Recent advances in special morphologic photocatalysts for NOx removal

Yang Yang, Xiuzhen Zheng, Wei Ren, Jiafang Liu, Xianliang Fu, Sugang Meng, Shifu Chen, Chun Cai

PDF(5192 KB)
PDF(5192 KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (11) : 137. DOI: 10.1007/s11783-022-1573-0
REVIEW ARTICLE
REVIEW ARTICLE

Recent advances in special morphologic photocatalysts for NOx removal

Author information +
History +

Highlights

● Systematic information of recent progress in photocatalytic NO x removal is provided.

● The photocatalysts with special morphologies are reviewed and discussed.

● The morphology and photocatalytic NO x removal performance is related.

Abstract

The significant increase of NOx concentration causes severe damages to environment and human health. Light-driven photocatalytic technique affords an ideal solution for the removal of NOx at ambient conditions. To enhance the performance of NOx removal, 1D, 2D and 3D photocatalysts have been constructed as the light absorption and the separation of charge carriers can be manipulated through controlling the morphology of the photocatalyst. Related works mainly focused on the construction and modification of special morphologic photocatalyst, including element doping, heterostructure constructing, crystal facet exposing, defect sites introducing and so on. Moreover, the excellent performance of the photocatalytic NOx removal creates great awareness of the application, which has promising practical applications in NOx removal by paint (removing NOx indoor and outdoor) and pavement (degrading vehicle exhausts). For these considerations, recent advances in special morphologic photocatalysts for NOx removal was summarized and commented in this review. The purpose is to provide insights into understanding the relationship between morphology and photocatalytic performance, meanwhile, to promote the application of photocatalytic technology in NOx degradation.

Graphical abstract

Keywords

NOx removal / Photocatalyst / Graphene / C3N4 / Bi-based compounds.

Cite this article

Download citation ▾
Yang Yang, Xiuzhen Zheng, Wei Ren, Jiafang Liu, Xianliang Fu, Sugang Meng, Shifu Chen, Chun Cai. Recent advances in special morphologic photocatalysts for NOx removal. Front. Environ. Sci. Eng., 2022, 16(11): 137 https://doi.org/10.1007/s11783-022-1573-0

References

[1]
Ai Z H, Lee S. (2013). Morphology-dependent photocatalytic removal of NO by hierarchical BiVO4 microboats and microspheres under visible light. Applied Surface Science, 280 : 354–359
CrossRef Google scholar
[2]
Chang F, Yang C, Wang J Y, Lei B, Li S J, Kim H. (2021). Enhanced photocatalytic conversion of NOx with satisfactory selectivity of 3D-2D Bi4O5Br2-GO hierarchical structures via a facile microwave-assisted preparation. Separation and Purification Technology, 266 : 118237
CrossRef Google scholar
[3]
Chang L, Zhu G, Hassan Q U, Cao B, Li S, Jia Y, Gao J, Zhang F, Wang Q. (2019). Synergetic effects of Pd0 metal nanoparticles and Pd2+ ions on enhanced photocatalytic activity of ZnWO4 nanorods for nitric oxide removal. Langmuir, 35( 35): 11265–11274
CrossRef Google scholar
[4]
Chen M J, Li X W, Huang Y, Yao J, Li Y, Lee S C, Ho W K, Huang T T, Chen K H. (2020). Synthesis and characterization of Bi-BiPO4 nanocomposites as plasmonic photocatalysts for oxidative NO removal. Applied Surface Science, 513 : 145775
CrossRef Google scholar
[5]
Chen X L, Zhang H Q, Zhang D Q, Miao Y C, Li G S. (2018). Controllable synthesis of mesoporous multi-shelled ZnO microspheres as efficient photocatalysts for NO oxidation. Applied Surface Science, 435 : 468–475
CrossRef Google scholar
[6]
Dai W, Tao Y, Zou H, Xiao S, Li G, Zhang D, Li H. (2020). Gas-phase photoelectrocatalytic oxidation of NO via TiO2 nanorod array/FTO photoanodes. Environmental Science & Technology, 54( 9): 5902–5912
CrossRef Google scholar
[7]
Ding X, Ho W K, Shang J, Zhang L Z. (2016). Self doping promoted photocatalytic removal of no under visible light with Bi2MoO6: Indispensable role of superoxide ions. Applied Catalysis B: Environmental, 182 : 316–325
CrossRef Google scholar
[8]
Dong F, Zhao Z, Sun Y, Zhang Y, Yan S, Wu Z. (2015). An advanced semimetal-organic Bi spheres-g-C3N4 nanohybrid with SPR-enhanced visible-light photocatalytic performance for NO purification. Environmental Science & Technology, 49( 20): 12432–12440
CrossRef Google scholar
[9]
Duan Y, Wang Y, Gan L, Meng J, Feng Y, Wang K, Zhou K, Wang C, Han X, Zhou X. (2021). Amorphous carbon nitride with three coordinate nitrogen (N3C) vacancies for exceptional NOx abatement in visible light. Advanced Energy Materials, 11( 19): 2004001
CrossRef Google scholar
[10]
Duan Y Y, Li X F, Lv K L, Zhao L, Liu Y. (2019). Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Applied Surface Science, 492 : 166–176
CrossRef Google scholar
[11]
Feng X, Li X W, Cui W, Dong F, Zhang T R. (2018). An ion-exchange strategy for I-doped BiOCOOH nanoplates with enhanced visible light photocatalytic NOx removal. Pure and Applied Chemistry, 90( 2): 353–361
CrossRef Google scholar
[12]
Feng Z J, Lian D R, Wu X, Liu Y, Jia W, Yuan X Y. (2020). The synergy of N-doped and SPR-promoted photocatalytic removal of NO with graphene/Bi nanocomposites. RSC Advances, 10( 5): 2734–2739
CrossRef Google scholar
[13]
Geng Q, Xie H T, Cui W, Sheng J P, Tong X, Sun Y J, Li J Y, Wang Z M, Dong F. (2021a). Optimizing the electronic structure of BiOBr Nanosheets via Combined Ba doping and oxygen vacancies for promoted photocatalysis. Journal of Physical Chemistry C, 125( 16): 8597–8605
CrossRef Google scholar
[14]
Geng Y, Chen D, Li N, Xu Q, Li H, He J, Lu J. (2021b). Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 280 : 119409
CrossRef Google scholar
[15]
Gu Z Y, Cui Z T, Wang Z J, Qin K S, Asakura Y, Hasegawa T, Tsukuda S, Hongo K, Maezono R, Yin S. (2020). Carbon vacancies and hydroxyls in graphitic carbon nitride: Promoted photocatalytic NO removal activity and mechanism. Applied Catalysis B: Environmental, 279 : 119376
CrossRef Google scholar
[16]
Habran M, Krambrock K, Maia da Costa M E H, Morgado E Jr, Marinkovic B A. (2018). TiO2 anatase nanorods with non-equilibrium crystallographic {001} facets and their coatings exhibiting high photo-oxidation of NO gas. Environmental Technology, 39( 2): 231–239
CrossRef Google scholar
[17]
Han D Y, Liu J, Cai H, Zhou X, Kong L R, Wang J W, Shi H F, Guo Q, Fan X X. (2019). High-yield and low-cost method to synthesize large-area porous g-C3N4 nanosheets with improved photocatalytic activity for gaseous nitric oxide and 2-propanol photodegradation. Applied Surface Science, 464 : 577–585
CrossRef Google scholar
[18]
Hao J, Tian H, Lu Y. (2002). Emission inventories of NOx from commercial energy consumption in China, 1995-1998. Environmental Science & Technology, 36( 4): 552–560
CrossRef Google scholar
[19]
Hermawan A, Hasegawa T, Asakura Y, Yin S. (2021). Enhanced visible-light-induced photocatalytic NOx degradation over (Ti, C)-BiOBr/Ti3C2Tx MXene nanocomposites: Role of Ti and C doping. Separation and Purification Technology, 270 : 118815
CrossRef Google scholar
[20]
Hoang T V T, Minh T C, Van V P. (2020). Enhancing photocatalysis of NO gas degradation over g-C3N4 modified α-Bi2O3 microrods composites under visible light. Materials Letters, 281 : 128637
CrossRef Google scholar
[21]
Hojamberdiev M, Zhu G, Lu H, Kumar M, Wang M, Gao J. (2018). MoS2 quantum dots-modified porous β-Bi2O3 microspheres with enhanced visible-light-induced photocatalytic activity for Bisphenol A degradation and NO removal. Journal of Materials Science, 30( 3): 2610–2621
[22]
Hossain S M, Park H, Kang H J, Mun J S, Tijing L, Rhee I, Kim J H, Jun Y S, Shon H K. (2020). Modified hydrothermal route for synthesis of photoactive anatase TiO2/g-CN nanotubes from sludge generated TiO2. Catalysts, 10( 11): 1350
CrossRef Google scholar
[23]
Hu J, Chen D, Mo Z, Li N, Xu Q, Li H, He J, Xu H, Lu J. (2019). Z-scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2 WO6 nanosheets with enhanced photocatalytic activities. Angewandte Chemie (International ed. in English), 58( 7): 2073–2077
CrossRef Google scholar
[24]
Hu J D, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. (2017). In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Applied Catalysis B: Environmental, 217 : 224–231
CrossRef Google scholar
[25]
Hu J D, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. (2018). Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Applied Catalysis B: Environmental, 236 : 45–52
CrossRef Google scholar
[26]
Huang L, Hou D F, Gan S L, Qiao X Q, Li D S. (2021). Multifunctional mulberry-like BiVO4-Bi2O3 p-n heterostructures with enhanced both photocatalytic reduction and oxidation activities. ChemCatChem, 13( 14): 3357–3367
CrossRef Google scholar
[27]
Huang Y, Zhu D D, Zhang Q, Zhang Y F, Cao J J, Shen Z X, Ho W K, Lee S C. (2018). Synthesis of a Bi2O2CO3/ZnFe2O4 heterojunction with enhanced photocatalytic activity for visible light irradiation-induced NO removal. Applied Catalysis B: Environmental, 234 : 70–78
CrossRef Google scholar
[28]
Huo W, Xu W, Cao T, Guo Z, Liu X, Ge G, Li N, Lan T, Yao H C, Zhang Y, Dong F. (2019). Carbonate doped Bi2MoO6 hierarchical nanostructure with enhanced transformation of active radicals for efficient photocatalytic removal of NO. Journal of Colloid and Interface Science, 557 : 816–824
CrossRef Google scholar
[29]
Huy T H, Bui D P, Kang F, Wang Y F, Liu S H, Thi C M, You S J, Chang G M, Pham V V. (2019). SnO2/TiO2 nanotube heterojunction: The first investigation of NO degradation by visible light-driven photocatalysis. Chemosphere, 215 : 323–332
CrossRef Google scholar
[30]
Jia Y, Li S, Gao J, Zhu G, Zhang F, Shi X, Huang Y, Liu C. (2019). Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO. Applied Catalysis B: Environmental, 240 : 241–252
CrossRef Google scholar
[31]
Kowsari E, Abdpour S. (2017). In-situ functionalization of mesoporous hexagonal ZnO synthesized in task specific ionic liquid as a photocatalyst for elimination of SO2, NOx, and CO. Journal of Solid State Chemistry, 256 : 141–150
CrossRef Google scholar
[32]
Kowsari E, Bazri B. (2014). Synthesis of rose-like ZnO hierarchical nanostructures in the presence of ionic liquid/Mg2+ for air purification and their shape-dependent photodegradation of SO2, NOx, and CO. Applied Catalysis A-General, 475 : 325–334
CrossRef Google scholar
[33]
Kusiak-Nejman E, Czyżewski A, Wanag A, Dubicki M, Sadłowski M, Wróbel R J, Morawski A W. (2020). Photocatalytic oxidation of nitric oxide over AgNPs/TiO2-loaded carbon fiber cloths. Journal of Environmental Management, 262 : 110343
CrossRef Google scholar
[34]
LeeJ CGopalan A ISaianandGLeeK PKimW J (2020). Manganese and graphene included titanium dioxide composite nanowires: Fabrication, characterization and enhanced photocatalytic activities. Nanomaterials (Basel, Switzerland), 10(3): 456
Pubmed
[35]
Li G, Zhang D, Yu J C, Leung M K. (2010). An efficient bismuth tungstate visible-light-driven photocatalyst for breaking down nitric oxide. Environmental Science & Technology, 44( 11): 4276–4281
CrossRef Google scholar
[36]
Li J Y, Chen R M, Cen W L, Yan P, Li K L, Wang P, Shu S, Chu Y H, Dong F. (2019a). Quantifying the activation energies of ROS-induced NOx conversion: Suppressed toxic intermediates generation and clarified reaction mechanism. Chemical Engineering Journal, 375 : 122026
CrossRef Google scholar
[37]
Li K, He Y, Chen P, Wang H, Sheng J, Cui W, Leng G, Chu Y, Wang Z, Dong F. (2020a). Theoretical design and experimental investigation on highly selective Pd particles decorated C3N4 for safe photocatalytic NO purification. Journal of Hazardous Materials, 392 : 122357
CrossRef Google scholar
[38]
Li R, Feng J Q, Zhang X C, Xie F X, Liu J X, Zhang C M, Wang Y W, Yue X P, Fan C M. (2020b). In situ reorganization of Bi3O4Br nanosheet on the Bi24O3Br10 ribbon structure for superior visible-light photocatalytic capability. Separation and Purification Technology, 247 : 117007
CrossRef Google scholar
[39]
Li R, Ou X, Zhang L, Qi Z, Wu X, Lu C, Fan J, Lv K. (2021). Photocatalytic oxidation of NO on reduction type semiconductor photocatalysts: Effect of metallic Bi on CdS nanorods. Chemical Communications, 57( 78): 10067–10070
CrossRef Google scholar
[40]
Li R, Xie F, Liu J, Zhang C, Zhang X, Fan C. (2019b). Room-temperature hydrolysis fabrication of BiOBr/Bi12O17Br2 Z-Scheme photocatalyst with enhanced resorcinol degradation and NO removal activity. Chemosphere, 235 : 767–775
CrossRef Google scholar
[41]
Li R M, Dong G J, Chen G M. (2015). Synthesis, characterization and performance of ternary doped Cu-Ce-B/TiO2 nanotubes on the photocatalytic removal of nitrogen oxides. New Journal of Chemistry, 39( 9): 6854–6863
CrossRef Google scholar
[42]
Li X W, Zhang W D, Cui W, Li J Y, Sun Y J, Jiang G M, Huang H W, Zhang Y X, Dong F. (2019c). Reactant activation and photocatalysis mechanisms on Bi-metal@Bi2GeO5 with oxygen vacancies: A combined experimental and theoretical investigation. Chemical Engineering Journal, 370 : 1366–1375
CrossRef Google scholar
[43]
Li X W, Zhang W D, Li J Y, Jiang G M, Zhou Y, Lee S, Dong F. (2019d). Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Applied Catalysis B: Environmental, 241 : 187–195
CrossRef Google scholar
[44]
Li Y H, Lv K L, Ho W K, Zhao Z W, Huang Y. (2017). Enhanced visible-light photo-oxidation of nitric oxide using bismuth-coupled graphitic carbon nitride composite heterostructures. Chinese Journal of Catalysis, 38( 2): 321–329
CrossRef Google scholar
[45]
Lin B, Chen S, Dong F, Yang G. (2017). A ball-in-ball g-C3N4@SiO2 nano-photoreactor for highly efficient H2 generation and NO removal. Nanoscale, 9( 16): 5273–5279
CrossRef Google scholar
[46]
Liu G Y, Xia H Y, Niu Y H, Zhao X, Zhang G T, Song L F, Chen H X. (2021). Fabrication of self-cleaning photocatalytic durable building coating based on WO3-TNs/PDMS and NO degradation performance. Chemical Engineering Journal, 409 : 128187
CrossRef Google scholar
[47]
Liu Y, Yu S, Zheng K W, Chen W W, Dong X A, Dong F, Zhou Y. (2019). NO photo-oxidation and in-situ DRIFTS studies on N-doped Bi2O2CO3/CdSe quantum dot composite. Journal of Inorganic Materials, 34( 4): 425–432
CrossRef Google scholar
[48]
Liu Y, Zhou Y, Yu S, Xie Z H, Chen Y, Zheng K W, Mossin S, Lin W H, Meng J, Pullerits T, Zheng K B. (2020a). Defect state assisted Z-scheme charge recombination in Bi2O2CO3/graphene quantum dot composites for photocatalytic oxidation of NO. ACS Applied Nano Materials, 3( 1): 772–781
CrossRef Google scholar
[49]
Liu Y Q, Zhou Y, Tang Q J, Li Q, Chen S, Sun Z X, Wang H Q. (2020b). A direct Z-scheme Bi2WO6/NH2-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal. RSC Advances, 10( 3): 1757–1768
CrossRef Google scholar
[50]
Lu X, Zhu G Q, Zhang R X, Li S P, Pan L K, Nie J L, Rao F. (2019a). I-doped Bi2WO6 microflowers enhanced visible light photocatalytic activity for organic pollution degradation and NO removal. Journal of Materials Science Materials in Electronics, 30( 19): 17787–17797
CrossRef Google scholar
[51]
Lu Y F, Chen M J, Huang T T, Huang Y, Cao J J, Li H W, Ho K, Lee S C. (2021). Oxygen vacancy-dependent photocatalytic activity of well-defined Bi2Sn2O7−x hollow nanocubes for NOx removal. Environmental Science. Nano, 8( 7): 1927–1933
CrossRef Google scholar
[52]
Lu Y F, Huang Y, Zhang Y F, Huang T T, Li H W, Cao J J, Ho W K. (2019b). Effects of H2O2 generation over visible light-responsive Bi/Bi2O2−xCO3 nanosheets on their photocatalytic NOx removal performance. Chemical Engineering Journal, 363 : 374–382
CrossRef Google scholar
[53]
Montoya-Zamora J M, Martinez-De La Cruz A, Lopez-Cuellar E, Pérez González F A. (2020). BiOBr photocatalyst with high activity for NOx elimination. Advanced Powder Technology, 31( 8): 3618–3627
CrossRef Google scholar
[54]
Martin M, Leonid S, Tomáš R, Jan Š, Jaroslav K, Mariana K, Michaela J, František P, Gustav P. (2017). Anatase TiO2 nanotube arrays and titania films on titanium mesh for photocatalytic NOx removal and water cleaning. Catalysis Today, 287 : 59–64
CrossRef Google scholar
[55]
NehdiAFrini-Srasra NdeMiguel GPavlovicISánchez LFragosoJ(2022). Use of LDH- chromate adsorption co-product as an air purification photocatalyst. Chemosphere, 286(Pt 2): 131812
Pubmed
[56]
Nikokavoura A, Trapalis C. (2018). Graphene and g-C3N4 based photocatalysts for NOx removal: A review. Applied Surface Science, 430 : 18–52
CrossRef Google scholar
[57]
Ou M, Nie H, Zhong Q, Zhang S, Zhong L. (2015). Controllable synthesis of 3D BiVO4 superstructures with visible-light-induced photocatalytic oxidation of NO in the gas phase and mechanistic analysis. Physical chemistry chemical physics: PCCP, 17( 43): 28809–28817
CrossRef Google scholar
[58]
Ou M, Wan S P, Zhong Q, Zhang S L, Song Y, Guo L N, Cai W, Xu Y L. (2018). Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Applied Catalysis B: Environmental, 221 : 97–107
CrossRef Google scholar
[59]
Ou Y, Zhu G, Rao F, Gao J, Chang J, Xie X, Zhang W, Huang Y, Hojamberdiev M. (2021). Coral-shaped TiO2−δ decorated with carbon quantum dots and carbon nanotubes for NO removal. ACS Applied Nano Materials, 4( 7): 7330–7342
CrossRef Google scholar
[60]
Pham M T, Hussain A, Bui D P, Nguyen T M T, You S J, Wang Y F. (2021a). Surface plasmon resonance enhanced photocatalysis of Ag nanoparticles-decorated Bi2S3 nanorods for NO degradation. Environmental Technology & Innovation, 23 : 101755
CrossRef Google scholar
[61]
Pham M T, Tran H H, Nguyen T M T, Bui D P, Huang Y, Cao J, You S J, Van Viet P, Nam V H, Wang Y F. (2021b). Revealing DeNOx and DeVOC reactions via the study of the surface and bandstructure of ZnSn(OH)6 photocatalysts. Acta Materialia, 215 : 117068
CrossRef Google scholar
[62]
Pichat P, Herrmann J M, Courbon H, Disdier J, Mozzanega M N. (1982). Photocatalytic oxidation of various compounds over TiO2 and other semiconductor oxides; Mechanistic considerations. Canadian Journal of Chemical Engineering, 60( 1): 27–32
CrossRef Google scholar
[63]
RaoFZhuG WangMZubairu S MPengJGaoJHojamberdiev M(2020). Constructing the Pd/PdO/β-Bi2O3 microspheres with enhanced photocatalytic activity for Bisphenol A degradation and NO removal. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 95(3): 862−874
[64]
Rao F, Zhu G Q, Hojamberdiev M, Zhang W B, Li S P, Gao J Z, Zhang F C, Huang Y H, Huang Y. (2019). Uniform Zn2+-doped BiOI microspheres assembled by ultrathin nanosheets with tunable oxygen vacancies for super-stable removal of NO. Journal of Physical Chemistry C, 123( 26): 16268–16280
CrossRef Google scholar
[65]
Ren Y Y, Li Y, Wu X Y, Wang J L, Zhang G K. (2021). S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chinese Journal of Catalysis, 42( 1): 69–77
CrossRef Google scholar
[66]
Shen T, Shi X K, Guo J X, Li J, Yuan S D. (2021). Photocatalytic removal of NO by light-driven Mn3O4/BiOCl heterojunction photocatalyst: Optimization and mechanism. Chemical Engineering Journal, 408 : 128014
CrossRef Google scholar
[67]
Sofianou M V, Trapalis C, Psycharis V, Boukos N, Vaimakis T, Yu J, Wang W. (2012). Study of TiO2 anatase nano and microstructures with dominant {001} facets for NO oxidation. Environmental Science and Pollution Research International, 19( 9): 3719–3726
CrossRef Google scholar
[68]
Szatmáry L, Šubrt J, Kalousek V, Mosinger J, Lang K. (2014). Low-temperature deposition of anatase on nanofiber materials for photocatalytic NOx removal. Catalysis Today, 230 : 74–78
CrossRef Google scholar
[69]
Wang B B, Chen D Y, Li N J, Xu Q F, Li H, He J H, Lu J M. (2021a). Enhanced photocatalytic oxidation of nitric oxide to MOF-derived hollow bimetallic oxide microcubes supported on g-C3N4 nanosheets via p-n heterojunction. Industrial & Engineering Chemistry Research, 60( 7): 2921–2930
CrossRef Google scholar
[70]
WangMTan GDangMWangYZhangB RenHLvL XiaA (2021b). Dual defects and build-in electric field mediated direct Z-scheme W18O49/g-C3N4−x heterojunction for photocatalytic NO removal and organic pollutant degradation. Journal of Colloid and Interface Science, 582(Pt A): 212−226
[71]
Wang M, Tan G Q, Ren H J, Xia A, Liu Y. (2019a). Direct double Z-scheme O-g-C3N4/Zn2SnO4N/ZnO ternary heterojunction photocatalyst with enhanced visible photocatalytic activity. Applied Surface Science, 492 : 690–702
CrossRef Google scholar
[72]
Wang M, Wang B, Xie B, Li N, Xu Q, Li H, He J, Chen D, Lu J. (2022). Ultrathin Two-Dimensional BiOCl with oxygen vacancies anchored in three-dimensional porous g-C3N4 to construct a hierarchical Z-scheme heterojunction for the photocatalytic degradation of NO. Industrial & Engineering Chemistry Research, 61( 1): 317–329
CrossRef Google scholar
[73]
Wang S Y, Ding X, Yang N, Zhan G M, Zhang X H, Dong G H, Zhang L Z, Chen H. (2020). Insight into the effect of bromine on facet-dependent surface oxygen vacancies construction and stabilization of Bi2MoO6 for efficient photocatalytic NO removal. Applied Catalysis B: Environmental, 265 : 118585
CrossRef Google scholar
[74]
Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8( 1): 76–80
CrossRef Google scholar
[75]
Wang X, Zhu J, Fu X, Xu J, Yu X, Zhu Y, Zhang Y, Zhu M. (2021c). Boosted visible-light photocatalytic performance of Au/BiOCl/BiOI by high-speed spatial electron transfer channel. Journal of Alloys and Compounds, 890 : 161736
CrossRef Google scholar
[76]
Wang Y, Hu X, Song H, Cai Y, Li Z, Zu D, Zhang P, Chong D, Gao N, Shen Y, Li C. (2021d). Oxygen vacancies in actiniae-like Nb2O5/Nb2C MXene heterojunction boosting visible light photocatalytic NO removal. Applied Catalysis B: Environmental, 299 : 120677
CrossRef Google scholar
[77]
Wang Y N, Zeng Y Q, Zhang S L, Zhong Q. (2019b). Synthesis of 3D hierarchical rose-like Bi2WO6 superstructure with enhanced visible-light-induced photocatalytic performance. JOM, 71( 6): 2112–2119
CrossRef Google scholar
[78]
Wang Z Y, Huang Y, Ho W K, Cao J J, Shen Z X, Lee S C. (2016). Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. Applied Catalysis B: Environmental, 199 : 123–133
CrossRef Google scholar
[79]
Wu F, Pu C, Zhang M, Liu B, Yang J. (2021). Silver embedded in defective twin brush-like ZnO for efficient and stable photocatalytic NO removal. Surfaces and Interfaces, 25 : 101298
CrossRef Google scholar
[80]
Xia X, Xie C, Xu B, Ji X, Gao G, Yang P. (2022). Role of B-doping in g-C3N4 nanosheets for enhanced photocatalytic NO removal and H2 generation. Journal of Industrial and Engineering Chemistry, 105 : 303–312
CrossRef Google scholar
[81]
Xiao S, Wan Z, Zhou J, Li H, Zhang H, Su C, Chen W, Li G, Zhang D, Li H. (2019). Gas-phase photoelectrocatalysis for breaking down nitric oxide. Environmental Science & Technology, 53( 12): 7145–7154
CrossRef Google scholar
[82]
Xiao S, Zhu W, Liu P, Liu F, Dai W, Zhang D, Chen W, Li H. (2016). CNTs threaded (001) exposed TiO2 with high activity in photocatalytic NO oxidation. Nanoscale, 8( 5): 2899–2907
CrossRef Google scholar
[83]
Xiao S N, Pan D L, Liang R, Dai W R, Zhang Q T, Zhang G Q, Su C L, Li H X, Chen W. (2018). Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with High performance in visible-light photocatalytic NO oxidization. Applied Catalysis B: Environmental, 236 : 304–313
CrossRef Google scholar
[84]
Xie B, Chen D, Li N, Xu Q, Li H, He J, Lu J. (2022). Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation. Chemical Engineering Journal, 430 : 132968
CrossRef Google scholar
[85]
Xie F X, Li R, Zhang X C, Wang Y W, Fan C M. (2020). In situ growth of BiOCl thin film on Bi plate for photocatalytic application. Materials Letters, 260 : 126937
CrossRef Google scholar
[86]
Xiong M W, Tao Y, Zhao Z S, Zhu Q, Jin X Q, Zhang S Q, Chen M, Li G S. (2021). Porous g-C3N4/TiO2 foam photocatalytic filter for treating NO indoor gas. Environmental Science. Nano, 8( 6): 1571–1579
CrossRef Google scholar
[87]
Yang L, Yu Y, Yang W, Li X, Zhang G, Shen Y, Dong F, Sun Y. (2021a). Efficient visible light photocatalytic NO abatement over SrSn(OH)6 nanowires loaded with Ag/Ag2O cocatalyst. Environmental Research, 201 : 111521
CrossRef Google scholar
[88]
Yang X L, Wang S Y, Chen T, Yang N, Jiang K, Wang P, Li S, Ding X, Chen H. (2021b). Chloridion-induced dual tunable fabrication of oxygen-deficient Bi2WO6 atomic layers for deep oxidation of NO. Chinese Journal of Catalysis, 42( 6): 1013–1023
CrossRef Google scholar
[89]
Yuan C, Chen R, Wang J, Wu H, Sheng J, Dong F, Sun Y. (2020). La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression. Journal of Hazardous Materials, 400 : 123174
CrossRef Google scholar
[90]
Zha R, Niu Y, Liu C, He L, Zhang M. (2021). Oxygen vacancy configuration in confined BiVO4-Bi2S3 heterostructures promotes photocatalytic oxidation of NO. Journal of Environmental Chemical Engineering, 9( 6): 106586
CrossRef Google scholar
[91]
Zhang D Q, Wen M C, Zhang S S, Liu P J, Zhu W, Li G S, Li H X. (2014). Au nanoparticles enhanced rutile TiO2 nanorod bundles with high visible-light photocatalytic performance for NO oxidation. Applied Catalysis B: Environmental, 147 : 610–616
CrossRef Google scholar
[92]
Zhang J, Zhu G, Li S, Rao F, Hassan Q U, Gao J, Huang Y, Hojamberdiev M. (2019a). Novel Au/La-Bi5O7I microspheres with efficient visible-light photocatalytic activity for NO removal: Synergistic effect of Au nanoparticles, La doping, and oxygen vacancy. ACS Applied Materials & Interfaces, 11( 41): 37822–37832
CrossRef Google scholar
[93]
Zhang W, Liang Y. (2019). Facile synthesis of ternary g-C3N4@BiOCl/Bi12O17Cl2 composites with excellent visible light photocatalytic activity for NO removal. Frontiers in Chemistry, 7 : 231
CrossRef Google scholar
[94]
Zhang W D, Dong X A, Jia B, Zhong J B, Sun Y J, Dong F. (2018a). 2D BiOCl/Bi12O17Cl2 nanojunction: Enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation. Applied Surface Science, 430 : 571–577
CrossRef Google scholar
[95]
Zhang W D, Dong X A, Liang Y, Liu R, Sun Y J, Dong F. (2019b). Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Metals, 38( 5): 437–445
CrossRef Google scholar
[96]
Zhang W D, Dong X G, Liang Y, Sun Y J, Dong F. (2018b). Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: Enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Applied Surface Science, 455 : 236–243
CrossRef Google scholar
[97]
Zhang W D, Liu X L, Dong X A, Dong F, Zhang Y X. (2017). Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: In situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chinese Journal of Catalysis, 38( 12): 2030–2038
CrossRef Google scholar
[98]
Zhao C, Pan X, Wang Z H, Wang C C. (2021). 1+1 > 2: A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis. Chemical Engineering Journal, 417 : 128022
CrossRef Google scholar
[99]
Zheng Q, Cao Y H, Huang N J, Zhang R Y, Zhou Y. (2021). Selective exposure of BiOI oxygen-rich {110} facet induced by BN nanosheets for enhanced photocatalytic oxidation performance. Chinese Journalof Chemical Physics, 37( 8): 2009063
[100]
Zhu L, Wu Y, Wu S, Dong F, Xia J, Jiang B. (2021). Tuning the active sites of atomically thin defective Bi12O17Cl2 via incorporation of subnanometer clusters. ACS Applied Materials & Interfaces, 13( 7): 9216–9223
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21607027, 52002142, 51772118, and 51972134), the Opening Project of Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3, No. FDLAP19007), and some Foundation of Anhui Province in China: Natural Science Foundation (Nos. 1808085J24 and 2108085MB43), the University Natural Science Research Project (No. KJ2020A0126), and the Cultivating Outstanding Talents (No. gxbjZD2020066).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Mindmap
PDF(5192 KB)

Accesses

Citations

Detail

Sections
Recommended

/