Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment

Yanhui Dai , Jian Zhao , Chunxiao Sun , Diying Li , Xia Liu , Zhenyu Wang , Tongtao Yue , Baoshan Xing

Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 136

PDF (4499KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 136 DOI: 10.1007/s11783-022-1571-2
REVIEW ARTICLE
REVIEW ARTICLE

Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment

Author information +
History +
PDF (4499KB)

Abstract

● Adsorption of PFASs on MPs and its mechanisms are critically reviewed.

● MPs could alter the transport and transformation of PFASs in aquatic environments.

● Combined toxicity of MPs and PFASs at organismal and molecular levels is discussed.

Microplastics (MPs) are recognized as vectors for the transport of organic contaminants in aquatic environments in addition to their own adverse effects on aquatic organisms. Per- and polyfluoroalkyl substances (PFASs) are widely present in aquatic environments due to their widespread applications, and thus coexist with MPs. Therefore, we focus on the interaction of MPs and PFASs and related combined toxicity in aquatic environments in this work. The adsorption of PFASs on MPs is critically reviewed, and new mechanisms such as halogen bonding, π-π interaction, cation-π interactions, and micelle formation are proposed. Moreover, the effect of MPs on the transport and transformation of PFASs in aquatic environments is discussed. Based on four typical aquatic organisms (shellfish, Daphnia, algae, and fish), the toxicity of MPs and/or PFASs at the organismal or molecular levels is also evaluated and summarized. Finally, challenges and research perspectives are proposed, and the roles of the shapes and aging process of MPs on PFAS biogeochemical processes and toxicity, especially on PFAS substitutes, are recommended for further investigation. This review provides a better understanding of the interactions and toxic effects of coexisting MPs and PFASs in aquatic environments.

Graphical abstract

Keywords

Microplastics / Per- and Polyfluoroalkyl substances / Adsorption / Transport / Transformation

Cite this article

Download citation ▾
Yanhui Dai, Jian Zhao, Chunxiao Sun, Diying Li, Xia Liu, Zhenyu Wang, Tongtao Yue, Baoshan Xing. Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment. Front. Environ. Sci. Eng., 2022, 16(10): 136 DOI:10.1007/s11783-022-1571-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abarghouei S , Hedayati A , Raeisi M , Hadavand B S , Rezaei H , Abed-Elmdoust A . (2021). Size-dependent effects of microplastic on uptake, immune system, related gene expression and histopathology of goldfish (Carassius auratus). Chemosphere, 276 : 129977

[2]

Ahrens L , Bundschuh M . (2014). Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environmental Toxicology and Chemistry, 33( 9): 1921– 1929

[3]

Allen S , Allen D , Phoenix V R , Le Roux G , Durántez Jiménez P , Simonneau A , Binet S , Galop D . (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12( 5): 339– 344

[4]

Atugoda T , Vithanage M , Wijesekara H , Bolan N , Sarmah A K , Bank M S , You S , Ok Y S . (2021). Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 149 : 106367

[5]

Bai X , Son Y . (2021). Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Science of the Total Environment, 751 : 141622

[6]

Bakir A , Desender M , Wilkinson T , Van Hoytema N , Amos R , Airahui S , Graham J , Maes T . (2020). Occurrence and abundance of meso and microplastics in sediment, surface waters, and marine biota from the South Pacific region. Marine Pollution Bulletin, 160 : 111572

[7]

Bergmann M , Mützel S , Primpke S , Tekman M B , Trachsel J , Gerdts G . (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 5( 8): eaax1157

[8]

Bhagwat G , Tran T K A , Lamb D , Senathirajah K , Grainge I , O’Connor W , Juhasz A , Palanisami T . (2021). Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions. Environmental Science & Technology, 55( 13): 8877– 8887

[9]

Borrelle S B , Ringma J , Law K L , Monnahan C C , Lebreton L , McGivern A , Murphy E , Jambeck J , Leonard G H , Hilleary M A , Eriksen M , Possingham H P , de Frond H , Gerber L R , Polidoro B , Tahir A , Bernard M , Mallos N , Barnes M , Rochman C M . (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369( 6510): 1515– 1518

[10]

Buck R C , Franklin J , Berger U , Conder J M , Cousins I T , de Voogt P , Jensen A A , Kannan K , Mabury S A , van Leeuwen S P J . (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environmental Assessment and Management, 7( 4): 513– 541

[11]

Chae Y Kim D An Y J ( 2019). Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio . Aquatic Toxicology (Amsterdam, Netherlands), 216: 105296

[12]

Che S , Jin B , Liu Z , Yu Y , Liu J , Men Y . (2021). Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities. Environmental Science & Technology Letters, 8( 8): 668– 674

[13]

Chen H , Wang X , Zhang C , Sun R , Han J , Han G , Yang W , He X . (2017). Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environmental Pollution, 221 : 234– 243

[14]

Chen J , Tang L , Chen W Q , Peaslee G F , Jiang D . (2020a). Flows, stock, and emissions of poly- and perfluoroalkyl substances in California carpet in 2000–2030 under different scenarios. Environmental Science & Technology, 54( 11): 6908– 6918

[15]

Chen L , Li J , Tang Y , Wang S , Lu X , Cheng Z , Zhang X , Wu P , Chang X , Xia Y . (2021). Typhoon-induced turbulence redistributed microplastics in coastal areas and reformed plastisphere community. Water Research, 204 : 117580

[16]

Chen W , Yuan D , Shan M , Yang Z , Liu C . (2020b). Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms. Science of the Total Environment, 703 : 135015

[17]

Chen X , Xia X , Wang X , Qiao J , Chen H . (2011). A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere, 83( 10): 1313– 1319

[18]

Cheng Y , Mai L , Lu X , Li Z , Guo Y , Chen D , Wang F . (2021). Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations. Environmental Pollution, 281 : 117025

[19]

Cole M , Lindeque P , Halsband C , Galloway T S . (2011). Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 62( 12): 2588– 2597

[20]

Colomer J , Müller M F , Barcelona A , Serra T . (2019). Mediated food and hydrodynamics on the ingestion of microplastics by Daphnia magna. Environmental Pollution, 251 : 434– 441

[21]

Corcoran P L , Belontz S L , Ryan K , Walzak M J . (2020). Factors controlling the distribution of microplastic particles in benthic sediment of the Thames River, Canada. Environmental Science & Technology, 54( 2): 818– 825

[22]

de Sá L C Oliveira M Ribeiro F Rocha T L Futter M N ( 2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment, 645: 1029− 1039

[23]

de Silva P P G , Nobre C R , Resaffe P , Pereira C D S , Gusmão F . (2016). Leachate from microplastics impairs larval development in brown mussels. Water Research, 106 : 364– 370

[24]

Deng S , Zhang Q , Nie Y , Wei H , Wang B , Huang J , Yu G , Xing B . (2012). Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution, 168 : 138– 144

[25]

Ding G , Wouterse M , Baerselman R , Peijnenburg W J G M . (2012). Toxicity of polyfluorinated and perfluorinated compounds to lettuce (Lactuca sativa) and green algae (Pseudokirchneriella subcapitata). Archives of Environmental Contamination and Toxicology, 62( 1): 49– 55

[26]

Dong H , Wang L , Wang X , Xu L , Chen M , Gong P , Wang C . (2021). Microplastics in a remote lake basin of the Tibetan Plateau: Impacts of atmospheric transport and glacial melting. Environmental Science & Technology, 55( 19): 12951– 12960

[27]

Du Z , Deng S , Bei Y , Huang Q , Wang B , Huang J , Yu G . (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents: A review. Journal of Hazardous Materials, 274 : 443– 454

[28]

Duan Z , Zhao S , Zhao L , Duan X , Xie S , Zhang H , Liu Y , Peng Y , Liu C , Wang L . (2020). Microplastics in Yellow River Delta wetland: Occurrence, characteristics, human influences, and marker. Environmental Pollution, 258 : 113232

[29]

Dubaish F Liebezeit G ( 2013). Suspended microplastics and black carbon particles in the jade system, southern North Sea. Water, Air, & Soil Pollution, 224( 2): 1352

[30]

Fadare O O , Wan B , Liu K , Yang Y , Zhao L , Guo L H . (2020). Eco-corona vs protein corona: Effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environmental Science & Technology, 54( 13): 8001– 8009

[31]

Feng X , Ye M , Li Y , Zhou J , Sun B , Zhu Y , Zhu L . (2020). Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea. Journal of Hazardous Materials, 389 : 122124

[32]

Fitzgerald N J M , Simcik M F , Novak P J . (2018a). Perfluoroalkyl substances increase the membrane permeability and quorum sensing response in Aliivibrio fischeri. Environmental Science & Technology Letters, 5( 1): 26– 31

[33]

Fitzgerald N J M , Wargenau A , Sorenson C , Pedersen J , Tufenkji N , Novak P J , Simcik M F . (2018b). Partitioning and accumulation of perfluoroalkyl substances in model lipid bilayers and bacteria. Environmental Science & Technology, 52( 18): 10433– 10440

[34]

Gaballah S , Swank A , Sobus J R , Howey X M , Schmid J , Catron T , McCord J , Hines E , Strynar M , Tal T . (2020). Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environmental Health Perspectives, 128( 4): 047005

[35]

Gove J M , Whitney J L , McManus M A , Lecky J , Carvalho F C , Lynch J M , Li J , Neubauer P , Smith K A , Phipps J E , Kobayashi D R , Balagso K B , Contreras E A , Manuel M E , Merrifield M A , Polovina J J , Asner G P , Maynard J A , Williams G J . (2019). Prey-size plastics are invading larval fish nurseries. Proceedings of the National Academy of Sciences of the United States of America, 116( 48): 24143– 24149

[36]

Grbić J , Helm P , Athey S , Rochman C M . (2020). Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Research, 174 : 115623

[37]

Gremmel C , Frömel T , Knepper T P . (2016). Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets. Chemosphere, 160 : 173– 180

[38]

Gu H , Wang S , Wang X , Yu X , Hu M , Huang W , Wang Y . (2020). Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea. Journal of Hazardous Materials, 397 : 122773

[39]

Guo X , Zhang S , Lu S , Zheng B , Xie P , Chen J , Li G , Liu C , Wu Q , Cheng H , Sang N . (2018). Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. Environmental Pollution, 241 : 1018– 1026

[40]

Hagenaars A , Vergauwen L , De Coen W , Knapen D . (2011). Structure-activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere, 82( 5): 764– 772

[41]

Harding-Marjanovic K C , Houtz E F , Yi S , Field J A , Sedlak D L , Alvarez-Cohen L . (2015). Aerobic biotransformation of fluorotelomer thioether amido sulfonate (Lodyne) in AFFF-amended microcosms. Environmental Science & Technology, 49( 13): 7666– 7674

[42]

Herzke D , Olsson E , Posner S . (2012). Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway: A pilot study. Chemosphere, 88( 8): 980– 987

[43]

Higgins C P , Luthy R G . (2006). Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 40( 23): 7251– 7256

[44]

Holmquist H , Schellenberger S , van der Veen I , Peters G M , Leonards P E G , Cousins I T . (2016). Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environment International, 91 : 251– 264

[45]

Hosseini R , Sayadi M H , Aazami J , Savabieasfehani M . (2020). Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Marine Pollution Bulletin, 160 : 111682

[46]

Hu L , Chernick M , Hinton D E , Shi H . (2018). Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environmental Science & Technology, 52( 15): 8885– 8893

[47]

Hu X C , Ge B , Ruyle B J , Sun J , Sunderland E M . (2021). A statistical approach for identifying private wells susceptible to perfluoroalkyl Substances (PFAS) contamination. Environmental Science & Technology Letters, 8( 7): 596– 602

[48]

Jantzen C E Annunziato K M Cooper K R ( 2016). Behavioral, morphometric, and gene expression effects in adult zebrafish ( Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA . Aquatic Toxicology (Amsterdam, Netherlands), 180: 123− 130

[49]

Johansen M P , Cresswell T , Davis J , Howard D L , Howell N R , Prentice E . (2019). Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods. Water Research, 158 : 392– 400

[50]

Kahkashan S , Wang X , Chen J , Bai Y , Ya M , Wu Y , Cai Y , Wang S , Saleem M , Aftab J , Inam A . (2019). Concentration, distribution and sources of perfluoroalkyl substances and organochlorine pesticides in surface sediments of the northern Bering Sea, Chukchi Sea and adjacent Arctic Ocean. Chemosphere, 235 : 959– 968

[51]

Kang J S , Ahn T G , Park J W . (2019). Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes). Journal of Hazardous Materials, 368 : 97– 103

[52]

Kashiwada S . (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 114( 11): 1697– 1702

[53]

Kokalj A J , Kunej U , Skalar T . (2018). Screening study of four environmentally relevant microplastic pollutants: Uptake and effects on Daphnia magna and Artemia franciscana. Chemosphere, 208 : 522– 529

[54]

Kolomijeca A , Parrott J , Khan H , Shires K , Clarence S , Sullivan C , Chibwe L , Sinton D , Rochman C M . (2020). Increased temperature and turbulence alter the effects of leachates from tire particles on fathead minnow (Pimephales promelas). Environmental Science & Technology, 54( 3): 1750– 1759

[55]

Lahens L , Strady E , Kieu-Le T C , Dris R , Boukerma K , Rinnert E , Gasperi J , Tassin B . (2018). Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environmental Pollution, 236 : 661– 671

[56]

Lee J W , Choi K , Park K , Seong C , Yu S D , Kim P . (2020c). Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. Science of the Total Environment, 707 : 135334

[57]

Lee J W , Lee H K , Lim J E , Moon H B . (2020a). Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: Occurrence, spatial distribution, and bioaccumulation potential. Chemosphere, 251 : 126633

[58]

Lee J W , Lee J W , Shin Y J , Kim J E , Ryu T K , Ryu J , Lee J , Kim P , Choi K , Park K . (2017). Multi-generational xenoestrogenic effects of Perfluoroalkyl acids (PFAAs) mixture on Oryzias latipes using a flow-through exposure system. Chemosphere, 169 : 212– 223

[59]

Lee Y M , Lee J Y , Kim M K , Yang H , Lee J E , Son Y , Kho Y , Choi K , Zoh K D . (2020b). Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of Korea. Journal of Hazardous Materials, 381 : 120909

[60]

Li B , Liang W , Liu Q X , Fu S , Ma C , Chen Q , Su L , Craig N J , Shi H . (2021). Fish ingest microplastics unintentionally. Environmental Science & Technology, 55( 15): 10471– 10479

[61]

Li X , Pignatello J J , Wang Y , Xing B . (2013). New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environmental Science & Technology, 47( 15): 8334– 8341

[62]

Li Y , Feng X , Zhou J , Zhu L . (2020a). Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River basin in China using receptor models and isomeric fingerprints. Water Research, 168 : 115145

[63]

Li Z , Feng C , Wu Y , Guo X . (2020b). Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage. Journal of Hazardous Materials, 392 : 122418

[64]

Liang R , He J , Shi Y , Li Z , Sarvajayakesavalu S , Baninla Y , Guo F , Chen J , Xu X , Lu Y . (2017). Effects of Perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere, 168 : 1613– 1618

[65]

Lin L , Zuo L Z , Peng J P , Cai L Q , Fok L , Yan Y , Li H X , Xu X R . (2018). Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of the Total Environment, 644 : 375– 381

[66]

Liu C , Chang V W C , Gin K Y H , Nguyen V T . (2014). Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Science of the Total Environment, 487 : 117– 122

[67]

Liu G , Jiang R , You J , Muir D C G , Zeng E Y . (2020a). Microplastic impacts on microalgae growth: Effects of size and humic acid. Environmental Science & Technology, 54( 3): 1782– 1789

[68]

Liu Y , Junaid M , Xu P , Zhong W , Pan B , Xu N . (2020b). Suspended sediment exacerbates perfluorooctane sulfonate mediated toxicity through reactive oxygen species generation in freshwater clam Corbicula fluminea. Environmental Pollution, 267 : 115671

[69]

Liu Y , Zhang Y , Li J , Wu N , Li W , Niu Z . (2019). Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China. Environmental Pollution, 246 : 34– 44

[70]

Liu Z , Bentel M J , Yu Y , Ren C , Gao J , Pulikkal V F , Sun M , Men Y , Liu J . (2021). Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction. Environmental Science & Technology, 55( 10): 7052– 7062

[71]

Llorca M , Schirinzi G , Martínez M , Barceló D , Farré M . (2018). Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environmental Pollution, 235 : 680– 691

[72]

Logeshwaran P , Sivaram A K , Surapaneni A , Kannan K , Naidu R , Megharaj M . (2021). Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. Science of the Total Environment, 769 : 144577

[73]

Long M , Moriceau B , Gallinari M , Lambert C , Huvet A , Raffray J , Soudant P . (2015). Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Marine Chemistry, 175 : 39– 46

[74]

Lu Y , Zhang Y , Deng Y , Jiang W , Zhao Y , Geng J , Ding L , Ren H . (2016). Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science & Technology, 50( 7): 4054– 4060

[75]

MacLeod M , Arp H P H , Tekman M B , Jahnke A . (2021). The global threat from plastic pollution. Science, 373( 6550): 61– 65

[76]

Mani T , Blarer P , Storck F R , Pittroff M , Wernicke T , Burkhardt-Holm P . (2019). Repeated detection of polystyrene microbeads in the Lower Rhine River. Environmental Pollution, 245 : 634– 641

[77]

Mani T , Burkhardt-Holm P . (2020). Seasonal microplastics variation in nival and pluvial stretches of the Rhine River: From the Swiss catchment towards the North Sea. Science of the Total Environment, 707 : 135579

[78]

Marchiandi J , Szabo D , Dagnino S , Green M P , Clarke B O . (2021). Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles. Environmental Pollution, 278 : 116839

[79]

Menger F , Pohl J , Ahrens L , Carlsson G , Örn S . (2020). Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere, 245 : 125573

[80]

Min K , Cuiffi J D , Mathers R T . (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11( 1): 727

[81]

Morais L H , Schreiber H L 4th , Mazmanian S K . (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews. Microbiology, 19( 4): 241– 255

[82]

Mu J , Zhang S , Qu L , Jin F , Fang C , Ma X , Zhang W , Wang J . (2019). Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Marine Pollution Bulletin, 143 : 58– 65

[83]

Muir D , Miaz L T . (2021). Spatial and temporal trends of perfluoroalkyl substances in global ocean and coastal waters. Environmental Science & Technology, 55( 14): 9527– 9537

[84]

Nickerson A , Rodowa A E , Adamson D T , Field J A , Kulkarni P R , Kornuc J J , Higgins C P . (2021). Spatial trends of anionic, zwitterionic, and cationic PFASs at an AFFF-impacted site. Environmental Science & Technology, 55( 1): 313– 323

[85]

Pabortsava K , Lampitt R S . (2020). High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nature Communications, 11( 1): 4073

[86]

Pan C G , Zhao J L , Liu Y S , Zhang Q Q , Chen Z F , Lai H J , Peng F J , Liu S S , Ying G G . (2014). Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China. Ecotoxicology and Environmental Safety, 107 : 192– 199

[87]

Pan Y , Zhang H , Cui Q , Sheng N , Yeung L W Y , Guo Y , Sun Y , Dai J . (2017). First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern. Environmental Science & Technology, 51( 17): 9553– 9560

[88]

Pan Y , Zhang H , Cui Q , Sheng N , Yeung L W Y , Sun Y , Guo Y , Dai J . (2018). Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environmental Science & Technology, 52( 14): 7621– 7629

[89]

Paragot N Bečanová J Karásková P Prokeš R Klánová J Lammel G Degrendele C ( 2020). Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe. Environmental Pollution, 265(Pt B): 114851

[90]

Paul-Pont I , Lacroix C , González Fernández C , Hégaret H , Lambert C , Le Goïc N , Frère L , Cassone A L , Sussarellu R , Fabioux C , Guyomarch J , Albentosa M , Huvet A , Soudant P . (2016). Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environmental Pollution, 216 : 724– 737

[91]

Pedersen A F , Gopalakrishnan K , Boegehold A G , Peraino N J , Westrick J A , Kashian D R . (2020). Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes. Environmental Pollution, 260 : 113964

[92]

Rebelein A Int-Veen I Kammann U Scharsack J P( 2021). Microplastic fibers-Underestimated threat to aquatic organisms? Science of the Total Environment, 777: 146045

[93]

Rotander A Kärrman A ( 2019). Microplastics in södertälje: From lake mälaren to the baltic sea. Örebro: Örebro Universitet

[94]

Rummel C D , Jahnke A , Gorokhova E , Kühnel D , Schmitt-Jansen M . (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science & Technology Letters, 4( 7): 258– 267

[95]

Santos R G , Machovsky-Capuska G E , Andrades R . (2021). Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science, 373( 6550): 56– 60

[96]

Schellenberger S , Jönsson C , Mellin P , Levenstam O A , Liagkouridis I , Ribbenstedt A , Hanning A C , Schultes L , Plassmann M M , Persson C , Cousins I T , Benskin J P . (2019). Release of side-chain fluorinated polymer-containing microplastic fibers from functional textiles during washing and first estimates of perfluoroalkyl acid emissions. Environmental Science & Technology, 53( 24): 14329– 14338

[97]

Schrank I Trotter B Dummert J Scholz-Böttcher B M Löder M G J Laforsch C ( 2019). Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environmental Pollution, 255(Pt 2): 113233

[98]

Seo S H , Son M H , Shin E S , Choi S D , Chang Y S . (2019). Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. Journal of Hazardous Materials, 364 : 19– 27

[99]

Shi G Cui Q Pan Y Sheng N Guo Y Dai J ( 2017a). 6:2 fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis. Aquatic Toxicology (Amsterdam, Netherlands), 190: 53− 61

[100]

Shi G Cui Q Pan Y Sheng N Sun S Guo Y Dai J( 2017b). 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquatic Toxicology (Amsterdam, Netherlands), 185: 67− 75

[101]

Shi G Guo H Sheng N Cui Q Pan Y Wang J Guo Y Dai J( 2018a). Two-generational reproductive toxicity assessment of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B, a novel alternative to perfluorooctane sulfonate) in zebrafish. Environmental Pollution, 243(Pt B): 1517− 1527

[102]

Shi Y , Song X , Jin Q , Li W , He S , Cai Y . (2020). Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp. Environment International, 135 : 105418

[103]

Shi Y , Vestergren R , Nost T H , Zhou Z , Cai Y . (2018b). Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in Crucian Carp. Environmental Science & Technology, 52( 8): 4592– 4600

[104]

Silvestrova K , Stepanova N . (2021). The distribution of microplastics in the surface layer of the Atlantic Ocean from the subtropics to the equator according to visual analysis. Marine Pollution Bulletin, 162 : 111836

[105]

Su L , Deng H , Li B , Chen Q , Pettigrove V , Wu C , Shi H . (2019). The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. Journal of Hazardous Materials, 365 : 716– 724

[106]

Sun X Liang J Zhu M Zhao Y Zhang B ( 2018). Microplastics in seawater and zooplankton from the Yellow Sea. Environmental Pollution, 242(Pt A): 585− 595

[107]

Supreeyasunthorn P Boontanon S K Boontanon N (2016). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 51( 6): 472− 477

[108]

Tenorio R , Liu J , Xiao X , Maizel A , Higgins C P , Schaefer C E , Strathmann T J . (2020). Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment. Environmental Science & Technology, 54( 11): 6957– 6967

[109]

Treilles R , Gasperi J , Tramoy R , Dris R , Gallard A , Partibane C , Tassin B . (2022). Microplastic and microfiber fluxes in the Seine River: Flood events versus dry periods. Science of the Total Environment, 805 : 150123

[110]

Tu W , Martínez R , Navarro-Martin L , Kostyniuk D J , Hum C , Huang J , Deng M , Jin Y , Chan H M , Mennigen J A . (2019). Bioconcentration and metabolic effects of emerging PFOS alternatives in developing zebrafish. Environmental Science & Technology, 53( 22): 13427– 13439

[111]

Ulhaq M , Carlsson G , Örn S , Norrgren L . (2013). Comparison of developmental toxicity of seven perfluoroalkyl acids to zebrafish embryos. Environmental Toxicology and Pharmacology, 36( 2): 423– 426

[112]

Umamaheswari S , Priyadarshinee S , Bhattacharjee M , Kadirvelu K , Ramesh M . (2021). Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 281 : 128592

[113]

Van Melkebeke M , Janssen C , De Meester S . (2020). Characteristics and sinking behavior of typical microplastics including the potential effect of biofouling: Implications for remediation. Environmental Science & Technology, 54( 14): 8668– 8680

[114]

Wang C , Zhao J , Xing B . (2021a). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407 : 124357

[115]

Wang F , Shih K M , Li X Y . (2015). The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere, 119 : 841– 847

[116]

Wang J Wang M Ru S Liu X (2019a). High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China. Science of the Total Environment, 651(Pt 2): 1661− 1669

[117]

Wang S , Liu M , Wang J , Huang J , Wang J . (2020a). Polystyrene nanoplastics cause growth inhibition, morphological damage and physiological disturbance in the marine microalga Platymonas helgolandica. Marine Pollution Bulletin, 158 : 111403

[118]

Wang X , Chen M , Gong P , Wang C . (2019b). Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China. Environment International, 124 : 294– 301

[119]

Wang X , Huang W , Wei S , Shang Y , Gu H , Wu F , Lan Z , Hu M , Shi H , Wang Y . (2020b). Microplastics impair digestive performance but show little effects on antioxidant activity in mussels under low pH conditions. Environmental Pollution, 258 : 113691

[120]

Wang X , Zheng H , Zhao J , Luo X , Wang Z , Xing B . (2020c). Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environmental Science & Technology, 54( 10): 6202– 6212

[121]

Wang Y , Yang Y , Liu X , Zhao J , Liu R , Xing B . (2021b). Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption and toxicity. Environmental Science & Technology, 55( 23): 15579– 15595

[122]

Wen W , Xia X , Hu D , Zhou D , Wang H , Zhai Y , Lin H . (2017). Long-chain perfluoroalkyl acids (PFAAs) affect the bioconcentration and tissue distribution of short-chain PFAAs in zebrafish (Danio rerio). Environmental Science & Technology, 51( 21): 12358– 12368

[123]

Wu D Liu Z Cai M Jiao Y Li Y Chen Q Zhao Y ( 2019a). Molecular characterisation of cytochrome P450 enzymes in waterflea ( Daphnia pulex) and their expression regulation by polystyrene nanoplastics . Aquatic Toxicology (Amsterdam, Netherlands), 217: 105350

[124]

Wu P Cai Z Jin H Tang Y ( 2019b). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of the Total Environment, 650(Pt 1): 671− 678

[125]

Wu Y , Huang J , Deng M , Jin Y , Yang H , Liu Y , Cao Q , Mennigen J A , Tu W . (2019c). Acute exposure to environmentally relevant concentrations of Chinese PFOS alternative F-53B induces oxidative stress in early developing zebrafish. Chemosphere, 235 : 945– 951

[126]

Wu Y Miller G Z Gearhart J Peaslee G Venier M ( 2021). Side-chain fluorotelomer-based polymers in children car seats. Environmental Pollution, 268(Pt B): 115477

[127]

Xiao F . (2017). Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. Water Research, 124 : 482– 495

[128]

Xiao F , Jin B , Golovko S A , Golovko M Y , Xing B . (2019). Sorption and desorption mechanisms of cationic and zwitterionic per- and polyfluoroalkyl substances in natural soils: Thermodynamics and hysteresis. Environmental Science & Technology, 53( 20): 11818– 11827

[129]

Xiao F , Zhang X , Penn L , Gulliver J S , Simcik M F . (2011). Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by kaolinite: Experimental studies and modeling. Environmental Science & Technology, 45( 23): 10028– 10035

[130]

Xu D , Li C , Chen H , Shao B . (2013). Cellular response of freshwater green algae to perfluorooctanoic acid toxicity. Ecotoxicology and Environmental Safety, 88 : 103– 107

[131]

Yang H , Lai H , Huang J , Sun L , Mennigen J A , Wang Q , Liu Y , Jin Y , Tu W . (2020). Polystyrene microplastics decrease F-53B bioaccumulation but induce inflammatory stress in larval zebrafish. Chemosphere, 255 : 127040

[132]

Yao Y , Chang S , Sun H , Gan Z , Hu H , Zhao Y , Zhang Y . (2016). Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China). Environmental Pollution, 212 : 449– 456

[133]

Zhang C Chen X Wang J Tan L ( 2017a). Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae . Environmental Pollution, 220(Pt B): 1282− 1288

[134]

Zhang W , Pang S , Lin Z , Mishra S , Bhatt P , Chen S . (2021). Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Environmental Pollution, 272 : 115908

[135]

Zhang W Zhang S Wang J Wang Y Mu J Wang P Lin X Ma D (2017b). Microplastic pollution in the surface waters of the Bohai Sea, China. Environmental Pollution, 231(Pt 1): 541− 548

[136]

Zhang X , Lohmann R , Sunderland E M . (2019). Poly- and perfluoroalkyl substances in seawater and plankton from the Northwestern Atlantic Margin. Environmental Science & Technology, 53( 21): 12348– 12356

[137]

Zhao P , Xia X , Dong J , Xia N , Jiang X , Li Y , Zhu Y . (2016). Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Science of the Total Environment, 568 : 57– 65

[138]

Zhao Z Tang J Mi L Tian C Zhong G Zhang G Wang S Li Q Ebinghaus R Xie Z Sun H ( 2017). Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. Science of the Total Environment, 599–600: 114− 123

[139]

Zhao Z , Xie Z , Tang J , Sturm R , Chen Y , Zhang G , Ebinghaus R . (2015). Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea. Chemosphere, 129 : 118– 125

[140]

Zhong H , Zheng M , Liang Y , Wang Y , Gao W , Wang Y , Jiang G . (2021). Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment. Chemosphere, 282 : 131042

[141]

Zhu K , Jia H , Sun Y , Dai Y , Zhang C , Guo X , Wang T , Zhu L . (2020). Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research, 173 : 115564

[142]

Zimmermann L , Göttlich S , Oehlmann J , Wagner M , Völker C . (2020). What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environmental Pollution, 267 : 115392

RIGHTS & PERMISSIONS

The Author(s) . This article is published with open access at link.springer.com and journal. hep.com.cn

AI Summary AI Mindmap
PDF (4499KB)

Supplementary files

FSE-22005-OF-DYH_suppl_1

4850

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/