Passive convergence-permeable reactive barrier (PC-PRB): An effective configuration to enhance hydraulic performance
Kaixuan Zheng, Xingshen Luo, Yiqi Tan, Zhonglei Li, Hongtao Wang, Tan Chen, Li Zhao, Liangtong Zhan
Passive convergence-permeable reactive barrier (PC-PRB): An effective configuration to enhance hydraulic performance
● A novel PRB configuration based on passive convergent flow effect was proposed.
● A 2D finite-difference hydrodynamic model, PRB-Flow, was developed.
● PC-PRB can significantly enhance the hydraulic capture capacity of PRB.
● The PRB geometric dimensions and materials cost are effectively reduced.
● The dominant influential factor of the PC-PRB capture width is pipe length, Lp.
A novel permeable reactive barrier (PRB) configuration, the so-called passive convergence-permeable reactive barrier (PC-PRB), is proposed to overcome several shortcomings of traditional PRB configurations, such as high dependency to site hydrogeological characteristics and plume size. The PC-PRB is designed to make the plume converge towards the PRB due to the passive hydraulic decompression-convergent flow effect. The corresponding passive groundwater convergence (PC) system is deployed upstream of the PRB system, which consists of passive wells, water pipes, and a buffer layer. A two-dimensional (2D) finite-difference hydrodynamic code, entitled PRB-Flow, is developed to examine the hydraulic performance parameters (i.e., capture width (W) and residence time (t)) of PC-PRB. It is proved that the horizontal 2D capture width (Wh) and vertical 2D capture depth (Wv) of the PC-PRB remarkably increase compared to that of the continuous reactive barrier (C-PRB). The aforementioned relative growth values in order are greater than 50% and 25% in this case study. Therefore, the PRB geometric dimensions as well as the materials cost required for the same plume treatment lessens. The sensitivity analysis reveals that the dominant factors influencing the hydraulic performance of the PC-PRB are the water pipe length (Lp), PRB length (LPRB), passive well height (Hw), and PRB height (HPRB). The discrepancy between the Wh of PC-PRB and that of the C-PRB (i.e., ΔWh) has a low correlation with PRB parameters and mainly depends on Lp, which could dramatically simplify the PC-PRB design procedure. Generally, the proposed PC-PRB exhibits an effective PRB configuration to enhance hydraulic performance.
Passive convergence-permeable reactive barrier (PC-PRB) / Permeable reactive barrier configuration / Numerical simulation / Hydraulic performance evaluation / Sensitivity analysis
[1] |
AliA F, Abd AliZ T. (2020). Sustainable use of concrete demolition waste as reactive material in permeable barrier for remediation of groundwater: Batch and continuous study. Journal of Environmental Engineering, 146( 7): 04020048
CrossRef
Google scholar
|
[2] |
BekeleD N NaiduR BirkeV ChadalavadaS ( 2015). Choosing the best design and construction technologies for permeable reactive barriers. In: Naidu R, Birke V, eds. Naidu R, Birke V, eds, 41− 61
|
[3] |
BortoneI, Di NardoA, Di NataleM, ErtoA, MusmarraD, SantonastasoG F. (2013). Remediation of an aquifer polluted with dissolved tetrachloroethylene by an array of wells filled with activated carbon. Journal of Hazardous Materials, 260 : 914– 920
CrossRef
Google scholar
|
[4] |
CourcellesB. (2015). Guidelines for preliminary design of funnel-and-gate reactive barriers. International Journal of Environment and Pollution Research, 3( 1): 16– 26
|
[5] |
CraigJ R, RabideauA J, SuribhatlaR. (2006). Analytical expressions for the hydraulic design of continuous permeable reactive barriers. Advances in Water Resources, 29( 1): 99– 111
CrossRef
Google scholar
|
[6] |
FaisalA A, Abdul-KareemM B, MohammedA K, NaushadM, GhfarA A, AhamadT. (2020). Humic acid coated sand as a novel sorbent in permeable reactive barrier for environmental remediation of groundwater polluted with copper and cadmium ions. Journal of Water Process Engineering, 36 : 101373
CrossRef
Google scholar
|
[7] |
FalcigliaP P, GaglianoE, BrancatoV, MalandrinoG, FinocchiaroG, CatalfoA, De GuidiG, RomanoS, RoccaroP, VagliasindiF G A. (2020). Microwave based regenerating permeable reactive barriers (MW-PRBs): Proof of concept and application for Cs removal. Chemosphere, 251 : 126582
CrossRef
Google scholar
|
[8] |
GibertO, AssalA, DevlinH, ElliotT, KalinR M. (2019). Performance of a field-scale biological permeable reactive barrier for in-situ remediation of nitrate-contaminated groundwater. Science of the Total Environment, 659 : 211– 220
CrossRef
Google scholar
|
[9] |
GillhamR W VoganJ GuiL Duchene M SonJ ( 2010). Iron barrier walls for chlorinated solvent remediation. In: Stroo H F, Ward C H, eds. In Situ Remediation of Chlorinated Solvent Plumes. New York: Springer, 537− 571
|
[10] |
Grajales-MesaS J, MalinaG, KretE, SzklarczykT. (2020). Designing a permeable reactive barrier to treat TCE contaminated groundwater: Numerical modelling. IMTA-TC, 11( 3): 78– 106
|
[11] |
GuptaN, FoxT C. (1999). Hydrogeologic modeling for permeable reactive barriers. Journal of Hazardous Materials, 68( 1−2): 19– 39
CrossRef
Google scholar
|
[12] |
HudakP F. (2008). Configuring passive wells with reactive media for treating contaminated groundwater. Environment and Progress, 27( 2): 257– 262
CrossRef
Google scholar
|
[13] |
JeenS W, GillhamR W, PrzepioraA. (2011). Predictions of long-term performance of granular iron permeable reactive barriers: Field-scale evaluation. Journal of Contaminant Hydrology, 123( 1−2): 50– 64
CrossRef
Google scholar
|
[14] |
JiangY, XiB, LiR, LiM, XuZ, YangY, GaoS. (2019). Advances in Fe (III) bioreduction and its application prospect for groundwater remediation: A review. Frontiers of Environmental Science & Engineering, 13( 6): 89
CrossRef
Google scholar
|
[15] |
LinL, BensonC H, LawsonE M. (2005). Impact of mineral fouling on hydraulic behavior of permeable reactive barriers. Ground Water, 43( 4): 582– 596
CrossRef
Google scholar
|
[16] |
LiuS, LiX, WangH. (2011). Hydraulics analysis for groundwater flow through permeable reactive barriers. Environmental Modeling and Assessment, 16( 6): 591– 598
CrossRef
Google scholar
|
[17] |
LuX, LiM, DengH, LinP, MatsumotoM R, LiuX. (2016). Application of electrochemical depassivation in PRB systems to recovery Fe0 reactivity. Frontiers of Environmental Science & Engineering, 10( 4): 4
CrossRef
Google scholar
|
[18] |
MaamounI, EljamalO, FalyounaO, EljamalR, SugiharaY. (2020). Multi-objective optimization of permeable reactive barrier design for Cr(VI) removal from groundwater. Ecotoxicology and Environmental Safety, 200 : 110773
CrossRef
Google scholar
|
[19] |
PainterB D (2005). Optimisation of permeable reactive barrier systems for the remediation of contaminated groundwater. Dissertation for the Doctoral Degree. Lincoln: Lincoln University
|
[20] |
ParkE, ZhanH. (2002). Hydraulics of a finite-diameter horizontal well with wellbore storage and skin effect. Advances in Water Resources, 25( 4): 389– 400
CrossRef
Google scholar
|
[21] |
PulsR W ( 2006). Long-term performance of permeable reactive barriers: lessons learned on design, contaminant treatment, longevity, performance monitoring and cost-an overview. In: Twardowska I, Allen H E, Häggblom M M, Stefaniak S, eds. Soil and Water Pollution Monitoring, Protection and Remediation. Dordrecht: Springer, 221– 229
|
[22] |
RadP R, FazlaliA. (2020). Optimization of permeable reactive barrier dimensions and location in groundwater remediation contaminated by landfill pollution. Journal of Water Process Engineering, 35 : 101196
CrossRef
Google scholar
|
[23] |
SantisukkasaemU, OlawuyiF, OyeP, DasD B. (2015). Artificial neural network (ANN) for evaluating permeability decline in permeable reactive barrier (PRB). Environmental Processes, 2( 2): 291– 307
CrossRef
Google scholar
|
[24] |
SinghR, ChakmaS, BirkeV. (2020). Numerical modelling and performance evaluation of multi-permeable reactive barrier system for aquifer remediation susceptible to chloride contamination. Groundwater for Sustainable Development, 10 : 100317
CrossRef
Google scholar
|
[25] |
TanY Liang J ZengG YuanY AnZ Liu L LiuJ (2016). Effects of PRB design based on numerical simulation and response surface methodology. Chinese Journal of Environmental Engineering, 10( 2): 655− 661 (in Chinese)
|
[26] |
TorregrosaM, SchwarzA, NancucheoI, BalladaresE. (2019). Evaluation of the bio-protection mechanism in diffusive exchange permeable reactive barriers for the treatment of acid mine drainage. Science of the Total Environment, 655 : 374– 383
CrossRef
Google scholar
|
[27] |
TurnerM DaveN M ModenaT NaugleA ( 2005). Permeable reactive barriers: lessons learned/new directions. Washington, DC: Interstate Technology Regulatory Cooperation
|
[28] |
WilsonR D, MackayD M, CherryJ A. (1997). Arrays of unpumped wells for plume migration control by semi-passive in situ remediation. Ground Water Monitoring and Remediation, 17( 3): 185– 193
CrossRef
Google scholar
|
[29] |
XiaoK, WilsonA M, LiH, RyanC. (2019). Crab burrows as preferential flow conduits for groundwater flow and transport in salt marshes: A modeling study. Advances in Water Resources, 132 : 103408
CrossRef
Google scholar
|
/
〈 | 〉 |