Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment

Shaoping Luo , Yi Peng , Ying Liu , Yongzhen Peng

Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 123

PDF (1061KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 123 DOI: 10.1007/s11783-022-1555-2
REVIEW ARTICLE
REVIEW ARTICLE

Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment

Author information +
History +
PDF (1061KB)

Abstract

• Comammox bacteria have unique physiological characteristics.

• Comammox bacteria are widely distributed in natural and artificial systems.

• Comammox bacteria have the potential to reduce N2O emissions.

• Coupling comammox bacteria with DEAMOX can be promoted in wastewater treatment.

• Comammox bacteria have significant potential for enhancing total nitrogen removal.

Complete ammonia oxidizing bacteria, or comammox bacteria (CAOB), can oxidize ammonium to nitrate on its own. Its discovery revolutionized our understanding of biological nitrification, and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle. Its wide distribution, adaptation to oligotrophic medium, and diverse metabolic pathways, means extensive research on CAOB and its application in water treatment can be promoted. Furthermore, the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment. This paper provides an overview of the discovery and environmental distribution of CAOB, as well as the physiological characteristics of the microorganisms, such as nutrient medium, environmental factors, enzymes, and metabolism, focusing on future research and the application of CAOB in wastewater treatment. Further research should be carried out on the physiological characteristics of CAOB, to analyze its ecological niche and impact factors, and explore its application potential in wastewater treatment nitrogen cycle improvement.

Graphical abstract

Keywords

Complete ammonia oxidizing (comammox) bacteria / Nitrogen cycle / Physiological characteristics / Wastewater treatment

Cite this article

Download citation ▾
Shaoping Luo, Yi Peng, Ying Liu, Yongzhen Peng. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment. Front. Environ. Sci. Eng., 2022, 16(9): 123 DOI:10.1007/s11783-022-1555-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Annavajhala M K, Kapoor V, Santo-Domingo J, Chandran K (2018). Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environmental Science & Technology Letters, 5(2): 110–116

[2]

Arp D J, Sayavedra-Soto L A, Hommes N G (2002). Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology, 178(4): 250–255

[3]

Borisov V B, Gennis R B, Hemp J, Verkhovsky M I (2011). The cytochrome bd respiratory oxygen reductases. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(11): 1398–1413

[4]

Camejo P Y, Santo Domingo J, McMahon K D, Noguera D R (2017). Genome-enabled insights into the ecophysiology of the comammox bacterium “Candidatus Nitrospira nitrosa”. mSystems, 2(5): e00059–e17

[5]

Chao Y Q, Mao Y P, Yu K, Zhang T (2016). Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Applied Microbiology and Biotechnology, 100(18): 8225–8237

[6]

Costa E, Pérez J, Kreft J U (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology, 14(5): 213–219

[7]

Daims H, Lebedeva E V, Pjevac P, Han P, Herbold C, Albertsen M, Jehmlich N, Palatinszky M, Vierheilig J, Bulaev A, Kirkegaard R H, von Bergen M, Rattei T, Bendinger B, Nielsen P H, Wagner M (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583): 504–509

[8]

Erwin D P, Erickson I K, Delwiche M E, Colwell F S, Strap J L, Crawford R L (2005). Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Applied and Environmental Microbiology, 71(4): 2016–2025

[9]

Gao J F, Fan X Y, Pan K L, Li H Y, Sun L X (2016). Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter. Scientific Reports, 6(1): 38785

[10]

Gottshall E Y, Bryson S J, Cogert K I, Landreau M, Sedlacek C J, Stahl D A, Daims H, Winkler M (2021). Sustained nitrogen loss in a symbiotic association of comammox Nitrospira and anammox bacteria. Water Research, 202(1): 117426

[11]

Han P, Yu Y, Zhou L, Tian Z, Li Z, Hou L, Liu M, Wu Q, Wagner M, Men Y (2019). Specific micropollutant biotransformation pattern by the comammox bacterium Nitrospira inopinata. Environmental Science & Technology, 53(15): 8695–8705

[12]

Heise J, Müller H, Probst A J, Meckenstock R U (2021). Ammonium removal in aquaponics indicates participation of comammox Nitrospira. Current Microbiology, 78(3): 894–903

[13]

Holman J B, Wareham D G (2005). COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochemical Engineering Journal, 22(2): 125–133

[14]

Hu H W, He J Z (2017). Comammox−A newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 17(12): 2709–2717

[15]

Jia Z J, Kikuchi H, Watanabe T, Asakawa S, Kimura M (2007). Molecular identification of methane oxidizing bacteria in a Japanese rice field soil. Biology and Fertility of Soils, 44(1): 121–130

[16]

Kits K D, Jung M Y, Vierheilig J, Pjevac P, Sedlacek C J, Liu S, Herbold C, Stein L Y, Richter A, Wissel H, Brüggemann N, Wagner M, Daims H (2019). Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature Communications, 10(1): 1836

[17]

Kits K D, Sedlacek C J, Lebedeva E V, Han P, Bulaev A, Pjevac P, Daebeler A, Romano S, Albertsen M, Stein L Y, Daims H, Wagner M (2017). Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 549(7671): 269–272

[18]

Knief C, Kolb S, Bodelier P L E, Lipski A, Dunfield P F (2006). The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environmental Microbiology, 8(2): 321–333

[19]

Koch H, van Kessel M A H J, Lücker S (2019). Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Applied Microbiology and Biotechnology, 103(1): 177–189

[20]

Könneke M, Bernhard A E, de la Torre J R, Walker C B, Waterbury J B, Stahl D A (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543–546

[21]

Kuypers M M M (2017). Microbiology: A fight for scraps of ammonia. Nature, 549(7671): 162–163

[22]

Kuypers M M M, Marchant H K, Kartal B (2018). The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 16(5): 263–276

[23]

Lawson C E, Lücker S (2018). Complete ammonia oxidation: An important control on nitrification in engineered ecosystems? Current Opinion in Biotechnology, 50: 158–165

[24]

Liu S, Wang H, Chen L, Wang J, Zheng M, Liu S, Chen Q, Ni J (2020a). Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. The ISME Journal, 14(10): 2488–2504

[25]

Liu Z, Zhang C, Wei Q, Zhang S, Quan Z, Li M (2020b). Temperature and salinity drive comammox community composition in mangrove ecosystems across southeastern China. The Science of the total environment, 742: 140456

[26]

Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté J S, Spieck E, Le Paslier D, Daims H (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 107(30): 13479–13484

[27]

Palomo A, Pedersen A G, Fowler S J, Dechesne A, Sicheritz-Pontén T, Smets B F (2018). Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. The ISME Journal, 12(7): 1779–1793

[28]

Pinto A J, Marcus D N, Ijaz U Z, Bautista-de Lose Santos Q M, Dick G J, Raskin L (2015). Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. MSphere, 1(1): e00054–e15

[29]

Pjevac P, Schauberger C, Poghosyan L, Herbold C W, van Kessel M A H J, Daebeler A, Steinberger M, Jetten M S M, Lücker S, Wagner M, Daims H (2017). AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Frontiers in Microbiology, 8: 1508

[30]

Roots P, Wang Y, Rosenthal A F, Griffin J S, Sabba F, Petrovich M, Yang F, Kozak J A, Zhang H, Wells G F (2019). Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Research, 157: 396–405

[31]

Sakoula D, Koch H, Frank J, Jetten M S M, van Kessel M A H J, Lücker S (2021). Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. The ISME journal, 15(4): 1010–1024

[32]

Sato Y, Tanaka E, Hori T, Futamata H, Murofushi K, Takagi H, Akachi T, Miwa T, Inaba T, Aoyagi T, Habe H (2021). Efficient conversion of organic nitrogenous wastewater to nitrate solution driven by comammox Nitrospira. Water Research, 197: 117088

[33]

Shao Y H, Wu J H (2021). comammox Nitrospira species dominate in an efficient partial nitrification-anammox bioreactor for treating ammonium at low loadings. Environmental Science & Technology, 55(3): 2087–2098

[34]

Shen Y C, Hu Y N, Shaw G C (2016). Expressions of alkaline phosphatase genes during phosphate starvation are under positive influences of multiple cell wall hydrolase genes in Bacillus subtilis. The Journal of General and Applied Microbiology, 62(2): 106–109

[35]

Shi Y, Jiang Y Y, Wang S Y, Wang X M, Zhu G B (2020). Biogeographic distribution of comammox bacteria in diverse terrestrial habitats. Science of the Total Environment, 717: 137257 doi.org/10.1016/j.scitotenv.2020.137257. PMID:32065897

[36]

Steenbergh A K, Meima M M, Kamst M, Bodelier P L E (2010). Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiology Ecology, 71(1): 12–22

[37]

Sun D Y, Tang X F, Zhao M Y, Zhang Z X, Hou L J, Liu M, Wang B Z, Klümper U, Han P (2020). Distribution and diversity of comammox Nitrospira in coastal wetlands of China. Frontiers in Microbiology, 11: 589268

[38]

Sun D Y, Zhao M Y, Tang X F, Liu M, Hou L J, Zhao Q, Li J, Gu J D, Han P (2021). Niche adaptation strategies of different clades of comammox Nitrospira in the Yangtze Estuary. International Biodeterioration & Biodegradation, 164: 105286

[39]

Takahashi Y, Fujitani H, Hirono Y, Tago K, Wang Y, Hayatsu M, Tsuneda S (2020). Enrichment of comammox and nitrite-oxidizing Nitrospira from acidic soils. Frontiers in Microbiology, 11: 1737

[40]

Tatari K, Musovic S, Gülay A, Dechesne A, Albrechtsen H, Smets B F (2017). Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp. Water Research, 127: 239–248

[41]

Teske A, Alm E, Regan J M, Toze S, Rittmann B E, Stahl D A (1994). Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. Journal of Bacteriology, 176(21): 6623–6630

[42]

Van Kessel M A H J, Speth D R, Albertsen M, Nielsen P H, Op den Camp H J M, Kartal B, Jetten M S M, Lücker S (2015). Complete nitrification by a single microorganism. Nature, 528(7583): 555–559

[43]

Vigliotta G, Nutricati E, Carata E, Tredici S M, De Stefano M, Pontieri P, Massardo D R, Prati M V, De Bellis L, Alifano P (2007). Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Applied and Environmental Microbiology, 73(11): 3556–3565

[44]

Wang M Y, Huang G H, Zhao Z R, Dang C Y, Liu W, Zheng M S (2018). Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants. Bioresource Technology, 270: 580–587

[45]

Wang S Y, Pi Y L, Jiang Y Y, Pan H W, Wang X X, Wang X M, Zhou Z M, Zhu G B (2019). Nitrate reduction in the reed rhizosphere of a riparian zone: From functional genes to activity and contribution. Environmental Research, 180(6): 108867

[46]

Wang Y, Ma L, Mao Y, Jiang X, Xia Y, Yu K, Li B, Zhang T (2017). Comammox in drinking water systems. Water Research, 116: 332–341

[47]

Wang Y L, Zhao R X, Liu L, Li B, Zhang T (2021). Selective enrichment of comammox from activated sludge using antibiotics. Water Research, 197: 117087

[48]

Wang Z, Zhang L, Zhang F Z, Jiang H, Ren S, Wang W, Peng Y Z (2020). Nitrite accumulation in comammox-dominated nitrification-denitrification reactors: Effects of DO concentration and hydroxylamine addition. Journal of Hazardous Materials, 384: 121375

[49]

Winkler M K, Bassin J P, Kleerebezem R, Sorokin D Y, van Loosdrecht M C (2012). Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Applied Microbiology and Biotechnology, 94(6): 1657–1666

[50]

Winogradsky S (1890). The morphology of the contributions of nitrification system. Archives of Biological Sciences, 4: 257–275

[51]

Xia F, Wang J G, Zhu T, Zou B, Rhee S K, Quan Z X (2018). Ubiquity and diversity of complete ammonia oxidizers (comammox). Applied and Environmental Microbiology, 84(24): e01390–e18

[52]

Xu S Y, Wu X L, Lu H J (2021). Overlooked nitrogen-cycling microorganisms in biological wastewater treatment. Frontiers of Environmental Science & Engineering, 15(6): 133

[53]

Xu Y F, Lu J, Wang Y C, Liu G L, Wan X Q, Hua Y M, Zhu D W, Zhao J W (2020). Diversity and abundance of comammox bacteria in the sediments of an urban lake. Journal of Applied Microbiology, 128(6): 1647–1657

[54]

Yu C, Hou L, Zheng Y, Liu M, Yin G, Gao J, Liu C, Chang Y, Han P (2018). Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Applied Microbiology and Biotechnology, 102(21): 9363–9377

[55]

Zeng W, Zhang L M, Wang A Q, Zhang J, Peng Y Z, Duan J L (2015). Community structures and population dynamics of nitrifying bacteria in activated sludges of wastewater treatment plants. China Environmental Science, 35(11): 3257–3265 (in Chinese)

[56]

Zhao Y X, Hu J J, Yang W L, Wang J Q, Jia Z J, Zheng P, Hu B L (2021). The long-term effects of using nitrite and urea on the enrichment of comammox bacteria. Science of the Total Environment, 755(Pt 2): 142580

[57]

Zhao Z, Huang G, He S, Zhou N, Wang M, Dang C, Wang J, Zheng M (2019). Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Science of the Total Environment , 691: 146–155

[58]

Zhou X, Li B, Wei J, Ye Y, Xu J, Chen L, Lu C (2021). Temperature influenced the comammox community composition in drinking water and wastewater treatment plants. Microbial Ecology, 82(4): 870–884

RIGHTS & PERMISSIONS

The Author(s) 2022. This article is published with open access at link.springer.com and journal.hep. com.cn

AI Summary AI Mindmap
PDF (1061KB)

9673

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/