Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment
Yanhui Dai, Jian Zhao, Chunxiao Sun, Diying Li, Xia Liu, Zhenyu Wang, Tongtao Yue, Baoshan Xing
Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment
● Adsorption of PFASs on MPs and its mechanisms are critically reviewed.
● MPs could alter the transport and transformation of PFASs in aquatic environments.
● Combined toxicity of MPs and PFASs at organismal and molecular levels is discussed.
Microplastics (MPs) are recognized as vectors for the transport of organic contaminants in aquatic environments in addition to their own adverse effects on aquatic organisms. Per- and polyfluoroalkyl substances (PFASs) are widely present in aquatic environments due to their widespread applications, and thus coexist with MPs. Therefore, we focus on the interaction of MPs and PFASs and related combined toxicity in aquatic environments in this work. The adsorption of PFASs on MPs is critically reviewed, and new mechanisms such as halogen bonding, π-π interaction, cation-π interactions, and micelle formation are proposed. Moreover, the effect of MPs on the transport and transformation of PFASs in aquatic environments is discussed. Based on four typical aquatic organisms (shellfish, Daphnia, algae, and fish), the toxicity of MPs and/or PFASs at the organismal or molecular levels is also evaluated and summarized. Finally, challenges and research perspectives are proposed, and the roles of the shapes and aging process of MPs on PFAS biogeochemical processes and toxicity, especially on PFAS substitutes, are recommended for further investigation. This review provides a better understanding of the interactions and toxic effects of coexisting MPs and PFASs in aquatic environments.
Microplastics / Per- and Polyfluoroalkyl substances / Adsorption / Transport / Transformation
[1] |
Abarghouei S , Hedayati A , Raeisi M , Hadavand B S , Rezaei H , Abed-Elmdoust A . (2021). Size-dependent effects of microplastic on uptake, immune system, related gene expression and histopathology of goldfish (Carassius auratus). Chemosphere, 276 : 129977
CrossRef
Google scholar
|
[2] |
Ahrens L , Bundschuh M . (2014). Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment: a review. Environmental Toxicology and Chemistry, 33( 9): 1921– 1929
CrossRef
Google scholar
|
[3] |
Allen S , Allen D , Phoenix V R , Le Roux G , Durántez Jiménez P , Simonneau A , Binet S , Galop D . (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12( 5): 339– 344
CrossRef
Google scholar
|
[4] |
Atugoda T , Vithanage M , Wijesekara H , Bolan N , Sarmah A K , Bank M S , You S , Ok Y S . (2021). Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 149 : 106367
CrossRef
Google scholar
|
[5] |
Bai X , Son Y . (2021). Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Science of the Total Environment, 751 : 141622
CrossRef
Google scholar
|
[6] |
Bakir A , Desender M , Wilkinson T , Van Hoytema N , Amos R , Airahui S , Graham J , Maes T . (2020). Occurrence and abundance of meso and microplastics in sediment, surface waters, and marine biota from the South Pacific region. Marine Pollution Bulletin, 160 : 111572
CrossRef
Google scholar
|
[7] |
Bergmann M , Mützel S , Primpke S , Tekman M B , Trachsel J , Gerdts G . (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 5( 8): eaax1157
CrossRef
Google scholar
|
[8] |
Bhagwat G , Tran T K A , Lamb D , Senathirajah K , Grainge I , O’Connor W , Juhasz A , Palanisami T . (2021). Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions. Environmental Science & Technology, 55( 13): 8877– 8887
CrossRef
Google scholar
|
[9] |
Borrelle S B , Ringma J , Law K L , Monnahan C C , Lebreton L , McGivern A , Murphy E , Jambeck J , Leonard G H , Hilleary M A , Eriksen M , Possingham H P , de Frond H , Gerber L R , Polidoro B , Tahir A , Bernard M , Mallos N , Barnes M , Rochman C M . (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369( 6510): 1515– 1518
CrossRef
Google scholar
|
[10] |
Buck R C , Franklin J , Berger U , Conder J M , Cousins I T , de Voogt P , Jensen A A , Kannan K , Mabury S A , van Leeuwen S P J . (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environmental Assessment and Management, 7( 4): 513– 541
CrossRef
Google scholar
|
[11] |
Chae Y Kim D An Y J ( 2019). Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio . Aquatic Toxicology (Amsterdam, Netherlands), 216: 105296
Pubmed
|
[12] |
Che S , Jin B , Liu Z , Yu Y , Liu J , Men Y . (2021). Structure-specific aerobic defluorination of short-chain fluorinated carboxylic acids by activated sludge communities. Environmental Science & Technology Letters, 8( 8): 668– 674
CrossRef
Google scholar
|
[13] |
Chen H , Wang X , Zhang C , Sun R , Han J , Han G , Yang W , He X . (2017). Occurrence and inputs of perfluoroalkyl substances (PFASs) from rivers and drain outlets to the Bohai Sea, China. Environmental Pollution, 221 : 234– 243
CrossRef
Google scholar
|
[14] |
Chen J , Tang L , Chen W Q , Peaslee G F , Jiang D . (2020a). Flows, stock, and emissions of poly- and perfluoroalkyl substances in California carpet in 2000–2030 under different scenarios. Environmental Science & Technology, 54( 11): 6908– 6918
CrossRef
Google scholar
|
[15] |
Chen L , Li J , Tang Y , Wang S , Lu X , Cheng Z , Zhang X , Wu P , Chang X , Xia Y . (2021). Typhoon-induced turbulence redistributed microplastics in coastal areas and reformed plastisphere community. Water Research, 204 : 117580
CrossRef
Google scholar
|
[16] |
Chen W , Yuan D , Shan M , Yang Z , Liu C . (2020b). Single and combined effects of amino polystyrene and perfluorooctane sulfonate on hydrogen-producing thermophilic bacteria and the interaction mechanisms. Science of the Total Environment, 703 : 135015
CrossRef
Google scholar
|
[17] |
Chen X , Xia X , Wang X , Qiao J , Chen H . (2011). A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes. Chemosphere, 83( 10): 1313– 1319
CrossRef
Google scholar
|
[18] |
Cheng Y , Mai L , Lu X , Li Z , Guo Y , Chen D , Wang F . (2021). Occurrence and abundance of poly- and perfluoroalkyl substances (PFASs) on microplastics (MPs) in Pearl River Estuary (PRE) region: Spatial and temporal variations. Environmental Pollution, 281 : 117025
CrossRef
Google scholar
|
[19] |
Cole M , Lindeque P , Halsband C , Galloway T S . (2011). Microplastics as contaminants in the marine environment: a review. Marine Pollution Bulletin, 62( 12): 2588– 2597
CrossRef
Google scholar
|
[20] |
Colomer J , Müller M F , Barcelona A , Serra T . (2019). Mediated food and hydrodynamics on the ingestion of microplastics by Daphnia magna. Environmental Pollution, 251 : 434– 441
CrossRef
Google scholar
|
[21] |
Corcoran P L , Belontz S L , Ryan K , Walzak M J . (2020). Factors controlling the distribution of microplastic particles in benthic sediment of the Thames River, Canada. Environmental Science & Technology, 54( 2): 818– 825
CrossRef
Google scholar
|
[22] |
de Sá L C Oliveira M Ribeiro F Rocha T L Futter M N ( 2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment, 645: 1029− 1039
30248828" target="_blank">Pubmed
|
[23] |
de Silva P P G , Nobre C R , Resaffe P , Pereira C D S , Gusmão F . (2016). Leachate from microplastics impairs larval development in brown mussels. Water Research, 106 : 364– 370
CrossRef
Google scholar
|
[24] |
Deng S , Zhang Q , Nie Y , Wei H , Wang B , Huang J , Yu G , Xing B . (2012). Sorption mechanisms of perfluorinated compounds on carbon nanotubes. Environmental Pollution, 168 : 138– 144
CrossRef
Google scholar
|
[25] |
Ding G , Wouterse M , Baerselman R , Peijnenburg W J G M . (2012). Toxicity of polyfluorinated and perfluorinated compounds to lettuce (Lactuca sativa) and green algae (Pseudokirchneriella subcapitata). Archives of Environmental Contamination and Toxicology, 62( 1): 49– 55
CrossRef
Google scholar
|
[26] |
Dong H , Wang L , Wang X , Xu L , Chen M , Gong P , Wang C . (2021). Microplastics in a remote lake basin of the Tibetan Plateau: Impacts of atmospheric transport and glacial melting. Environmental Science & Technology, 55( 19): 12951– 12960
CrossRef
Google scholar
|
[27] |
Du Z , Deng S , Bei Y , Huang Q , Wang B , Huang J , Yu G . (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents: A review. Journal of Hazardous Materials, 274 : 443– 454
CrossRef
Google scholar
|
[28] |
Duan Z , Zhao S , Zhao L , Duan X , Xie S , Zhang H , Liu Y , Peng Y , Liu C , Wang L . (2020). Microplastics in Yellow River Delta wetland: Occurrence, characteristics, human influences, and marker. Environmental Pollution, 258 : 113232
CrossRef
Google scholar
|
[29] |
Dubaish F Liebezeit G ( 2013). Suspended microplastics and black carbon particles in the jade system, southern North Sea. Water, Air, & Soil Pollution, 224( 2): 1352
|
[30] |
Fadare O O , Wan B , Liu K , Yang Y , Zhao L , Guo L H . (2020). Eco-corona vs protein corona: Effects of humic substances on corona formation and nanoplastic particle toxicity in Daphnia magna. Environmental Science & Technology, 54( 13): 8001– 8009
CrossRef
Google scholar
|
[31] |
Feng X , Ye M , Li Y , Zhou J , Sun B , Zhu Y , Zhu L . (2020). Potential sources and sediment-pore water partitioning behaviors of emerging per/polyfluoroalkyl substances in the South Yellow Sea. Journal of Hazardous Materials, 389 : 122124
CrossRef
Google scholar
|
[32] |
Fitzgerald N J M , Simcik M F , Novak P J . (2018a). Perfluoroalkyl substances increase the membrane permeability and quorum sensing response in Aliivibrio fischeri. Environmental Science & Technology Letters, 5( 1): 26– 31
CrossRef
Google scholar
|
[33] |
Fitzgerald N J M , Wargenau A , Sorenson C , Pedersen J , Tufenkji N , Novak P J , Simcik M F . (2018b). Partitioning and accumulation of perfluoroalkyl substances in model lipid bilayers and bacteria. Environmental Science & Technology, 52( 18): 10433– 10440
CrossRef
Google scholar
|
[34] |
Gaballah S , Swank A , Sobus J R , Howey X M , Schmid J , Catron T , McCord J , Hines E , Strynar M , Tal T . (2020). Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environmental Health Perspectives, 128( 4): 047005
CrossRef
Google scholar
|
[35] |
Gove J M , Whitney J L , McManus M A , Lecky J , Carvalho F C , Lynch J M , Li J , Neubauer P , Smith K A , Phipps J E , Kobayashi D R , Balagso K B , Contreras E A , Manuel M E , Merrifield M A , Polovina J J , Asner G P , Maynard J A , Williams G J . (2019). Prey-size plastics are invading larval fish nurseries. Proceedings of the National Academy of Sciences of the United States of America, 116( 48): 24143– 24149
CrossRef
Google scholar
|
[36] |
Grbić J , Helm P , Athey S , Rochman C M . (2020). Microplastics entering northwestern Lake Ontario are diverse and linked to urban sources. Water Research, 174 : 115623
CrossRef
Google scholar
|
[37] |
Gremmel C , Frömel T , Knepper T P . (2016). Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets. Chemosphere, 160 : 173– 180
CrossRef
Google scholar
|
[38] |
Gu H , Wang S , Wang X , Yu X , Hu M , Huang W , Wang Y . (2020). Nanoplastics impair the intestinal health of the juvenile large yellow croaker Larimichthys crocea. Journal of Hazardous Materials, 397 : 122773
CrossRef
Google scholar
|
[39] |
Guo X , Zhang S , Lu S , Zheng B , Xie P , Chen J , Li G , Liu C , Wu Q , Cheng H , Sang N . (2018). Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. Environmental Pollution, 241 : 1018– 1026
CrossRef
Google scholar
|
[40] |
Hagenaars A , Vergauwen L , De Coen W , Knapen D . (2011). Structure-activity relationship assessment of four perfluorinated chemicals using a prolonged zebrafish early life stage test. Chemosphere, 82( 5): 764– 772
CrossRef
Google scholar
|
[41] |
Harding-Marjanovic K C , Houtz E F , Yi S , Field J A , Sedlak D L , Alvarez-Cohen L . (2015). Aerobic biotransformation of fluorotelomer thioether amido sulfonate (Lodyne) in AFFF-amended microcosms. Environmental Science & Technology, 49( 13): 7666– 7674
CrossRef
Google scholar
|
[42] |
Herzke D , Olsson E , Posner S . (2012). Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway: A pilot study. Chemosphere, 88( 8): 980– 987
CrossRef
Google scholar
|
[43] |
Higgins C P , Luthy R G . (2006). Sorption of perfluorinated surfactants on sediments. Environmental Science & Technology, 40( 23): 7251– 7256
CrossRef
Google scholar
|
[44] |
Holmquist H , Schellenberger S , van der Veen I , Peters G M , Leonards P E G , Cousins I T . (2016). Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environment International, 91 : 251– 264
CrossRef
Google scholar
|
[45] |
Hosseini R , Sayadi M H , Aazami J , Savabieasfehani M . (2020). Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Marine Pollution Bulletin, 160 : 111682
CrossRef
Google scholar
|
[46] |
Hu L , Chernick M , Hinton D E , Shi H . (2018). Microplastics in small waterbodies and tadpoles from Yangtze River Delta, China. Environmental Science & Technology, 52( 15): 8885– 8893
CrossRef
Google scholar
|
[47] |
Hu X C , Ge B , Ruyle B J , Sun J , Sunderland E M . (2021). A statistical approach for identifying private wells susceptible to perfluoroalkyl Substances (PFAS) contamination. Environmental Science & Technology Letters, 8( 7): 596– 602
CrossRef
Google scholar
|
[48] |
Jantzen C E Annunziato K M Cooper K R ( 2016). Behavioral, morphometric, and gene expression effects in adult zebrafish ( Danio rerio) embryonically exposed to PFOA, PFOS, and PFNA . Aquatic Toxicology (Amsterdam, Netherlands), 180: 123− 130
Pubmed
|
[49] |
Johansen M P , Cresswell T , Davis J , Howard D L , Howell N R , Prentice E . (2019). Biofilm-enhanced adsorption of strong and weak cations onto different microplastic sample types: Use of spectroscopy, microscopy and radiotracer methods. Water Research, 158 : 392– 400
CrossRef
Google scholar
|
[50] |
Kahkashan S , Wang X , Chen J , Bai Y , Ya M , Wu Y , Cai Y , Wang S , Saleem M , Aftab J , Inam A . (2019). Concentration, distribution and sources of perfluoroalkyl substances and organochlorine pesticides in surface sediments of the northern Bering Sea, Chukchi Sea and adjacent Arctic Ocean. Chemosphere, 235 : 959– 968
CrossRef
Google scholar
|
[51] |
Kang J S , Ahn T G , Park J W . (2019). Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes). Journal of Hazardous Materials, 368 : 97– 103
CrossRef
Google scholar
|
[52] |
Kashiwada S . (2006). Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environmental Health Perspectives, 114( 11): 1697– 1702
CrossRef
Google scholar
|
[53] |
Kokalj A J , Kunej U , Skalar T . (2018). Screening study of four environmentally relevant microplastic pollutants: Uptake and effects on Daphnia magna and Artemia franciscana. Chemosphere, 208 : 522– 529
CrossRef
Google scholar
|
[54] |
Kolomijeca A , Parrott J , Khan H , Shires K , Clarence S , Sullivan C , Chibwe L , Sinton D , Rochman C M . (2020). Increased temperature and turbulence alter the effects of leachates from tire particles on fathead minnow (Pimephales promelas). Environmental Science & Technology, 54( 3): 1750– 1759
CrossRef
Google scholar
|
[55] |
Lahens L , Strady E , Kieu-Le T C , Dris R , Boukerma K , Rinnert E , Gasperi J , Tassin B . (2018). Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environmental Pollution, 236 : 661– 671
CrossRef
Google scholar
|
[56] |
Lee J W , Choi K , Park K , Seong C , Yu S D , Kim P . (2020c). Adverse effects of perfluoroalkyl acids on fish and other aquatic organisms: A review. Science of the Total Environment, 707 : 135334
CrossRef
Google scholar
|
[57] |
Lee J W , Lee H K , Lim J E , Moon H B . (2020a). Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: Occurrence, spatial distribution, and bioaccumulation potential. Chemosphere, 251 : 126633
CrossRef
Google scholar
|
[58] |
Lee J W , Lee J W , Shin Y J , Kim J E , Ryu T K , Ryu J , Lee J , Kim P , Choi K , Park K . (2017). Multi-generational xenoestrogenic effects of Perfluoroalkyl acids (PFAAs) mixture on Oryzias latipes using a flow-through exposure system. Chemosphere, 169 : 212– 223
CrossRef
Google scholar
|
[59] |
Lee Y M , Lee J Y , Kim M K , Yang H , Lee J E , Son Y , Kho Y , Choi K , Zoh K D . (2020b). Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of Korea. Journal of Hazardous Materials, 381 : 120909
CrossRef
Google scholar
|
[60] |
Li B , Liang W , Liu Q X , Fu S , Ma C , Chen Q , Su L , Craig N J , Shi H . (2021). Fish ingest microplastics unintentionally. Environmental Science & Technology, 55( 15): 10471– 10479
CrossRef
Google scholar
|
[61] |
Li X , Pignatello J J , Wang Y , Xing B . (2013). New insight into adsorption mechanism of ionizable compounds on carbon nanotubes. Environmental Science & Technology, 47( 15): 8334– 8341
CrossRef
Google scholar
|
[62] |
Li Y , Feng X , Zhou J , Zhu L . (2020a). Occurrence and source apportionment of novel and legacy poly/perfluoroalkyl substances in Hai River basin in China using receptor models and isomeric fingerprints. Water Research, 168 : 115145
CrossRef
Google scholar
|
[63] |
Li Z , Feng C , Wu Y , Guo X . (2020b). Impacts of nanoplastics on bivalve: Fluorescence tracing of organ accumulation, oxidative stress and damage. Journal of Hazardous Materials, 392 : 122418
CrossRef
Google scholar
|
[64] |
Liang R , He J , Shi Y , Li Z , Sarvajayakesavalu S , Baninla Y , Guo F , Chen J , Xu X , Lu Y . (2017). Effects of Perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere, 168 : 1613– 1618
CrossRef
Google scholar
|
[65] |
Lin L , Zuo L Z , Peng J P , Cai L Q , Fok L , Yan Y , Li H X , Xu X R . (2018). Occurrence and distribution of microplastics in an urban river: A case study in the Pearl River along Guangzhou City, China. Science of the Total Environment, 644 : 375– 381
CrossRef
Google scholar
|
[66] |
Liu C , Chang V W C , Gin K Y H , Nguyen V T . (2014). Genotoxicity of perfluorinated chemicals (PFCs) to the green mussel (Perna viridis). Science of the Total Environment, 487 : 117– 122
CrossRef
Google scholar
|
[67] |
Liu G , Jiang R , You J , Muir D C G , Zeng E Y . (2020a). Microplastic impacts on microalgae growth: Effects of size and humic acid. Environmental Science & Technology, 54( 3): 1782– 1789
CrossRef
Google scholar
|
[68] |
Liu Y , Junaid M , Xu P , Zhong W , Pan B , Xu N . (2020b). Suspended sediment exacerbates perfluorooctane sulfonate mediated toxicity through reactive oxygen species generation in freshwater clam Corbicula fluminea. Environmental Pollution, 267 : 115671
CrossRef
Google scholar
|
[69] |
Liu Y , Zhang Y , Li J , Wu N , Li W , Niu Z . (2019). Distribution, partitioning behavior and positive matrix factorization-based source analysis of legacy and emerging polyfluorinated alkyl substances in the dissolved phase, surface sediment and suspended particulate matter around coastal areas of Bohai Bay, China. Environmental Pollution, 246 : 34– 44
CrossRef
Google scholar
|
[70] |
Liu Z , Bentel M J , Yu Y , Ren C , Gao J , Pulikkal V F , Sun M , Men Y , Liu J . (2021). Near-quantitative defluorination of perfluorinated and fluorotelomer carboxylates and sulfonates with integrated oxidation and reduction. Environmental Science & Technology, 55( 10): 7052– 7062
CrossRef
Google scholar
|
[71] |
Llorca M , Schirinzi G , Martínez M , Barceló D , Farré M . (2018). Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environmental Pollution, 235 : 680– 691
CrossRef
Google scholar
|
[72] |
Logeshwaran P , Sivaram A K , Surapaneni A , Kannan K , Naidu R , Megharaj M . (2021). Exposure to perfluorooctanesulfonate (PFOS) but not perflurorooctanoic acid (PFOA) at ppb concentration induces chronic toxicity in Daphnia carinata. Science of the Total Environment, 769 : 144577
CrossRef
Google scholar
|
[73] |
Long M , Moriceau B , Gallinari M , Lambert C , Huvet A , Raffray J , Soudant P . (2015). Interactions between microplastics and phytoplankton aggregates: Impact on their respective fates. Marine Chemistry, 175 : 39– 46
CrossRef
Google scholar
|
[74] |
Lu Y , Zhang Y , Deng Y , Jiang W , Zhao Y , Geng J , Ding L , Ren H . (2016). Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver. Environmental Science & Technology, 50( 7): 4054– 4060
CrossRef
Google scholar
|
[75] |
MacLeod M , Arp H P H , Tekman M B , Jahnke A . (2021). The global threat from plastic pollution. Science, 373( 6550): 61– 65
CrossRef
Google scholar
|
[76] |
Mani T , Blarer P , Storck F R , Pittroff M , Wernicke T , Burkhardt-Holm P . (2019). Repeated detection of polystyrene microbeads in the Lower Rhine River. Environmental Pollution, 245 : 634– 641
CrossRef
Google scholar
|
[77] |
Mani T , Burkhardt-Holm P . (2020). Seasonal microplastics variation in nival and pluvial stretches of the Rhine River: From the Swiss catchment towards the North Sea. Science of the Total Environment, 707 : 135579
CrossRef
Google scholar
|
[78] |
Marchiandi J , Szabo D , Dagnino S , Green M P , Clarke B O . (2021). Occurrence and fate of legacy and novel per- and polyfluoroalkyl substances (PFASs) in freshwater after an industrial fire of unknown chemical stockpiles. Environmental Pollution, 278 : 116839
CrossRef
Google scholar
|
[79] |
Menger F , Pohl J , Ahrens L , Carlsson G , Örn S . (2020). Behavioural effects and bioconcentration of per- and polyfluoroalkyl substances (PFASs) in zebrafish (Danio rerio) embryos. Chemosphere, 245 : 125573
CrossRef
Google scholar
|
[80] |
Min K , Cuiffi J D , Mathers R T . (2020). Ranking environmental degradation trends of plastic marine debris based on physical properties and molecular structure. Nature Communications, 11( 1): 727
CrossRef
Google scholar
|
[81] |
Morais L H , Schreiber H L 4th , Mazmanian S K . (2021). The gut microbiota-brain axis in behaviour and brain disorders. Nature Reviews. Microbiology, 19( 4): 241– 255
CrossRef
Google scholar
|
[82] |
Mu J , Zhang S , Qu L , Jin F , Fang C , Ma X , Zhang W , Wang J . (2019). Microplastics abundance and characteristics in surface waters from the Northwest Pacific, the Bering Sea, and the Chukchi Sea. Marine Pollution Bulletin, 143 : 58– 65
CrossRef
Google scholar
|
[83] |
Muir D , Miaz L T . (2021). Spatial and temporal trends of perfluoroalkyl substances in global ocean and coastal waters. Environmental Science & Technology, 55( 14): 9527– 9537
CrossRef
Google scholar
|
[84] |
Nickerson A , Rodowa A E , Adamson D T , Field J A , Kulkarni P R , Kornuc J J , Higgins C P . (2021). Spatial trends of anionic, zwitterionic, and cationic PFASs at an AFFF-impacted site. Environmental Science & Technology, 55( 1): 313– 323
CrossRef
Google scholar
|
[85] |
Pabortsava K , Lampitt R S . (2020). High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nature Communications, 11( 1): 4073
CrossRef
Google scholar
|
[86] |
Pan C G , Zhao J L , Liu Y S , Zhang Q Q , Chen Z F , Lai H J , Peng F J , Liu S S , Ying G G . (2014). Bioaccumulation and risk assessment of per- and polyfluoroalkyl substances in wild freshwater fish from rivers in the Pearl River Delta region, South China. Ecotoxicology and Environmental Safety, 107 : 192– 199
CrossRef
Google scholar
|
[87] |
Pan Y , Zhang H , Cui Q , Sheng N , Yeung L W Y , Guo Y , Sun Y , Dai J . (2017). First report on the occurrence and bioaccumulation of hexafluoropropylene oxide trimer acid: An emerging concern. Environmental Science & Technology, 51( 17): 9553– 9560
CrossRef
Google scholar
|
[88] |
Pan Y , Zhang H , Cui Q , Sheng N , Yeung L W Y , Sun Y , Guo Y , Dai J . (2018). Worldwide distribution of novel perfluoroether carboxylic and sulfonic acids in surface water. Environmental Science & Technology, 52( 14): 7621– 7629
CrossRef
Google scholar
|
[89] |
Paragot N Bečanová J Karásková P Prokeš R Klánová J Lammel G Degrendele C ( 2020). Multi-year atmospheric concentrations of per- and polyfluoroalkyl substances (PFASs) at a background site in central Europe. Environmental Pollution, 265(Pt B): 114851
Pubmed
|
[90] |
Paul-Pont I , Lacroix C , González Fernández C , Hégaret H , Lambert C , Le Goïc N , Frère L , Cassone A L , Sussarellu R , Fabioux C , Guyomarch J , Albentosa M , Huvet A , Soudant P . (2016). Exposure of marine mussels Mytilus spp. to polystyrene microplastics: Toxicity and influence on fluoranthene bioaccumulation. Environmental Pollution, 216 : 724– 737
CrossRef
Google scholar
|
[91] |
Pedersen A F , Gopalakrishnan K , Boegehold A G , Peraino N J , Westrick J A , Kashian D R . (2020). Microplastic ingestion by quagga mussels, Dreissena bugensis, and its effects on physiological processes. Environmental Pollution, 260 : 113964
CrossRef
Google scholar
|
[92] |
Rebelein A Int-Veen I Kammann U Scharsack J P( 2021). Microplastic fibers-Underestimated threat to aquatic organisms? Science of the Total Environment, 777: 146045
33684771" target="_blank">Pubmed
|
[93] |
Rotander A Kärrman A ( 2019). Microplastics in södertälje: From lake mälaren to the baltic sea. Örebro: Örebro Universitet
|
[94] |
Rummel C D , Jahnke A , Gorokhova E , Kühnel D , Schmitt-Jansen M . (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science & Technology Letters, 4( 7): 258– 267
CrossRef
Google scholar
|
[95] |
Santos R G , Machovsky-Capuska G E , Andrades R . (2021). Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science, 373( 6550): 56– 60
CrossRef
Google scholar
|
[96] |
Schellenberger S , Jönsson C , Mellin P , Levenstam O A , Liagkouridis I , Ribbenstedt A , Hanning A C , Schultes L , Plassmann M M , Persson C , Cousins I T , Benskin J P . (2019). Release of side-chain fluorinated polymer-containing microplastic fibers from functional textiles during washing and first estimates of perfluoroalkyl acid emissions. Environmental Science & Technology, 53( 24): 14329– 14338
CrossRef
Google scholar
|
[97] |
Schrank I Trotter B Dummert J Scholz-Böttcher B M Löder M G J Laforsch C ( 2019). Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environmental Pollution, 255(Pt 2): 113233
Pubmed
|
[98] |
Seo S H , Son M H , Shin E S , Choi S D , Chang Y S . (2019). Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. Journal of Hazardous Materials, 364 : 19– 27
CrossRef
Google scholar
|
[99] |
Shi G Cui Q Pan Y Sheng N Guo Y Dai J ( 2017a). 6:2 fluorotelomer carboxylic acid (6:2 FTCA) exposure induces developmental toxicity and inhibits the formation of erythrocytes during zebrafish embryogenesis. Aquatic Toxicology (Amsterdam, Netherlands), 190: 53− 61
Pubmed
|
[100] |
Shi G Cui Q Pan Y Sheng N Sun S Guo Y Dai J( 2017b). 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquatic Toxicology (Amsterdam, Netherlands), 185: 67− 75
Pubmed
|
[101] |
Shi G Guo H Sheng N Cui Q Pan Y Wang J Guo Y Dai J( 2018a). Two-generational reproductive toxicity assessment of 6:2 chlorinated polyfluorinated ether sulfonate (F-53B, a novel alternative to perfluorooctane sulfonate) in zebrafish. Environmental Pollution, 243(Pt B): 1517− 1527
Pubmed
|
[102] |
Shi Y , Song X , Jin Q , Li W , He S , Cai Y . (2020). Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp. Environment International, 135 : 105418
CrossRef
Google scholar
|
[103] |
Shi Y , Vestergren R , Nost T H , Zhou Z , Cai Y . (2018b). Probing the differential tissue distribution and bioaccumulation behavior of per- and polyfluoroalkyl substances of varying chain-lengths, isomeric structures and functional groups in Crucian Carp. Environmental Science & Technology, 52( 8): 4592– 4600
CrossRef
Google scholar
|
[104] |
Silvestrova K , Stepanova N . (2021). The distribution of microplastics in the surface layer of the Atlantic Ocean from the subtropics to the equator according to visual analysis. Marine Pollution Bulletin, 162 : 111836
CrossRef
Google scholar
|
[105] |
Su L , Deng H , Li B , Chen Q , Pettigrove V , Wu C , Shi H . (2019). The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. Journal of Hazardous Materials, 365 : 716– 724
CrossRef
Google scholar
|
[106] |
Sun X Liang J Zhu M Zhao Y Zhang B ( 2018). Microplastics in seawater and zooplankton from the Yellow Sea. Environmental Pollution, 242(Pt A): 585− 595
Pubmed
|
[107] |
Supreeyasunthorn P Boontanon S K Boontanon N (2016). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 51( 6): 472− 477
Pubmed
|
[108] |
Tenorio R , Liu J , Xiao X , Maizel A , Higgins C P , Schaefer C E , Strathmann T J . (2020). Destruction of per- and polyfluoroalkyl substances (PFASs) in aqueous film-forming foam (AFFF) with UV-sulfite photoreductive treatment. Environmental Science & Technology, 54( 11): 6957– 6967
CrossRef
Google scholar
|
[109] |
Treilles R , Gasperi J , Tramoy R , Dris R , Gallard A , Partibane C , Tassin B . (2022). Microplastic and microfiber fluxes in the Seine River: Flood events versus dry periods. Science of the Total Environment, 805 : 150123
CrossRef
Google scholar
|
[110] |
Tu W , Martínez R , Navarro-Martin L , Kostyniuk D J , Hum C , Huang J , Deng M , Jin Y , Chan H M , Mennigen J A . (2019). Bioconcentration and metabolic effects of emerging PFOS alternatives in developing zebrafish. Environmental Science & Technology, 53( 22): 13427– 13439
CrossRef
Google scholar
|
[111] |
Ulhaq M , Carlsson G , Örn S , Norrgren L . (2013). Comparison of developmental toxicity of seven perfluoroalkyl acids to zebrafish embryos. Environmental Toxicology and Pharmacology, 36( 2): 423– 426
CrossRef
Google scholar
|
[112] |
Umamaheswari S , Priyadarshinee S , Bhattacharjee M , Kadirvelu K , Ramesh M . (2021). Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 281 : 128592
CrossRef
Google scholar
|
[113] |
Van Melkebeke M , Janssen C , De Meester S . (2020). Characteristics and sinking behavior of typical microplastics including the potential effect of biofouling: Implications for remediation. Environmental Science & Technology, 54( 14): 8668– 8680
CrossRef
Google scholar
|
[114] |
Wang C , Zhao J , Xing B . (2021a). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407 : 124357
CrossRef
Google scholar
|
[115] |
Wang F , Shih K M , Li X Y . (2015). The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics. Chemosphere, 119 : 841– 847
CrossRef
Google scholar
|
[116] |
Wang J Wang M Ru S Liu X (2019a). High levels of microplastic pollution in the sediments and benthic organisms of the South Yellow Sea, China. Science of the Total Environment, 651(Pt 2): 1661− 1669
Pubmed
|
[117] |
Wang S , Liu M , Wang J , Huang J , Wang J . (2020a). Polystyrene nanoplastics cause growth inhibition, morphological damage and physiological disturbance in the marine microalga Platymonas helgolandica. Marine Pollution Bulletin, 158 : 111403
CrossRef
Google scholar
|
[118] |
Wang X , Chen M , Gong P , Wang C . (2019b). Perfluorinated alkyl substances in snow as an atmospheric tracer for tracking the interactions between westerly winds and the Indian Monsoon over western China. Environment International, 124 : 294– 301
CrossRef
Google scholar
|
[119] |
Wang X , Huang W , Wei S , Shang Y , Gu H , Wu F , Lan Z , Hu M , Shi H , Wang Y . (2020b). Microplastics impair digestive performance but show little effects on antioxidant activity in mussels under low pH conditions. Environmental Pollution, 258 : 113691
CrossRef
Google scholar
|
[120] |
Wang X , Zheng H , Zhao J , Luo X , Wang Z , Xing B . (2020c). Photodegradation elevated the toxicity of polystyrene microplastics to grouper (Epinephelus moara) through disrupting hepatic lipid homeostasis. Environmental Science & Technology, 54( 10): 6202– 6212
CrossRef
Google scholar
|
[121] |
Wang Y , Yang Y , Liu X , Zhao J , Liu R , Xing B . (2021b). Interaction of microplastics with antibiotics in aquatic environment: Distribution, adsorption and toxicity. Environmental Science & Technology, 55( 23): 15579– 15595
CrossRef
Google scholar
|
[122] |
Wen W , Xia X , Hu D , Zhou D , Wang H , Zhai Y , Lin H . (2017). Long-chain perfluoroalkyl acids (PFAAs) affect the bioconcentration and tissue distribution of short-chain PFAAs in zebrafish (Danio rerio). Environmental Science & Technology, 51( 21): 12358– 12368
CrossRef
Google scholar
|
[123] |
Wu D Liu Z Cai M Jiao Y Li Y Chen Q Zhao Y ( 2019a). Molecular characterisation of cytochrome P450 enzymes in waterflea ( Daphnia pulex) and their expression regulation by polystyrene nanoplastics . Aquatic Toxicology (Amsterdam, Netherlands), 217: 105350
Pubmed
|
[124] |
Wu P Cai Z Jin H Tang Y ( 2019b). Adsorption mechanisms of five bisphenol analogues on PVC microplastics. Science of the Total Environment, 650(Pt 1): 671− 678
Pubmed
|
[125] |
Wu Y , Huang J , Deng M , Jin Y , Yang H , Liu Y , Cao Q , Mennigen J A , Tu W . (2019c). Acute exposure to environmentally relevant concentrations of Chinese PFOS alternative F-53B induces oxidative stress in early developing zebrafish. Chemosphere, 235 : 945– 951
CrossRef
Google scholar
|
[126] |
Wu Y Miller G Z Gearhart J Peaslee G Venier M ( 2021). Side-chain fluorotelomer-based polymers in children car seats. Environmental Pollution, 268(Pt B): 115477
Pubmed
|
[127] |
Xiao F . (2017). Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature. Water Research, 124 : 482– 495
CrossRef
Google scholar
|
[128] |
Xiao F , Jin B , Golovko S A , Golovko M Y , Xing B . (2019). Sorption and desorption mechanisms of cationic and zwitterionic per- and polyfluoroalkyl substances in natural soils: Thermodynamics and hysteresis. Environmental Science & Technology, 53( 20): 11818– 11827
CrossRef
Google scholar
|
[129] |
Xiao F , Zhang X , Penn L , Gulliver J S , Simcik M F . (2011). Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by kaolinite: Experimental studies and modeling. Environmental Science & Technology, 45( 23): 10028– 10035
CrossRef
Google scholar
|
[130] |
Xu D , Li C , Chen H , Shao B . (2013). Cellular response of freshwater green algae to perfluorooctanoic acid toxicity. Ecotoxicology and Environmental Safety, 88 : 103– 107
CrossRef
Google scholar
|
[131] |
Yang H , Lai H , Huang J , Sun L , Mennigen J A , Wang Q , Liu Y , Jin Y , Tu W . (2020). Polystyrene microplastics decrease F-53B bioaccumulation but induce inflammatory stress in larval zebrafish. Chemosphere, 255 : 127040
CrossRef
Google scholar
|
[132] |
Yao Y , Chang S , Sun H , Gan Z , Hu H , Zhao Y , Zhang Y . (2016). Neutral and ionic per- and polyfluoroalkyl substances (PFASs) in atmospheric and dry deposition samples over a source region (Tianjin, China). Environmental Pollution, 212 : 449– 456
CrossRef
Google scholar
|
[133] |
Zhang C Chen X Wang J Tan L ( 2017a). Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae . Environmental Pollution, 220(Pt B): 1282− 1288
Pubmed
|
[134] |
Zhang W , Pang S , Lin Z , Mishra S , Bhatt P , Chen S . (2021). Biotransformation of perfluoroalkyl acid precursors from various environmental systems: advances and perspectives. Environmental Pollution, 272 : 115908
CrossRef
Google scholar
|
[135] |
Zhang W Zhang S Wang J Wang Y Mu J Wang P Lin X Ma D (2017b). Microplastic pollution in the surface waters of the Bohai Sea, China. Environmental Pollution, 231(Pt 1): 541− 548
Pubmed
|
[136] |
Zhang X , Lohmann R , Sunderland E M . (2019). Poly- and perfluoroalkyl substances in seawater and plankton from the Northwestern Atlantic Margin. Environmental Science & Technology, 53( 21): 12348– 12356
CrossRef
Google scholar
|
[137] |
Zhao P , Xia X , Dong J , Xia N , Jiang X , Li Y , Zhu Y . (2016). Short- and long-chain perfluoroalkyl substances in the water, suspended particulate matter, and surface sediment of a turbid river. Science of the Total Environment, 568 : 57– 65
CrossRef
Google scholar
|
[138] |
Zhao Z Tang J Mi L Tian C Zhong G Zhang G Wang S Li Q Ebinghaus R Xie Z Sun H ( 2017). Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. Science of the Total Environment, 599–600: 114− 123
Pubmed
|
[139] |
Zhao Z , Xie Z , Tang J , Sturm R , Chen Y , Zhang G , Ebinghaus R . (2015). Seasonal variations and spatial distributions of perfluoroalkyl substances in the rivers Elbe and lower Weser and the North Sea. Chemosphere, 129 : 118– 125
CrossRef
Google scholar
|
[140] |
Zhong H , Zheng M , Liang Y , Wang Y , Gao W , Wang Y , Jiang G . (2021). Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in sediments from the East China Sea and the Yellow Sea: Occurrence, source apportionment and environmental risk assessment. Chemosphere, 282 : 131042
CrossRef
Google scholar
|
[141] |
Zhu K , Jia H , Sun Y , Dai Y , Zhang C , Guo X , Wang T , Zhu L . (2020). Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species. Water Research, 173 : 115564
CrossRef
Google scholar
|
[142] |
Zimmermann L , Göttlich S , Oehlmann J , Wagner M , Völker C . (2020). What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environmental Pollution, 267 : 115392
CrossRef
Google scholar
|
/
〈 | 〉 |