Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments

Sung-Geun Woo , Holly L. Sewell , Craig S. Criddle

Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 127

PDF (5273KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 127 DOI: 10.1007/s11783-022-1562-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments

Author information +
History +
PDF (5273KB)

Abstract

● 548 representative nor genes were collected to create complete phylogenetic trees.

● The distribution of nor and nod genes were detected in 18 different phyla.

● The most conserved amino acids in NOR were located adjacent to the active site.

nor-universal and Clade-specific primers were designed, suggested, and tested.

Nitric oxide reductases (NORs) have a central role in denitrification, detoxification of nitric oxide (NO) in host-pathogen interactions, and NO-mediated cell-cell signaling. In this study, we focus on the phylogeny and detection of qNOR and cNOR genes because of their nucleotide sequence similarity and evolutionary relatedness to cytochrome oxidases, their key role in denitrification, and their abundance in natural, agricultural, and wastewater ecosystems. We also include nitric oxide dismutase (NOD) due to its similarity to qNOR. Using 548 nor sequences from publicly accessible databases and sequenced isolates from N2O-producing bioreactors, we constructed phylogenetic trees for 289 qnor/nod genes and 259 cnorB genes. These trees contain evidence of horizontal gene transfer and gene duplication, with 13.4% of the sequenced strains containing two or more nor genes. By aligning amino acid sequences for qnor + cnor, qnor, and cnor, we identified four highly conserved regions for NOR and NOD, including two highly conserved histidine residues at the active site for qNOR and cNOR. Extending this approach, we identified conserved sequences for: 1) all nor (nor-universal); 2) all qnor (qnor-universal) and all cnor (cnor-universal); 3) qnor of Comamonadaceae; 4) Clade-specific sequences; and 5) nod of Candidatus Methylomirabilis oxyfera. Examples of primer performance were confirmed experimentally.

Graphical abstract

Keywords

N 2O / Greenhouse gas / NO reductase / NO dismutase / Primer / Crystal structure

Cite this article

Download citation ▾
Sung-Geun Woo, Holly L. Sewell, Craig S. Criddle. Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments. Front. Environ. Sci. Eng., 2022, 16(10): 127 DOI:10.1007/s11783-022-1562-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Al-Attar S , de Vries S . An electrogenic nitric oxide reductase. FEBS Letters, 2015, 589( 16): 2050– 2057

[2]

Andrews S ( 2010). FastQC: A quality control tool for high throughput sequence data (Babraham Bioinformatics). Cambridge, England: Babraham Institute

[3]

Arora D P , Hossain S , Xu Y , Boon E M . Nitric oxide regulation of bacterial biofilms. Biochemistry, 2015, 54( 24): 3717– 3728

[4]

Aziz R K , Bartels D , Best A A , DeJongh M , Disz T , Edwards R A , Formsma K , Gerdes S , Glass E M , Kubal M , Meyer F , Olsen G J , Olson R , Osterman A L , Overbeek R A , McNeil L K , Paarmann D , Paczian T , Parrello B , Pusch G D , Reich C , Stevens R , Vassieva O , Vonstein V , Wilke A , Zagnitko O . The RAST server: rapid annotations using subsystems technology. BMC Genomics, 2008, 9( 1): 75–

[5]

Bankevich A , Nurk S , Antipov D , Gurevich A A , Dvorkin M , Kulikov A S , Lesin V M , Nikolenko S I , Pham S , Prjibelski A D , Pyshkin A V , Sirotkin A V , Vyahhi N , Tesler G , Alekseyev M A , Pevzner P A . SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 2012, 19( 5): 455– 477

[6]

Blomberg M R A , Siegbahn P E M . Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic? Biochimica et Biophysica Acta (BBA). Bioenergetics, 2013, 1827( 7): 826– 833

[7]

Braker G , Tiedje J M . Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and Environmental Microbiology, 2003, 69( 6): 3476– 3483

[8]

Caranto J D , Lancaster K M . Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 31): 8217– 8222

[9]

Casciotti K L , Ward B B . Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiology Ecology, 2005, 52( 2): 197– 205

[10]

Chain P S G , Denef V J , Konstantinidis K T , Vergez L M , Agullo L , Reyes V L , Hauser L , Cordova M , Gomez L , Gonzalez M , Land M , Lao V , Larimer F , LiPuma J J , Mahenthiralingam E , Malfatti S A , Marx C J , Parnell J J , Ramette A , Richardson P , Seeger M , Smith D , Spilker T , Sul W J , Tsoi T V , Ulrich L E , Zhulin I B , Tiedje J M . Burkholderia xenovorans LB400 harbors a multi-replicon, 9. 73-Mbp genome shaped for versatility. Proceedings of the National Academy of Sciences, 2006, 103( 42): 15280– 15287

[11]

Cui Y , Woo S G , Lee J , Sinha S , Kang M S , Jin L , Kim K K , Park J , Lee M , Lee S T . Nocardioides daeguensis sp. nov., a nitrate-reducing bacterium isolated from activated sludge of an industrial wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology, 2013, 63( 10): 3727– 3732

[12]

Dandie C E , Miller M N , Burton D L , Zebarth B J , Trevors J T , Goyer C . Nitric oxide reductase-targeted real-time PCR quantification of denitrifier populations in soil. Applied and Environmental Microbiology, 2007, 73( 13): 4250– 4258

[13]

Ducluzeau A L , Schoepp-Cothenet B , van Lis R , Baymann F , Russell M J , Nitschke W . The evolution of respiratory O2/NO reductases: An out-of-the-phylogenetic-box perspective. Journal of the Royal Society, Interface, 2014, 11( 98): 20140196–

[14]

Ettwig K F , Butler M K , Le Paslier D , Pelletier E , Mangenot S , Kuypers M M M , Schreiber F , Dutilh B E , Zedelius J , de Beer D , Gloerich J , Wessels H J C T , van Alen T , Luesken F , Wu M L , van de Pas-Schoonen K T , Op den Camp H J M , Janssen-Megens E M , Francoijs K J , Stunnenberg H , Weissenbach J , Jetten M S M , Strous M . Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464( 7288): 543– 548

[15]

Ettwig K F , Speth D R , Reimann J , Wu M L , Jetten M S M , Keltjens J T . Bacterial oxygen production in the dark. Frontiers in Microbiology, 2012, 3 : 273–

[16]

Fowler D , Coyle M , Skiba U , Sutton M A , Cape J N , Reis S , Sheppard L J , Jenkins A , Grizzetti B , Galloway J N , Vitousek P , Leach A , Bouwman A F , Butterbach-Bahl K , Dentener F , Stevenson D , Amann M , Voss M . The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368 : 20130164–

[17]

Gao H , Liu M , Griffin J S , Xu L , Xiang D , Scherson Y D , Liu W T , Wells G F . Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms. Environmental Science & Technology, 2017, 51( 8): 4531– 4540

[18]

Graf D R H , Jones C M , Hallin S . Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One, 2014, 9( 12): e114118–

[19]

Heylen K , Vanparys B , Gevers D , Wittebolle L , Boon N , De Vos P . Nitric oxide reductase (norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. Environmental Microbiology, 2007, 9( 4): 1072– 1077

[20]

Higgins S A , Welsh A , Orellana L H , Konstantinidis K T , Chee-Sanford J C , Sanford R A , Schadt C W , Löffler F E . Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils. Applied and Environmental Microbiology, 2016, 82( 10): 2919– 2928

[21]

Hu H W , Chen D , He J Z . Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015, 39( 5): 729– 749

[22]

Hu Z , Wessels H J C T , van Alen T , Jetten M S M , Kartal B . Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications, 2019, 10( 1): 1244–

[23]

Ishii S , Song Y , Rathnayake L , Tumendelger A , Satoh H , Toyoda S , Yoshida N , Okabe S . Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environmental Microbiology, 2014, 16( 10): 3168– 3180

[24]

Jamali M A M , Gopalasingam C C , Johnson R M , Tosha T , Muramoto K , Muench S P , Antonyuk S V , Shiro Y , Hasnain S S . The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer. IUCrJ, 2020, 7( 3): 404– 415

[25]

Kahle M , ter Beek J , Hosler J P , Ädelroth P . The insertion of the non-heme FeB cofactor into nitric oxide reductase from P. denitrificans depends on norq and nord accessory proteins. Biochimica et Biophysica Acta (BBA). Bioenergetics, 2018, 1859( 10): 1051– 1058

[26]

Kearse M , Moir R , Wilson A , Stones-Havas S , Cheung M , Sturrock S , Buxton S , Cooper A , Markowitz S , Duran C , Thierer T , Ashton B , Meintjes P , Drummond A . Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 2012, 28( 12): 1647– 1649

[27]

Kumar S , Stecher G , Tamura K . MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33( 7): 1870– 1874

[28]

Kuypers M M M , Marchant H K , Kartal B . The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 2018, 16( 5): 263– 276

[29]

Lewis A M , Matzdorf S S , Endres J L , Windham I H , Bayles K W , Rice K C . Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Molecular Microbiology, 2015, 96( 3): 651– 669

[30]

Li W , Li H , Liu Y , Zheng P , Shapleigh J P . Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for anammox. Environmental Science & Technology, 2018, 52( 18): 10665– 10672

[31]

Liu Y , Peng L , Ngo H H , Guo W , Wang D , Pan Y , Sun J , Ni B J . Evaluation of nitrous oxide emission from sulfide- and sulfur-based autotrophic denitrification processes. Environmental Science & Technology, 2016, 50( 17): 9407– 9415

[32]

Ma Y , Zilles J L , Kent A D . An evaluation of primers for detecting denitrifiers via their functional genes. Environmental Microbiology, 2019, 21( 4): 1196– 1210

[33]

Matsumoto Y , Tosha T , Pisliakov A V , Hino T , Sugimoto H , Nagano S , Sugita Y , Shiro Y . Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural & Molecular Biology, 2012, 19( 2): 238– 245

[34]

Meyer R L , Zeng R J , Giugliano V , Blackall L L . Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: Mass transfer limitation and nitrous oxide production. FEMS Microbiology Ecology, 2005, 52( 3): 329– 338

[35]

Moroz L L , Kohn A B . Parallel evolution of nitric oxide signaling: Diversity of synthesis & memory pathways. Frontiers in Bioscience, 2011, 16( 1): 2008– 2051

[36]

Myung J , Wang Z , Yuan T , Zhang P , Van Nostrand J D , Zhou J , Criddle C S . Production of nitrous oxide from nitrite in stable Type II methanotrophic enrichments. Environmental Science & Technology, 2015, 49( 18): 10969– 10975

[37]

National Academy of Engineering ( 2016). Grand Challenges for Engineering: Imperatives, Prospects, and Priorities: Summary of a Forum. Washington, DC: The National Academies Press

[38]

Navarro-González R , Molina M J , Molina L T . Nitrogen fixation by volcanic lightning in the early Earth. Geophysical Research Letters, 1998, 25( 16): 3123– 3126

[39]

Onley J R , Ahsan S , Sanford R A , Löffler F E . Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Applied and Environmental Microbiology, 2018, 84( 4): e01985– 17

[40]

Overbeek R , Olson R , Pusch G D , Olsen G J , Davis J J , Disz T , Edwards R A , Gerdes S , Parrello B , Shukla M , Vonstein V , Wattam A R , Xia F , Stevens R . The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 2014, 42( D1): D206– D214

[41]

Parks D H , Imelfort M , Skennerton C T , Hugenholtz P , Tyson G W . CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 2015, 25( 7): 1043– 1055

[42]

Philippot L . Denitrifying genes in bacterial and Archaeal genomes. Biochimica et Biophysica Acta (BBA), 2002, 1577( 3): 355– 376

[43]

Santana M M , Gonzalez J M , Cruz C . Nitric oxide accumulation: The evolutionary trigger for phytopathogenesis. Frontiers in Microbiology, 2017, 8 : 1947–

[44]

Schalk-Otte S . Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Research, 2000, 34( 7): 2080– 2088

[45]

Scherson Y D , Criddle C S . Recovery of freshwater from wastewater: Upgrading process configurations to maximize energy recovery and minimize residuals. Environmental Science & Technology, 2014, 48( 15): 8420– 8432

[46]

Scherson Y D , Wells G F , Woo S G , Lee J , Park J , Cantwell B J , Criddle C S . Nitrogen removal with energy recovery through N2O decomposition. Energy & Environmental Science, 2013, 6( 1): 241– 248

[47]

Scherson Y D , Woo S G , Criddle C S . Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery. Environmental Science & Technology, 2014, 48( 10): 5612– 5619

[48]

Schreiber F , Wunderlin P , Udert K M , Wells G F . Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Frontiers in Microbiology, 2012, 3 : 372–

[49]

Seemann T . Prokka: Rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 2014, 30( 14): 2068– 2069

[50]

Shan J , Sanford R A , Chee-Sanford J , Ooi S K , Löffler F E , Konstantinidis K T , Yang W H . Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biology, 2021, 27( 12): 2669– 2683

[51]

Stanton C L , Reinhard C T , Kasting J F , Ostrom N E , Haslun J A , Lyons T W , Glass J B . Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration. Geobiology, 2018, 16( 6): 597– 609

[52]

Stein L Y , Campbell M A , Klotz M G . Energy-mediated vs. ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani. Frontiers in Microbiology, 2013, 4 : 277–

[53]

Terasaka E , Yamada K , Wang P H , Hosokawa K , Yamagiwa R , Matsumoto K , Ishii S , Mori T , Yagi K , Sawai H , Arai H , Sugimoto H , Sugita Y , Shiro Y , Tosha T . Dynamics of nitric oxide controlled by protein complex in bacterial system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 37): 9888– 9893

[54]

Thompson J D , Gibson T J , Plewniak F , Jeanmougin F , Higgins D G . The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25( 24): 4876– 4882

[55]

Tian H , Xu R , Canadell J G , Thompson R L , Winiwarter W , Suntharalingam P , Davidson E A , Ciais P , Jackson R B , Janssens-Maenhout G , Prather M J , Regnier P , Pan N , Pan S , Peters G P , Shi H , Tubiello F N , Zaehle S , Zhou F , Arneth A , Battaglia G , Berthet S , Bopp L , Bouwman A F , Buitenhuis E T , Chang J , Chipperfield M P , Dangal S R S , Dlugokencky E , Elkins J W , Eyre B D , Fu B , Hall B , Ito A , Joos F , Krummel P B , Landolfi A , Laruelle G G , Lauerwald R , Li W , Lienert S , Maavara T , MacLeod M , Millet D B , Olin S , Patra P K , Prinn R G , Raymond P A , Ruiz D J , van der Werf G R , Vuichard N , Wang J , Weiss R F , Wells K C , Wilson C , Yang J , Yao Y . A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586( 7828): 248– 256

[56]

Verbaendert I , Hoefman S , Boeckx P , Boon N , De Vos P . Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. FEMS Microbiology Ecology, 2014, 89( 1): 162– 180

[57]

Wang Z , Woo S G , Yao Y , Cheng H H , Wu Y J , Criddle C S . Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. Water Research, 2020, 173 : 115575–

[58]

Weißbach M , Thiel P , Drewes J E , Koch K . Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions. Bioresource Technology, 2018, 255 : 58– 66

[59]

Woehle C , Roy A S , Glock N , Wein T , Weissenbach J , Rosenstiel P , Hiebenthal C , Michels J , Schönfeld J , Dagan T . A novel eukaryotic denitrification pathway in foraminifera. Current Biology, 2018, 28( 16): 2536– 2543.e5

[60]

Zhu B , Bradford L , Huang S , Szalay A , Leix C , Weissbach M , Táncsics A , Drewes J E , Lueders T . Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems. Applied and Environmental Microbiology, 2017, 83( 4): e02750– e16

[61]

Zhu B , Wang J , Bradford L M , Ettwig K , Hu B , Lueders T . Nitric oxide dismutase (nod) genes as a functional marker for the diversity and phylogeny of methane-driven oxygenic denitrifiers. Frontiers in Microbiology, 2019, 10 : 1577–

[62]

Zhuge Y , Shen X , Liu Y , Shapleigh J , Li W . Application of acidic conditions and inert-gas sparging to achieve high-efficiency nitrous oxide recovery during nitrite denitrification. Water Research, 2020, 182 : 116001–

[63]

Zumft W . Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. Journal of Inorganic Biochemistry, 2005, 99( 1): 194– 215

RIGHTS & PERMISSIONS

Higher Education Press 2022

AI Summary AI Mindmap
PDF (5273KB)

Supplementary files

FSE-22001-OF-WSG_suppl_1

3875

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/