] |
DangT C H, NguyenD T, ThaiH, NguyenT C, Hien TranT T, LeV H, NguyenV H, TranX B, Thao PhamT P, NguyenT G, NguyenQ T. (2018). Plastic degradation by thermophilic Bacillus sp. BCBT21 isolated from composting agricultural residual in Vietnam. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9( 1): 015014
CrossRef
Google scholar
|
[44] |
DavisA SimsD SimsD (1983). Weathering of Polymers. London: Springer Science & Business Media
|
[45] |
DerraikJ G B. (2002). The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44( 9): 842– 852
CrossRef
Google scholar
|
[46] |
deSantana FS, GraciosoLH, KarolskiB, dosPasso Galluzzi Baltazar, MendesMA, doNascimento CA, PerpetuoEA. (2019). Isolation of bisphenol A-tolerating/degrading Shewanella haliotis strain MH137742 from an estuarine environment. Applied Biochemistry and Biotechnology, 189( 1): 103– 115
CrossRef
Google scholar
|
[47] |
DeyA S BoseH MohapatraB SarP (2020). Biodegradation of unpretreated low-density polyethylene (LDPE) by Stenotrophomonas sp . and Achromobacter sp., isolated from waste dumpsite and drilling fluid. Frontiers in Microbiology, 11: 603210
Pubmed
|
[48] |
DingL, MaoR, MaS, GuoX, ZhuL. (2020). High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants. Water Research, 174 : 115634
CrossRef
Google scholar
|
[49] |
El-ShafeiH A, Abd El-NasserN H, KansohA L, AliA M. (1998). Biodegradation of disposable polyethylene by fungi and Streptomyces species. Polymer Degradation & Stability, 62( 2): 361– 365
CrossRef
Google scholar
|
[50] |
EsmaeiliA, PourbabaeeA A, AlikhaniH A, ShabaniF, EsmaeiliE. (2013). Biodegradation of low-density polyethylene (LDPE) by mixed culture of Lysinibacillus xylanilyticus and Aspergillus niger in soil. PLoS One, 8( 9): e71720
CrossRef
Google scholar
|
[51] |
EubelerJ P, ZokS, BernhardM, KnepperT P. (2009). Environmental biodegradation of synthetic polymers I. Test methodologies and procedures. Trends in Analytical Chemistry, 28( 9): 1057– 1072
CrossRef
Google scholar
|
[52] |
FarziA, DehnadA, FotouhiA F. (2019). Biocatalysis and agricultural biotechnology biodegradation of polyethylene terephthalate waste using Streptomyces species and kinetic modeling of the process. Biocatalysis and Agricultural Biotechnology, 17( 2019): 25– 31
|
[53] |
FliegerM, KantorováM, PrellA, ŘezankaT, VotrubaJ. (2003). Biodegradable plastics from renewable sources. Folia Microbiologica, 48( 1): 27– 44
CrossRef
Google scholar
|
[54] |
ForteM, IachettaG, TussellinoM, CarotenutoR, PriscoM, De FalcoM, LaforgiaV, ValianteS. (2016). Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells. Toxicology in Vitro, 31 : 126– 136
CrossRef
Google scholar
|
[55] |
García-DepraectO, LebreroR, Rodriguez-VegaS, BordelS, Santos-BeneitF, Martínez-MendozaL J, AragãoBörner R, BörnerT, MuñozR. (2022). Biodegradation of bioplastics under aerobic and anaerobic aqueous conditions: Kinetics, carbon fate and particle size effect. Bioresource Technology, 344 : 126265
CrossRef
Google scholar
|
[56] |
GautamR, BassiA S, YanfulE K. (2007). A review of biodegradation of synthetic plastic and foams. Applied Biochemistry and Biotechnology, 141( 1): 85– 108
CrossRef
Google scholar
|
[57] |
GeyerR, JambeckJ R, LawK L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3( 7): e1700782
CrossRef
Google scholar
|
[58] |
GhatgeS, YangY, AhnJ H, HurH G. (2020). Biodegradation of polyethylene: A brief review. Applied Biological Chemistry, 63( 1): 1– 14
CrossRef
Google scholar
|
[59] |
GhoshS, QureshiA, PurohitH J. (2019). Microbial degradation of plastics: Biofilms and degradation pathways. Contaminants in Agriculture and Environment: Health Risks and Remediation, 1 : 184– 199
|
[60] |
GiacomucciL, RaddadiN, SoccioM, LottiN, FavaF. (2020). Biodegradation of polyvinyl chloride plastic films by enriched anaerobic marine consortia. Marine Environmental Research, 158( 2020): 104949
CrossRef
Google scholar
|
[61] |
GodfreyL ( 2019). Waste plastic, the challenge facing developing countries—Ban it, change it, collect it? Recycling, 4( 1): 3
|
[62] |
Gómez-MéndezL D, Moreno-BayonaD A, Poutou-PiñalesR A, Salcedo-ReyesJ C, Pedroza-RodríguezA M, VargasA, BogoyaJ M. (2018). Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS One, 13( 9): e0203786
CrossRef
Google scholar
|
[63] |
Gooljar
|
[64] |
GroverA, GuptaA, ChandraS, KumariA, KhuranaS M P. (2015). Polythene and environment. International Journal of Environmental Sciences, 5( 6): 1091– 1105
|
[65] |
GuernC L ( 2019). When the mermaids cry: the great plastic tide. Santa Barbara: Coastal Care
|
[66] |
HadadD, GereshS, SivanA. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98( 5): 1093– 1100
CrossRef
Google scholar
|
[67] |
HahladakisJ N, VelisC A, WeberR, IacovidouE, PurnellP. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344 : 179– 199
CrossRef
Google scholar
|
[68] |
HanY N, WeiM, HanF, FangC, WangD, ZhongY J, GuoC L, ShiX Y, XieZ K, LiF M. (2020). Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms, 8( 12): 1979
CrossRef
Google scholar
|
[69] |
HarrisonJ P, BoardmanC, O’CallaghanK, DelortA M, SongJ. (2018). Biodegradability standards for carrier bags and plastic films in aquatic environments: A critical review. Royal Society Open Science, 5( 5): 171792
CrossRef
Google scholar
|
[70] |
Hart H, Hadad C M, Craine L E, Hart D J (2011). Organic Chemistry: A Short Course. Boston: Cengage Learning
|
[71] |
HuX, ThumaratU, ZhangX, TangM, KawaiF. (2010). Diversity of polyester-degrading bacteria in compost and molecular analysis of a thermoactive esterase from Thermobifida alba AHK119. Applied Microbiology and Biotechnology, 87( 2): 771– 779
CrossRef
Google scholar
|
[72] |
HuangC Y, RoanM L, KuoM C, LuW L. (2005). Effect of compatibiliser on the biodegradation and mechanical properties of high-content starch/low-density polyethylene blends. Polymer Degradation & Stability, 90( 1): 95– 105
CrossRef
Google scholar
|
[73] |
HuertaLwanga E, MendozaVega J, KuQuej V, ChiJ D, Sanchezdel Cid L, ChiC, EscalonaSegura G, GertsenH, SalánkiT, vander Ploeg M.
CrossRef
Google scholar
|
[74] |
HuiY H (2006). Handbook of Food Science, Technology, and Engineering. Boca Raton: CRC Press
|
[75] |
HungC S, ZingarelliS, NadeauL J, BiffingerJ C, DrakeC A, CrouchA L, BarlowD E, RussellJ N Jr, Crookes-GoodsonW J. (2016). Carbon catabolite repression and impranil polyurethane degradation in Pseudomonas protegens strain Pf-5. Applied and Environmental Microbiology, 82( 20): 6080– 6090
CrossRef
Google scholar
|
[76] |
HusseinA A, AlzuhairiM, AljanabiN H. (2018). Degradation and depolymerization of plastic waste by local bacterial isolates and bubble column reactor. In AIP Conference Proceedings, 1968( 1): 030081
|
[77] |
IoakeimidisC, FotopoulouK N, KarapanagiotiH K, GeragaM, ZeriC, PapathanassiouE, GalganiF, PapatheodorouG. (2016). The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach. Scientific Reports, 6 : 23501
CrossRef
Google scholar
|
[78] |
JaegerK E, SteinbüchelA, JendrossekD. (1995). Substrate specificities of bacterial polyhydroxyalkanoate depolymerases and lipases: bacterial lipases hydrolyze poly(omega-hydroxyalkanoates). Applied and Environmental Microbiology, 61( 8): 3113– 3118
CrossRef
Google scholar
|
[79] |
JambeckJ R, GeyerR, WilcoxC, SieglerT R, PerrymanM, AndradyA, NarayanR, LawK L. (2015). Plastic waste inputs from land into the ocean. Science, 347( 6223): 768– 771
CrossRef
Google scholar
|
[80] |
JankauskaiteV, MacijauskasG, LygaitisR. (2008). Polyethylene terephthalate waste recycling and application possibilities: A review. Materials Science (Medžiagotyra), 14( 2): 119– 127
|
[81] |
JeonH J, KimM N. (2015). Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. International Biodeterioration & Biodegradation, 103 : 141– 146
CrossRef
Google scholar
|
[82] |
JeonH J, KimM N. (2016). Isolation of mesophilic bacterium for biodegradation of polypropylene. International Biodeterioration & Biodegradation, 115 : 244– 249
CrossRef
Google scholar
|
[83] |
JeonJ M, ParkS J, ChoiT R, ParkJ H, YangY H, YoonJ J. (2021). Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polymer Degradation & Stability, 191 : 109662
CrossRef
Google scholar
|
[84] |
JiaH, ZhangM, WengY, ZhaoY, LiC, KanwalA. (2021). Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. Journal of Environmental Sciences-China, 103 : 50– 58
CrossRef
Google scholar
|
[85] |
JooS, ChoI J, SeoH, SonH F, SagongH Y, ShinT J, ChoiS Y, LeeS Y, KimK J. (2018). Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nature Communications, 9 : 382
CrossRef
Google scholar
|
[86] |
KhanS, NadirS, ShahZ U, ShahA A, KarunarathnaS C, XuJ, KhanA, MunirS, HasanF. (2017). Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environmental Pollution, 225 : 469– 480
CrossRef
Google scholar
|
[87] |
KhorasanizadehZ. (2013). The effect of biotic and abiotic factors on degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria in soil. Dissertation for the Doctoral Degree. Hatfield: University of Hertfordshire,
|
[88] |
KjeldsenA, PriceM, LilleyC, GuzniczakE, ArcherI. (2019). A Review of Standards for Biodegradable Plastics with support from. Glasgow: Industrial Biotechnology Innovation Centre IBioIC,
|
[89] |
KoelmansA A, BesselingE, FoekemaE M. (2014). Leaching of plastic additives to marine organisms. Environmental Pollution, 187 : 49– 54
CrossRef
Google scholar
|
[90] |
KruegerM C, HarmsH, SchlosserD. (2015). Prospects for microbiological solutions to environmental pollution with plastics. Applied Microbiology and Biotechnology, 99( 21): 8857– 8874
CrossRef
Google scholar
|
[91] |
KumarR V, KannaG R, ElumalaiS. (2017). Biodegradation of polyethylene by green photosynthetic microalgae. Journal of Bioremediation & Biodegradation, 8( 381): 2
|
[92] |
KumariA, ChaudharyD R, JhaB. (2019). Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environmental Science and Pollution Research International, 26( 2): 1507– 1516
CrossRef
Google scholar
|
[93] |
KyawB M, ChampakalakshmiR, SakharkarM K, LimC S, SakharkarK R. (2012). Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian Journal of Microbiology, 52( 3): 411– 419
CrossRef
Google scholar
|
[94] |
KyrikouI, BriassoulisD. (2007). Biodegradation of agricultural plastic films: A critical review. Journal of Polymers and the Environment, 15( 2): 125– 150
CrossRef
Google scholar
|
[95] |
LavilleS, TaylorM. (2017). A million bottles a minute: World’s plastic binge ‘as dangerous as climate change’. Guardian, 28( 6): 2017
|
[96] |
LawK L, NarayanR. (2021). Reducing environmental plastic pollution by designing polymer materials for managed end-of-life. Nature Reviews Materials, 7( 2): 104– 116
|
[97] |
LearG, KingsburyJ M, FranchiniS, GambariniV, MadayS D M, WallbankJ A, WeaverL, PantosO. (2021). Plastics and the microbiome: impacts and solutions. Environmental Microbiome, 16 : 2
CrossRef
Google scholar
|
[98] |
LebretonL, AndradyA. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5 : 6
CrossRef
Google scholar
|
[99] |
LeslieH A, van VelzenM J M, BrandsmaS H, VethaakA D, Garcia-VallejoJ J, LamoreeM H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163 : 107199
CrossRef
Google scholar
|
[100] |
LiZ, WeiR, GaoM, RenY, YuB, NieK, XuH, LiuL. (2020). Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. Journal of Environmental Management, 263 : 110402
CrossRef
Google scholar
|
[101] |
LindellA E, Zimmermann-KogadeevaM, PatilK R. (2022). Multimodal interactions of drugs, natural compounds and pollutants with the gut microbiota. Nature Reviews. Microbiology, 20 : 431– 443
CrossRef
Google scholar
|
[102] |
LithnerD, LarssonA, DaveG. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409( 18): 3309– 3324
CrossRef
Google scholar
|
[103] |
LiuC Thang Nguyen T IshimuraY ( 2021). Current situation and key challenges on the use of single-use plastic in Hanoi. Waste Management (New York, N.Y.), 121: 422– 431
Pubmed
|
[104] |
MacArthurE, WaughrayD, StuchteyM. (2016). Rethinking Plastics, starting with packaging. Cologny World Economic Forum,
|
[105] |
MagninA, PolletE, PhalipV, AvérousL. (2020). Evaluation of biological degradation of polyurethanes. Biotechnology Advances, 39 : 107457
CrossRef
Google scholar
|
[106] |
MasakiK, KaminiN R, IkedaH, IefujiH. (2005). Cutinase-like enzyme from the yeast Cryptococcus sp. strain S-2 hydrolyzes polylactic acid and other biodegradable plastics. Applied and Environmental Microbiology, 71( 11): 7548– 7550
CrossRef
Google scholar
|
[107] |
MatsunagaM, WhitneyP J. (2000). Surface changes brought about by corona discharge treatment of polyethylene film and the effect on subsequent microbial colonization. Polymer Degradation & Stability, 70( 3): 325– 332
CrossRef
Google scholar
|
[108] |
MeenaS S, SharmaR S, GuptaP, KarmakarS, AggarwalK K. (2016). Isolation and identification of Bacillus megaterium YB3 from an effluent contaminated site efficiently degrades pyrene. Journal of Basic Microbiology, 56( 4): 369– 378
CrossRef
Google scholar
|
[109] |
MiloložaM, KučićGrgić D, BolančaT, UkićŠ, CvetnićM, OcelićBulatović V, Dionysiou D D, Kušić H. (2021). Ecotoxicological assessment of microplastics in freshwater sources: A review. Water, 13( 1): 56
CrossRef
Google scholar
|
[110] |
Mohammadi NafchiA, MoradpourM, SaeidiM, AliasA K. (2013). Thermoplastic starches: Properties, challenges, and prospects. Stärke, 65( 1−2): 61– 72
CrossRef
Google scholar
|
[111] |
MohanA J, SekharV C, BhaskarT, NampoothiriK M. (2016). Microbial assisted High Impact Polystyrene (HIPS) degradation. Bioresource Technology, 213 : 204– 207
CrossRef
Google scholar
|
[112] |
MohananN, MontazerZ, SharmaP K, LevinD B. (2020). Microbial and enzymatic degradation of synthetic plastics. Frontiers in Microbiology, 11 : 580709
CrossRef
Google scholar
|
[113] |
MoharirR V, KumarS. (2019). Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: A comprehensive review. Journal of Cleaner Production, 208 : 65– 76
CrossRef
Google scholar
|
[114] |
MontazerZ, Habibi-NajafiM B, MohebbiM, OromieheiA. (2018). Microbial degradation of uv-pretreated low-density polyethylene films by novel polyethylene-degrading bacteria isolated from plastic-dump soil. Journal of Polymers and the Environment, 26( 9): 3613– 3625
CrossRef
Google scholar
|
[115] |
MoogD, SchmittJ, SengerJ, ZarzyckiJ, RexerK H, LinneU, ErbT J, MaierU G. (2019). Using a marine microalga as a chassis for polyethylene terephthalate (PET) degradation. Microbial Cell Factories, 18 : 171
CrossRef
Google scholar
|
[116] |
MorohoshiT, OiT, AisoH, SuzukiT, OkuraT, SatoS. (2018). Biofilm formation and degradation of commercially available biodegradable plastic films by bacterial consortiums in freshwater environments. Microbes and Environments, 33( 3): 332– 335
CrossRef
Google scholar
|
[117] |
MüllerR J, SchraderH, ProfeJ, DreslerK, DeckwerW D. (2005). Enzymatic degradation of poly(ethylene terephthalate): Rapid hydrolyse using a hydrolase from T. fusca. Macromolecular Rapid Communications, 26( 17): 1400– 1405
CrossRef
Google scholar
|
[118] |
MurphyC A, CameronJ A, HuangS J, VinopalR T. (1996). Fusarium polycaprolactone depolymerase is cutinase. Applied and Environmental Microbiology, 62( 2): 456– 460
CrossRef
Google scholar
|
[119] |
NakamuraK, TomitaT, AbeN, KamioY. (2001). Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1. Applied and Environmental Microbiology, 67( 1): 345– 353
CrossRef
Google scholar
|
[120] |
NandaS, SahuS, AbrahamJ. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. Journal of Applied Science & Environmental Management, 14( 2): 57– 60
CrossRef
Google scholar
|
[121] |
NarancicT, O’ConnorK E. (2017). Microbial biotechnology addressing the plastic waste disaster. Microbial Biotechnology, 10( 5): 1232– 1235
CrossRef
Google scholar
|
[122] |
NarwalS K, GuptaR. (2017). Handbook of Research on Inventive Bioremediation Techniques. Kalyani: IGI Global,
|
[123] |
Ndahebwa MuhonjaC, MagomaG, ImbugaM, MakondeH M. (2018). Molecular characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora dumpsite, Nairobi, Kenya. International Journal of Microbiology, 2018 : 4167845
CrossRef
Google scholar
|
[124] |
NelmsS E, DuncanE M, BroderickA C, GallowayT S, GodfreyM H, HamannM, LindequeP K, GodleyB J. (2016). Plastic and marine turtles: a review and call for research. ICES Journal of Marine Science, 73( 2): 165– 181
CrossRef
Google scholar
|
[125] |
Newman P (2021). Plastics: Are they part of the zero-waste agenda or the toxic-waste agenda? Sustainable Earth, 4(1): 1–16
|
[126] |
NomuraN, Shigeno-AkutsuY, Nakajima-KambeT, NakaharaT. (1998). Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering, 86( 4): 339– 345
CrossRef
Google scholar
|
[127] |
OkanM AydinH M BarsbayM (2019). Current approaches to waste polymer utilization and minimization: A review. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 94(1): 8− 21
|
[128] |
OrhanY, BüyükgüngörH. (2000). Enhancement of biodegradability of disposable polyethylene in controlled biological soil. International Biodeterioration & Biodegradation, 45( 1−2): 49– 55
CrossRef
Google scholar
|
[129] |
OrrI G, HadarY, SivanA. (2004). Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Applied Microbiology and Biotechnology, 65( 1): 97– 104
|
[130] |
ParkS Y, KimC G. (2019). Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere, 222 : 527– 533
CrossRef
Google scholar
|
[131] |
PastorelliG, CucciC, GarciaO, PiantanidaG, ElnaggarA, CassarM, StrličM. (2014). Environmentally induced colour change during natural degradation of selected polymers. Polymer Degradation & Stability, 107 : 198– 209
CrossRef
Google scholar
|
[132] |
PayneJ, MckeownP, JonesM D. (2019). A circular economy approach to plastic waste. Polymer Degradation & Stability, 165 : 170– 181
CrossRef
Google scholar
|
[133] |
PeixotoJ, SilvaL P, KrügerR H. (2017). Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. Journal of Hazardous Materials, 324( 2017): 634– 644
CrossRef
Google scholar
|
[134] |
PengY, WuP, SchartupA T, ZhangY. (2021). Plastic waste release caused by COVID-19 and its fate in the global ocean. Proceedings of the National Academy of Sciences, 118( 47): e2111530118
CrossRef
Google scholar
|
[135] |
PenkhrueW, KhanongnuchC, MasakiK, Pathom-AreeW, PunyodomW, LumyongS. (2015). Isolation and screening of biopolymer-degrading microorganisms from northern Thailand. World Journal of Microbiology & Biotechnology, 31( 9): 1431– 1442
CrossRef
Google scholar
|
[136] |
PeiryK K. (2019). Basel convention on the control of transboundary movements of hazardous wastes and their disposal. United Nations Audiovisual Library of International Law. New York: The United Nations,
|
[137] |
PhuaS K, CastilloE, AndersonJ M, HiltnerA. (1987). Biodegradation of a polyurethane in vitro. Journal of Biomedical Materials Research, 21( 2): 231– 246
CrossRef
Google scholar
|
[138] |
PinchukL S, MakarevichA V, VlasovaG M, KravtsovA G, ShapovalovV A. (2004). Electret-thermal analysis to assess biodegradation of polymer composites. International Biodeterioration & Biodegradation, 54( 1): 13– 18
CrossRef
Google scholar
|
[139] |
PomettoA L 3rd, LeeB T, JohnsonK E. (1992). Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species. Applied and Environmental Microbiology, 58( 2): 731– 733
CrossRef
Google scholar
|
[140] |
PrataJ C, SilvaA L P, WalkerT R, DuarteA C, Rocha-SantosT. (2020). COVID-19 pandemic repercussions on the use and management of plastics. Environmental Science & Technology, 54( 13): 7760– 7765
CrossRef
Google scholar
|
[141] |
PrinzN KorezŠ (2020). Understanding how microplastics affect marine biota on the cellular level is important for assessing ecosystem function: a review. In: Jungblut S, Liebich V, Bode-Dalby M, editors. YOUMARES 9 - The Oceans: Our Research, Our Future. Proceedings of the 2018 conference for YOUng MArine RESearcher in Oldenburg, Germany. Berlin: SpringerOpen, 101– 120
|
[142] |
PriyaA DuttaK DavereyA (2022). A comprehensive biotechnological and molecular insight into plastic degradation by microbial community. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 97(2): 381− 390
|
[143] |
QuartinelloF, KremserK, SchoenH, TeseiD. (2021). Together is better: the rumen microbial community as biological toolbox for degradation of synthetic polyesters. Frontiers in Bioengineering and Biotechnology, 9( 2021): 500
|
[144] |
RajmohanK V S, RamyaC, ViswanathanM R, VarjaniS. (2019). Plastic pollutants: effective waste management for pollution control and abatement. Current Opinion in Environmental Science & Health, 12 : 72– 84
CrossRef
Google scholar
|
[145] |
RitchieH RoserM (2018). Plastic Pollution. England & Wales: Our World in Data
|
[146] |
Rocha-SantosT, DuarteA C. (2015). A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trends in Analytical Chemistry, 65 : 47– 53
CrossRef
Google scholar
|
[147] |
RochmanC M, BrowneM A, HalpernB S, HentschelB T, HohE, KarapanagiotiH K, Rios-MendozaL M, TakadaH, TehS, ThompsonR C. (2013). Classify plastic waste as hazardous. Nature, 494( 7436): 169– 171
CrossRef
Google scholar
|
[148] |
RudelR A DodsonR E NewtonE ZotaA R BrodyJ G (2008). Correlations between urinary phthalate metabolites and phthalates, estrogenic compounds 4-butyl phenol and o-phenyl phenol, and some pesticides in home indoor air and house dust. Epidemiology (Cambridge, Mass.), 19(6): S332
|
[149] |
RussellJ R, HuangJ, AnandP, KuceraK, SandovalA G, DantzlerK W, HickmanD, JeeJ, KimovecF M, KoppsteinD, MarksD H, MittermillerP A, NuS J, SantiagoM, TownesM A, VishnevetskyM, WilliamsN E, BoulangerL-A, Bascom-SlackC, StrobelS A. (2011). Biodegradation of Polyester Polyurethane by Endophytic Fungi. Applied and Environmental Biotechnology, 77( 17): 6076– 6084
|
[150] |
SangeethaDevi R RajeshKannan V NivasD KannanK ChandruS RobertAntony A (2015). Biodegradation of HDPE by Aspergillus spp . from marine ecosystem of Gulf of Mannar, India. Marine Pollution Bulletin, 96(1–2): 32–40
Pubmed
|
[151] |
Sangeetha DeviR, RamyaR, KannanK, Robert AntonyA, Rajesh KannanV. (2019). Investigation of biodegradation potentials of high-density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Marine Pollution Bulletin, 138 : 549– 560
CrossRef
Google scholar
|
[152] |
SantoM, WeitsmanR, SivanA. (2013). The role of the copper-binding enzyme-laccase-in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. International Biodeterioration & Biodegradation, 84 : 204– 210
CrossRef
Google scholar
|
[153] |
SasohM, MasaiE, IshibashiS, HaraH, KamimuraN, MiyauchiK, FukudaM. (2006). Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Applied and Environmental Microbiology, 72( 3): 1825– 1832
CrossRef
Google scholar
|
[154] |
SaundersJ H (1972). Plastic foams. New York: Marcel Dekker
|
[155] |
ScottA PickardS SharpS BecquéR (2020). Phasing out Plastics. London: ODI Reports
|
[156] |
ShahA A, HasanF, HameedA, AhmedS. (2008). Biological degradation of plastics: A comprehensive review. Biotechnology Advances, 26( 3): 246– 265
CrossRef
Google scholar
|
[157] |
ShilpaN, BasakS S. (2022). Exploring the plastic degrading ability of microbial communities through metagenomic approach. Materials Today: Proceedings, 57 : 1924– 1932
CrossRef
Google scholar
|
[158] |
SilvaA B, BastosA S, JustinoC I L, DuarteA C, Rocha-Santos T aP. (2018). Microplastics in the environment: Challenges in analytical chemistry. A review. Analytica Chimica Acta, 1017 : 1– 19
CrossRef
Google scholar
|
[159] |
SinghB, SharmaN. (2008). Mechanistic implications of plastic degradation. Polymer Degradation & Stability, 93( 3): 561– 584
CrossRef
Google scholar
|
[160] |
SinghG, SinghA K, BhattK. (2016). Biodegradation of polyethylene by bacteria isolated from soil. International Journal of Research and Development in Pharmacy and Life Sciences, 5( 2): 2056– 2062
|
[161] |
SiracusaV. (2019). Microbial degradation of synthetic biopolymers waste. Polymers, 11( 6): 1066
CrossRef
Google scholar
|
[162] |
SivanA, SzantoM, PavlovV. (2006). Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72( 2): 346– 352
CrossRef
Google scholar
|
[163] |
SkariyachanS, ManjunathaV, SultanaS, JoisC, BaiV, VasistK S. (2016). Novel bacterial consortia isolated from plastic garbage processing areas demonstrated enhanced degradation for low density polyethylene. Environmental Science and Pollution Research International, 23( 18): 18307– 18319
CrossRef
Google scholar
|
[164] |
SkariyachanS, PatilA A, ShankarA, ManjunathM, BachappanavarN, KiranS. (2018). Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sp. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polymer Degradation & Stability, 149 : 52– 68
CrossRef
Google scholar
|
[165] |
SkariyachanS, TaskeenN, KishoreA P, KrishnaB V, NaiduG. (2021). Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management, 284 : 112030
CrossRef
Google scholar
|
[166] |
SowmyaH V RamalingappaM KrishnappaB Thippeswamy
|
[167] |
SowmyaH V T B (2014). Biodegradation of Polyethylene by Bacillus cereus . International Journal (Toronto, Ont.), 4(2): 28– 32
|
[168] |
SrivastavaA, PrabhakarM R, MohantyA, MeenaS S. (2021). Influence of gut microbiome on the human physiology. Systems Microbiology and Biomanufacturing, 2 : 217– 231
|
[169] |
SriyapaiP, ChansiriK, SriyapaiT. (2018). Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils. Microbiology, 87( 2): 290– 300
CrossRef
Google scholar
|
[170] |
SteinbüchelA. (2005). Non-biodegradable biopolymers from renewable resources: perspectives and impacts. Current Opinion in Biotechnology, 16( 6): 607– 613
CrossRef
Google scholar
|
[171] |
SukhumapornS, ShinjiT, PrachumpornK, TomohikoT, YuumiI, VichienK. (2011). A novel poly (L-lactide) degrading thermophilic actinomycetes, Actinomadura keratinilytica strain T16-1 and pla sequencing. African Journal of Microbiological Research, 5( 18): 2575– 2582
CrossRef
Google scholar
|
[172] |
SukkhumS, TokuyamaS, TamuraT, KitpreechavanichV. (2009). A novel poly (L-lactide) degrading actinomycetes isolated from Thai forest soil, phylogenic relationship and the enzyme characterization. Journal of General and Applied Microbiology, 55( 6): 459– 467
CrossRef
Google scholar
|
[173] |
SureshB, MaruthamuthuS, KannanM, ChandramohanA. (2011). Mechanical and surface properties of low-density polyethylene film modified by photo-oxidation. Polymer Journal, 43( 4): 398– 406
CrossRef
Google scholar
|
[174] |
TalsnessC E AndradeA J M KuriyamaS N TaylorJ A vom SaalF S ( 2009). Components of plastic: Experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364( 1526): 2079– 2096
Pubmed
|
[175] |
TanasupawatS TakehanaT YoshidaS HiragaK OdaK (2016). Ideonella sakaiensis sp . nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). International Journal of Systematic and Evolutionary Microbiology, 66( 8): 2813– 2818
Pubmed
|
[176] |
TaylorM L, GwinnettC, RobinsonL F, WoodallL C. (2016). Plastic microfibre ingestion by deep-sea organisms. Scientific Reports, 6( 1): 33997
CrossRef
Google scholar
|
[177] |
ThilagavathiS S, GomathiV, KumarK. (2018). An approach to Low density polyethylene (LDPE) biodegradation by Xylaria sp. from termite garden. Journal of Pharmacognosy and Phytochemistry, 7( 2): 2408– 2411
|
[178] |
ThindP S, SareenA, SinghD D, SinghS, JohnS. (2021). Compromising situation of India’s bio-medical waste incineration units during pandemic outbreak of COVID-19: Associated environmental-health impacts and mitigation measures. Environmental Pollution, 276 : 116621
CrossRef
Google scholar
|
[179] |
TiseoI. (2021). Plastic cumulative production globally 2050. Hamburg, Germany : Statista
|
[180] |
TitowM V (2012). PVC technology. Dordrecht, the Netherlands: Springer Science & Business Media
|
[181] |
TokiwaY, CalabiaB P, UgwuC U, AibaS. (2009). Biodegradability of plastics. International Journal of Molecular Sciences, 10( 9): 3722– 3742
CrossRef
Google scholar
|
[182] |
TribediP, SarkarS, MukherjeeK, SilA K. (2012). Isolation of a novel Pseudomonas sp from soil that can efficiently degrade polyethylene succinate. Environmental Science and Pollution Research International, 19( 6): 2115– 2124
CrossRef
Google scholar
|
[183] |
TschanM J L, BruléE, HaquetteP, ThomasC M. (2012). Synthesis of biodegradable polymers from renewable resources. Polymer Chemistry, 3( 4): 836– 851
CrossRef
Google scholar
|
[184] |
UrbanekA K, MirończukA M, García-MartínA, SaboridoA, dela Mata I, ArroyoM. (2020). Biochemical properties and biotechnological applications of microbial enzymes involved in the degradation of polyester-type plastics. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1868( 2): 140315
CrossRef
Google scholar
|
[185] |
UshaR, SangeethaT, PalaniswamyM. (2011). Screening of polyethylene degrading microorganisms from garbage soil. Libyan Agriculture Research Center Journal International, 2( 4): 200– 204
|
[186] |
van SebilleE, WilcoxC, LebretonL, MaximenkoN, HardestyB D, Van FranekerJ A, EriksenM, SiegelD, GalganiF, LawK L. (2015). A global inventory of small floating plastic debris. Environmental Research Letters, 10( 12): 124006
CrossRef
Google scholar
|
[187] |
VigneshR, DeepikaR C, ManigandanP, JananiR. (2016). Screening of plastic degrading microbes from various dumped soil samples. International Research Journal of Engineering and Technology, 3( 4): 2493– 2498
|
[188] |
VimalaP P, MathewL. (2016). Biodegradation of polyethylene using Bacillus subtilis. Procedia Technology, 24 : 232– 239
CrossRef
Google scholar
|
[189] |
ViviV K, Martins-FranchettiS M, Attili-AngelisD. (2019). Biodegradation of PCL and PVC: Chaetomium globosum (ATCC 16021) activity. Folia Microbiologica, 64( 1): 1– 7
CrossRef
Google scholar
|
[190] |
WangJ, TanZ, PengJ, QiuQ, LiM. (2016). The behaviors of microplastics in the marine environment. Marine Environmental Research, 113 : 7– 17
CrossRef
Google scholar
|
[191] |
WilkesR A, AristildeL. (2017). Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp:. Capabilities and challenges. Journal of Applied Microbiology, 123( 3): 582– 593
CrossRef
Google scholar
|
[192] |
WrightR J, BoschR, LangilleM G I, GibsonM I, Christie-OlezaJ A. (2021). A multi-OMIC characterisation of biodegradation and microbial community succession within the PET plastisphere. Microbiome, 9 : 155
CrossRef
Google scholar
|
[193] |
YabannavarA V, BarthaR. (1994). Methods for assessment of biodegradability of plastic films in soil. Applied and Environmental Microbiology, 60( 10): 3608– 3614
CrossRef
Google scholar
|
[194] |
YangJ, YangY, WuW M, ZhaoJ, JiangL. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science & Technology, 48( 23): 13776– 13784
CrossRef
Google scholar
|
[195] |
YangS S, BrandonA M, Andrew FlanaganJ C, YangJ, NingD, CaiS Y, FanH Q, WangZ Y, RenJ, BenbowE, RenN Q, WaymouthR M, ZhouJ, CriddleC S, WuW M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191 : 979– 989
CrossRef
Google scholar
|
[196] |
YoonM G, JeonH J, KimM N. (2012). Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell. Journal of Bioremediation & Biodegradation, 3( 4): 1– 8
|
[197] |
YoshidaS, HiragaK, TakehanaT, TaniguchiI, YamajiH, MaedaY, ToyoharaK, MiyamotoK, KimuraY, OdaK. (2016). A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 351( 6278): 1196– 1199
CrossRef
Google scholar
|
[198] |
ZahraS AbbasS S MahsaM T MohsenN ( 2010). Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Management (New York, N.Y.), 30( 3): 396– 401
Pubmed
|
[199] |
ZhangJ, GaoD, LiQ, ZhaoY, LiL, LinH, BiQ, ZhaoY. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704 : 135931
CrossRef
Google scholar
|
[200] |
ZhaoX, KoreyM, LiK, CopenhaverK, TekinalpH, CelikS, KalaitzidouK, RuanR, RagauskasA J, OzcanS. (2022). Plastic waste upcycling toward a circular economy. Chemical Engineering Journal, 428 : 131928
CrossRef
Google scholar
|
[201] |
ZhengY, YanfulE K, BassiA S. (2005). A review of plastic waste biodegradation. Critical Reviews in Biotechnology, 25( 4): 243– 250
CrossRef
Google scholar
|
/
〈 | 〉 |