Variation characteristics of atmospheric methane and carbon dioxide in summertime at a coastal site in the South China Sea
Yangyan Cheng , Ye Shan , Yuhuan Xue , Yujiao Zhu , Xinfeng Wang , Likun Xue , Yanguang Liu , Fangli Qiao , Min Zhang
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 139
Variation characteristics of atmospheric methane and carbon dioxide in summertime at a coastal site in the South China Sea
● Diurnal patterns of CH4 and CO2 are clearly extracted using EEMD. ● CH4 and CO2 show mid-morning high and evening low patterns during sea breezes. ● Wind direction significantly modulates the diurnal variations in CH4 and CO2.
Methane (CH4) and carbon dioxide (CO2) are the two most important greenhouse gases (GHGs). To examine the variation characteristics of CH4 and CO2 in the coastal South China Sea, atmospheric CH4 and CO2 measurements were performed in Bohe (BH), Guangdong, China, in summer 2021. By using an adaptive data analysis method, the diurnal patterns of CH4 and CO2 were clearly extracted and analysed in relation to the sea breeze (SB) and land breeze (LB), respectively. The average concentrations of CH4 and CO2 were 1876.91 ± 31.13 ppb and 407.99 ± 4.24 ppm during SB, and 1988.12 ± 109.92 ppb and 421.54 ± 14.89 ppm during LB, respectively. The values of CH4 and CO2 during SB basically coincided with the values and trends of marine background sites, showing that the BH station could serve as an ideal site for background GHG monitoring and dynamic analysis. The extracted diurnal variations in CH4 and CO2 showed sunrise high and sunset low patterns (with peaks at 5:00–7:00) during LB but mid-morning high and evening low patterns (with peaks at 9:00) during SB. The diurnal amplitude changes in both CH4 and CO2 during LB were almost two to three times those during SB. Wind direction significantly modulated the diurnal variations in CH4 and CO2. The results in this study provide a new way to examine the variations in GHGs on different timescales and can also help us gain a better understanding of GHG sources and distributions in the South China Sea.
Methane / Carbon dioxide / Diurnal pattern / Ensemble empirical mode decomposition / South China Sea / Sea breeze
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
Higher Education Press
/
| 〈 |
|
〉 |