Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments

Sung-Geun Woo, Holly L. Sewell, Craig S. Criddle

PDF(5273 KB)
PDF(5273 KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (10) : 127. DOI: 10.1007/s11783-022-1562-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments

Author information +
History +

Highlights

● 548 representative nor genes were collected to create complete phylogenetic trees.

● The distribution of nor and nod genes were detected in 18 different phyla.

● The most conserved amino acids in NOR were located adjacent to the active site.

nor-universal and Clade-specific primers were designed, suggested, and tested.

Abstract

Nitric oxide reductases (NORs) have a central role in denitrification, detoxification of nitric oxide (NO) in host-pathogen interactions, and NO-mediated cell-cell signaling. In this study, we focus on the phylogeny and detection of qNOR and cNOR genes because of their nucleotide sequence similarity and evolutionary relatedness to cytochrome oxidases, their key role in denitrification, and their abundance in natural, agricultural, and wastewater ecosystems. We also include nitric oxide dismutase (NOD) due to its similarity to qNOR. Using 548 nor sequences from publicly accessible databases and sequenced isolates from N2O-producing bioreactors, we constructed phylogenetic trees for 289 qnor/nod genes and 259 cnorB genes. These trees contain evidence of horizontal gene transfer and gene duplication, with 13.4% of the sequenced strains containing two or more nor genes. By aligning amino acid sequences for qnor + cnor, qnor, and cnor, we identified four highly conserved regions for NOR and NOD, including two highly conserved histidine residues at the active site for qNOR and cNOR. Extending this approach, we identified conserved sequences for: 1) all nor (nor-universal); 2) all qnor (qnor-universal) and all cnor (cnor-universal); 3) qnor of Comamonadaceae; 4) Clade-specific sequences; and 5) nod of Candidatus Methylomirabilis oxyfera. Examples of primer performance were confirmed experimentally.

Graphical abstract

Keywords

N2O / Greenhouse gas / NO reductase / NO dismutase / Primer / Crystal structure

Cite this article

Download citation ▾
Sung-Geun Woo, Holly L. Sewell, Craig S. Criddle. Phylogenetic diversity of NO reductases, new tools for nor monitoring, and insights into N2O production in natural and engineered environments. Front. Environ. Sci. Eng., 2022, 16(10): 127 https://doi.org/10.1007/s11783-022-1562-3

References

[1]
Al-Attar S , de Vries S . An electrogenic nitric oxide reductase. FEBS Letters, 2015, 589( 16): 2050– 2057
CrossRef Google scholar
[2]
Andrews S ( 2010). FastQC: A quality control tool for high throughput sequence data (Babraham Bioinformatics). Cambridge, England: Babraham Institute
[3]
Arora D P , Hossain S , Xu Y , Boon E M . Nitric oxide regulation of bacterial biofilms. Biochemistry, 2015, 54( 24): 3717– 3728
CrossRef Google scholar
[4]
Aziz R K , Bartels D , Best A A , DeJongh M , Disz T , Edwards R A , Formsma K , Gerdes S , Glass E M , Kubal M , Meyer F , Olsen G J , Olson R , Osterman A L , Overbeek R A , McNeil L K , Paarmann D , Paczian T , Parrello B , Pusch G D , Reich C , Stevens R , Vassieva O , Vonstein V , Wilke A , Zagnitko O . The RAST server: rapid annotations using subsystems technology. BMC Genomics, 2008, 9( 1): 75–
CrossRef Google scholar
[5]
Bankevich A , Nurk S , Antipov D , Gurevich A A , Dvorkin M , Kulikov A S , Lesin V M , Nikolenko S I , Pham S , Prjibelski A D , Pyshkin A V , Sirotkin A V , Vyahhi N , Tesler G , Alekseyev M A , Pevzner P A . SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 2012, 19( 5): 455– 477
CrossRef Google scholar
[6]
Blomberg M R A , Siegbahn P E M . Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic? Biochimica et Biophysica Acta (BBA). Bioenergetics, 2013, 1827( 7): 826– 833
CrossRef Google scholar
[7]
Braker G , Tiedje J M . Nitric oxide reductase (norB) genes from pure cultures and environmental samples. Applied and Environmental Microbiology, 2003, 69( 6): 3476– 3483
CrossRef Google scholar
[8]
Caranto J D , Lancaster K M . Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 31): 8217– 8222
CrossRef Google scholar
[9]
Casciotti K L , Ward B B . Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. FEMS Microbiology Ecology, 2005, 52( 2): 197– 205
CrossRef Google scholar
[10]
Chain P S G , Denef V J , Konstantinidis K T , Vergez L M , Agullo L , Reyes V L , Hauser L , Cordova M , Gomez L , Gonzalez M , Land M , Lao V , Larimer F , LiPuma J J , Mahenthiralingam E , Malfatti S A , Marx C J , Parnell J J , Ramette A , Richardson P , Seeger M , Smith D , Spilker T , Sul W J , Tsoi T V , Ulrich L E , Zhulin I B , Tiedje J M . Burkholderia xenovorans LB400 harbors a multi-replicon, 9. 73-Mbp genome shaped for versatility. Proceedings of the National Academy of Sciences, 2006, 103( 42): 15280– 15287
[11]
Cui Y , Woo S G , Lee J , Sinha S , Kang M S , Jin L , Kim K K , Park J , Lee M , Lee S T . Nocardioides daeguensis sp. nov., a nitrate-reducing bacterium isolated from activated sludge of an industrial wastewater treatment plant. International Journal of Systematic and Evolutionary Microbiology, 2013, 63( 10): 3727– 3732
[12]
Dandie C E , Miller M N , Burton D L , Zebarth B J , Trevors J T , Goyer C . Nitric oxide reductase-targeted real-time PCR quantification of denitrifier populations in soil. Applied and Environmental Microbiology, 2007, 73( 13): 4250– 4258
CrossRef Google scholar
[13]
Ducluzeau A L , Schoepp-Cothenet B , van Lis R , Baymann F , Russell M J , Nitschke W . The evolution of respiratory O2/NO reductases: An out-of-the-phylogenetic-box perspective. Journal of the Royal Society, Interface, 2014, 11( 98): 20140196–
CrossRef Google scholar
[14]
Ettwig K F , Butler M K , Le Paslier D , Pelletier E , Mangenot S , Kuypers M M M , Schreiber F , Dutilh B E , Zedelius J , de Beer D , Gloerich J , Wessels H J C T , van Alen T , Luesken F , Wu M L , van de Pas-Schoonen K T , Op den Camp H J M , Janssen-Megens E M , Francoijs K J , Stunnenberg H , Weissenbach J , Jetten M S M , Strous M . Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 2010, 464( 7288): 543– 548
CrossRef Google scholar
[15]
Ettwig K F , Speth D R , Reimann J , Wu M L , Jetten M S M , Keltjens J T . Bacterial oxygen production in the dark. Frontiers in Microbiology, 2012, 3 : 273–
CrossRef Google scholar
[16]
Fowler D , Coyle M , Skiba U , Sutton M A , Cape J N , Reis S , Sheppard L J , Jenkins A , Grizzetti B , Galloway J N , Vitousek P , Leach A , Bouwman A F , Butterbach-Bahl K , Dentener F , Stevenson D , Amann M , Voss M . The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2013, 368 : 20130164–
CrossRef Google scholar
[17]
Gao H , Liu M , Griffin J S , Xu L , Xiang D , Scherson Y D , Liu W T , Wells G F . Complete nutrient removal coupled to nitrous oxide production as a bioenergy source by denitrifying polyphosphate-accumulating organisms. Environmental Science & Technology, 2017, 51( 8): 4531– 4540
CrossRef Google scholar
[18]
Graf D R H , Jones C M , Hallin S . Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One, 2014, 9( 12): e114118–
CrossRef Google scholar
[19]
Heylen K , Vanparys B , Gevers D , Wittebolle L , Boon N , De Vos P . Nitric oxide reductase (norB) gene sequence analysis reveals discrepancies with nitrite reductase (nir) gene phylogeny in cultivated denitrifiers. Environmental Microbiology, 2007, 9( 4): 1072– 1077
CrossRef Google scholar
[20]
Higgins S A , Welsh A , Orellana L H , Konstantinidis K T , Chee-Sanford J C , Sanford R A , Schadt C W , Löffler F E . Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils. Applied and Environmental Microbiology, 2016, 82( 10): 2919– 2928
CrossRef Google scholar
[21]
Hu H W , Chen D , He J Z . Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews, 2015, 39( 5): 729– 749
CrossRef Google scholar
[22]
Hu Z , Wessels H J C T , van Alen T , Jetten M S M , Kartal B . Nitric oxide-dependent anaerobic ammonium oxidation. Nature Communications, 2019, 10( 1): 1244–
CrossRef Google scholar
[23]
Ishii S , Song Y , Rathnayake L , Tumendelger A , Satoh H , Toyoda S , Yoshida N , Okabe S . Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environmental Microbiology, 2014, 16( 10): 3168– 3180
CrossRef Google scholar
[24]
Jamali M A M , Gopalasingam C C , Johnson R M , Tosha T , Muramoto K , Muench S P , Antonyuk S V , Shiro Y , Hasnain S S . The active form of quinol-dependent nitric oxide reductase from Neisseria meningitidis is a dimer. IUCrJ, 2020, 7( 3): 404– 415
CrossRef Google scholar
[25]
Kahle M , ter Beek J , Hosler J P , Ädelroth P . The insertion of the non-heme FeB cofactor into nitric oxide reductase from P. denitrificans depends on norq and nord accessory proteins. Biochimica et Biophysica Acta (BBA). Bioenergetics, 2018, 1859( 10): 1051– 1058
CrossRef Google scholar
[26]
Kearse M , Moir R , Wilson A , Stones-Havas S , Cheung M , Sturrock S , Buxton S , Cooper A , Markowitz S , Duran C , Thierer T , Ashton B , Meintjes P , Drummond A . Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England), 2012, 28( 12): 1647– 1649
CrossRef Google scholar
[27]
Kumar S , Stecher G , Tamura K . MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 2016, 33( 7): 1870– 1874
CrossRef Google scholar
[28]
Kuypers M M M , Marchant H K , Kartal B . The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 2018, 16( 5): 263– 276
CrossRef Google scholar
[29]
Lewis A M , Matzdorf S S , Endres J L , Windham I H , Bayles K W , Rice K C . Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Molecular Microbiology, 2015, 96( 3): 651– 669
CrossRef Google scholar
[30]
Li W , Li H , Liu Y , Zheng P , Shapleigh J P . Salinity-aided selection of progressive onset denitrifiers as a means of providing nitrite for anammox. Environmental Science & Technology, 2018, 52( 18): 10665– 10672
CrossRef Google scholar
[31]
Liu Y , Peng L , Ngo H H , Guo W , Wang D , Pan Y , Sun J , Ni B J . Evaluation of nitrous oxide emission from sulfide- and sulfur-based autotrophic denitrification processes. Environmental Science & Technology, 2016, 50( 17): 9407– 9415
CrossRef Google scholar
[32]
Ma Y , Zilles J L , Kent A D . An evaluation of primers for detecting denitrifiers via their functional genes. Environmental Microbiology, 2019, 21( 4): 1196– 1210
CrossRef Google scholar
[33]
Matsumoto Y , Tosha T , Pisliakov A V , Hino T , Sugimoto H , Nagano S , Sugita Y , Shiro Y . Crystal structure of quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus. Nature Structural & Molecular Biology, 2012, 19( 2): 238– 245
CrossRef Google scholar
[34]
Meyer R L , Zeng R J , Giugliano V , Blackall L L . Challenges for simultaneous nitrification, denitrification, and phosphorus removal in microbial aggregates: Mass transfer limitation and nitrous oxide production. FEMS Microbiology Ecology, 2005, 52( 3): 329– 338
CrossRef Google scholar
[35]
Moroz L L , Kohn A B . Parallel evolution of nitric oxide signaling: Diversity of synthesis & memory pathways. Frontiers in Bioscience, 2011, 16( 1): 2008– 2051
CrossRef Google scholar
[36]
Myung J , Wang Z , Yuan T , Zhang P , Van Nostrand J D , Zhou J , Criddle C S . Production of nitrous oxide from nitrite in stable Type II methanotrophic enrichments. Environmental Science & Technology, 2015, 49( 18): 10969– 10975
CrossRef Google scholar
[37]
National Academy of Engineering ( 2016). Grand Challenges for Engineering: Imperatives, Prospects, and Priorities: Summary of a Forum. Washington, DC: The National Academies Press
[38]
Navarro-González R , Molina M J , Molina L T . Nitrogen fixation by volcanic lightning in the early Earth. Geophysical Research Letters, 1998, 25( 16): 3123– 3126
CrossRef Google scholar
[39]
Onley J R , Ahsan S , Sanford R A , Löffler F E . Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Applied and Environmental Microbiology, 2018, 84( 4): e01985– 17
CrossRef Google scholar
[40]
Overbeek R , Olson R , Pusch G D , Olsen G J , Davis J J , Disz T , Edwards R A , Gerdes S , Parrello B , Shukla M , Vonstein V , Wattam A R , Xia F , Stevens R . The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Research, 2014, 42( D1): D206– D214
CrossRef Google scholar
[41]
Parks D H , Imelfort M , Skennerton C T , Hugenholtz P , Tyson G W . CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 2015, 25( 7): 1043– 1055
CrossRef Google scholar
[42]
Philippot L . Denitrifying genes in bacterial and Archaeal genomes. Biochimica et Biophysica Acta (BBA), 2002, 1577( 3): 355– 376
CrossRef Google scholar
[43]
Santana M M , Gonzalez J M , Cruz C . Nitric oxide accumulation: The evolutionary trigger for phytopathogenesis. Frontiers in Microbiology, 2017, 8 : 1947–
CrossRef Google scholar
[44]
Schalk-Otte S . Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes. Water Research, 2000, 34( 7): 2080– 2088
CrossRef Google scholar
[45]
Scherson Y D , Criddle C S . Recovery of freshwater from wastewater: Upgrading process configurations to maximize energy recovery and minimize residuals. Environmental Science & Technology, 2014, 48( 15): 8420– 8432
CrossRef Google scholar
[46]
Scherson Y D , Wells G F , Woo S G , Lee J , Park J , Cantwell B J , Criddle C S . Nitrogen removal with energy recovery through N2O decomposition. Energy & Environmental Science, 2013, 6( 1): 241– 248
CrossRef Google scholar
[47]
Scherson Y D , Woo S G , Criddle C S . Production of nitrous oxide from anaerobic digester centrate and its use as a co-oxidant of biogas to enhance energy recovery. Environmental Science & Technology, 2014, 48( 10): 5612– 5619
CrossRef Google scholar
[48]
Schreiber F , Wunderlin P , Udert K M , Wells G F . Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: Biological pathways, chemical reactions, and novel technologies. Frontiers in Microbiology, 2012, 3 : 372–
CrossRef Google scholar
[49]
Seemann T . Prokka: Rapid prokaryotic genome annotation. Bioinformatics (Oxford, England), 2014, 30( 14): 2068– 2069
CrossRef Google scholar
[50]
Shan J , Sanford R A , Chee-Sanford J , Ooi S K , Löffler F E , Konstantinidis K T , Yang W H . Beyond denitrification: The role of microbial diversity in controlling nitrous oxide reduction and soil nitrous oxide emissions. Global Change Biology, 2021, 27( 12): 2669– 2683
CrossRef Google scholar
[51]
Stanton C L , Reinhard C T , Kasting J F , Ostrom N E , Haslun J A , Lyons T W , Glass J B . Nitrous oxide from chemodenitrification: A possible missing link in the Proterozoic greenhouse and the evolution of aerobic respiration. Geobiology, 2018, 16( 6): 597– 609
CrossRef Google scholar
[52]
Stein L Y , Campbell M A , Klotz M G . Energy-mediated vs. ammonium-regulated gene expression in the obligate ammonia-oxidizing bacterium, Nitrosococcus oceani. Frontiers in Microbiology, 2013, 4 : 277–
CrossRef Google scholar
[53]
Terasaka E , Yamada K , Wang P H , Hosokawa K , Yamagiwa R , Matsumoto K , Ishii S , Mori T , Yagi K , Sawai H , Arai H , Sugimoto H , Sugita Y , Shiro Y , Tosha T . Dynamics of nitric oxide controlled by protein complex in bacterial system. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114( 37): 9888– 9893
CrossRef Google scholar
[54]
Thompson J D , Gibson T J , Plewniak F , Jeanmougin F , Higgins D G . The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25( 24): 4876– 4882
CrossRef Google scholar
[55]
Tian H , Xu R , Canadell J G , Thompson R L , Winiwarter W , Suntharalingam P , Davidson E A , Ciais P , Jackson R B , Janssens-Maenhout G , Prather M J , Regnier P , Pan N , Pan S , Peters G P , Shi H , Tubiello F N , Zaehle S , Zhou F , Arneth A , Battaglia G , Berthet S , Bopp L , Bouwman A F , Buitenhuis E T , Chang J , Chipperfield M P , Dangal S R S , Dlugokencky E , Elkins J W , Eyre B D , Fu B , Hall B , Ito A , Joos F , Krummel P B , Landolfi A , Laruelle G G , Lauerwald R , Li W , Lienert S , Maavara T , MacLeod M , Millet D B , Olin S , Patra P K , Prinn R G , Raymond P A , Ruiz D J , van der Werf G R , Vuichard N , Wang J , Weiss R F , Wells K C , Wilson C , Yang J , Yao Y . A comprehensive quantification of global nitrous oxide sources and sinks. Nature, 2020, 586( 7828): 248– 256
CrossRef Google scholar
[56]
Verbaendert I , Hoefman S , Boeckx P , Boon N , De Vos P . Primers for overlooked nirK, qnorB, and nosZ genes of thermophilic Gram-positive denitrifiers. FEMS Microbiology Ecology, 2014, 89( 1): 162– 180
CrossRef Google scholar
[57]
Wang Z , Woo S G , Yao Y , Cheng H H , Wu Y J , Criddle C S . Nitrogen removal as nitrous oxide for energy recovery: Increased process stability and high nitrous yields at short hydraulic residence times. Water Research, 2020, 173 : 115575–
CrossRef Google scholar
[58]
Weißbach M , Thiel P , Drewes J E , Koch K . Nitrogen removal and intentional nitrous oxide production from reject water in a coupled nitritation/nitrous denitritation system under real feed-stream conditions. Bioresource Technology, 2018, 255 : 58– 66
CrossRef Google scholar
[59]
Woehle C , Roy A S , Glock N , Wein T , Weissenbach J , Rosenstiel P , Hiebenthal C , Michels J , Schönfeld J , Dagan T . A novel eukaryotic denitrification pathway in foraminifera. Current Biology, 2018, 28( 16): 2536– 2543.e5
CrossRef Google scholar
[60]
Zhu B , Bradford L , Huang S , Szalay A , Leix C , Weissbach M , Táncsics A , Drewes J E , Lueders T . Unexpected diversity and high abundance of putative nitric oxide dismutase (Nod) genes in contaminated aquifers and wastewater treatment systems. Applied and Environmental Microbiology, 2017, 83( 4): e02750– e16
CrossRef Google scholar
[61]
Zhu B , Wang J , Bradford L M , Ettwig K , Hu B , Lueders T . Nitric oxide dismutase (nod) genes as a functional marker for the diversity and phylogeny of methane-driven oxygenic denitrifiers. Frontiers in Microbiology, 2019, 10 : 1577–
CrossRef Google scholar
[62]
Zhuge Y , Shen X , Liu Y , Shapleigh J , Li W . Application of acidic conditions and inert-gas sparging to achieve high-efficiency nitrous oxide recovery during nitrite denitrification. Water Research, 2020, 182 : 116001–
CrossRef Google scholar
[63]
Zumft W . Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme-copper oxidase type. Journal of Inorganic Biochemistry, 2005, 99( 1): 194– 215
CrossRef Google scholar

Acknowledgements

This research was supported in part by a grant from the US National Science Foundation Engineering Research Center Reinventing the Nation’s Urban Water Infrastructure (ReNUWIt) (Award No. EEC-1028968) and in part by a grant from the NASA Center (USA) for the Utilization of Biological Engineering in Space (CUBES) (Award No. NNX17AJ31G). We thank Dr. Jizhong Zhou and the Institute of Environmental Genomics at the University of Oklahoma, Norman (OK, USA), for sequencing of Alicycliphilus sp. CD02.

Competing Interests

The authors declare no conflict of interests.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-022-1562-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press 2022
AI Summary AI Mindmap
PDF(5273 KB)

Accesses

Citations

Detail

Sections
Recommended

/