Effects of manufactured nanomaterials on algae: Implications and applications
Yuxiong Huang, Manyu Gao, Wenjing Wang, Ziyi Liu, Wei Qian, Ciara Chun Chen, Xiaoshan Zhu, Zhonghua Cai
Effects of manufactured nanomaterials on algae: Implications and applications
● Summary of positive and negative effects of MNMs on algae.
● MNMs adversely affect algal gene expression, metabolite, and growth.
● MNMs induce oxidative stress, mechanical damage and light-shielding effects on algae.
● MNMs can promote production of bioactive substances and environmental remediation.
The wide application of manufactured nanomaterials (MNMs) has resulted in the inevitable release of MNMs into the aquatic environment along their life cycle. As the primary producer in aquatic ecosystems, algae play a critical role in maintaining the balance of ecosystems’ energy flow, material circulation and information transmission. Thus, thoroughly understanding the biological effects of MNMs on algae as well as the underlying mechanisms is of vital importance. We conducted a comprehensive review on both positive and negative effects of MNMs on algae and thoroughly discussed the underlying mechanisms. In general, exposure to MNMs may adversely affect algae’s gene expression, metabolites, photosynthesis, nitrogen fixation and growth rate. The major mechanisms of MNMs-induced inhibition are attributed to oxidative stress, mechanical damages, released metal ions and light-shielding effects. Meanwhile, the rational application of MNMs-algae interactions would promote valuable bioactive substances production as well as control biological and chemical pollutants. Our review could provide a better understanding of the biological effects of MNMs on algae and narrow the knowledge gaps on the underlying mechanisms. It would shed light on the investigation of environmental implications and applications of MNMs-algae interactions and meet the increasing demand for sustainable nanotechnology development.
Manufactured nanomaterials / Algae / Mechanisms / Effects / Implications / Applications
[1] |
Ahmed I , Zhang B , Muneeb-Ur-Rehman M , Fan W . Effect of different shapes of Nano-Cu2O and humic acid on two-generations of Daphnia Magna. Ecotoxicology and Environmental Safety, 2021, 207
CrossRef
Google scholar
|
[2] |
Angela I , Imbi K , Kaja K , Irina B , Villem A , Sandra S , Heiki V , Aleksandr K , Tiina T , Margit H . Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, rrustaceans and mammalian cells in vitro. PLoS One, 2014, 9( 7): e102108–
CrossRef
Google scholar
|
[3] |
Aruoja V , Dubourguier H C , Kasemets K , Kahru A . Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata.
|
[4] |
Bhuvaneshwari M , Iswarya V , Vishnu S , Chandrasekaran N , Mukherjee A . Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia). Environmental Research, 2018, 164
CrossRef
Google scholar
|
[5] |
Borlido L , Azevedo A M , Roque A C A , Aires-Barros M R . Magnetic separations in biotechnology. Biotechnology Advances, 2013, 31( 8): 1374– 1385
CrossRef
Google scholar
|
[6] |
Bouldin J L , Ingle T M , Sengupta A , Alexander R , Hannigan R E , Buchanan R A . Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 2008, 27( 9): 1958– 1963
CrossRef
Google scholar
|
[7] |
Burchardt A D , Carvalho R N , Valence A , Nativo P , Gilliland D , Garcia C P , Passarella R , Pedroni V , Rossi F , Lettieri T . Effects of silver nanoparticles in diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp. Environmental Science & Technology, 2012, 46( 20): 11336– 11344
CrossRef
Google scholar
|
[8] |
Cai A , Guo A , Ma Z . Immobilization of TiO2 nanoparticles on Chlorella pyrenoidosa cells for enhanced visible-light-driven photocatalysis. Materials (Basel), 2017, 10( 5): 541–
CrossRef
Google scholar
|
[9] |
Campos B , Rivetti C , Rosenkranz P , Navas J M , Barata C . Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.. Aquatic Toxicology (Amsterdam, Netherlands), 2013,
CrossRef
Google scholar
|
[10] |
Cedervall T , Hansson L A , Lard M , Frohm B , Linse S . Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One, 2012, 7( 2): e32254–
CrossRef
Google scholar
|
[11] |
Chang Y H , Wu M C . Enhanced photocatalytic reduction of Cr(VI) by combined magnetic TiO2-based NFs and ammonium oxalate hole scavengers. Catalysts, 2019, 9( 1): 72– 84
CrossRef
Google scholar
|
[12] |
Chen C , Zhu K , Chen K , Alsaedi A , Hayat T . Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI). Journal of Colloid and Interface Science, 2018, 526
CrossRef
Google scholar
|
[13] |
Chen F R , Xiao Z G , Yue L , Wang J , Feng Y , Zhu X S , Wang Z Y , Xing B S . Algae response to engineered nanoparticles: Current understanding, mechanisms and implications. Environmental Science. Nano, 2019, 6( 4): 1026– 1042
CrossRef
Google scholar
|
[14] |
Chen G , Wang H , Dong W , Huang Y , Zhao Z , Zeng Y . Graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine. Chemical Engineering Journal, 2021, 405
CrossRef
Google scholar
|
[15] |
Chen J , Qian Y , Li H , Cheng Y , Zhao M . The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa. Environmental Science and Pollution Research International, 2015, 22( 16): 12407– 12414
CrossRef
Google scholar
|
[16] |
Chen J E , Smith A G . A look at diacylglycerol acyltransferases (DGATs) in algae. Journal of Biotechnology, 2012, 162( 1): 28– 39
CrossRef
Google scholar
|
[17] |
Cherchi C , Gu A Z . Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environmental Science & Technology, 2010, 44( 21): 8302– 8307
CrossRef
Google scholar
|
[18] |
Cherchi C , Miljkovic M , Diem M , Gu A Z . nTiO2 induced changes in intracellular composition and nutrient stoichiometry in primary producer —cyanobacteria. Science of the Total Environment, 2015,
CrossRef
Google scholar
|
[19] |
Chowdhury I , Walker S L , Mylon S E . Aggregate morphology of nano-TiO2: Role of primary particle size, solution chemistry, and organic matter. Environmental Science. Processes & Impacts, 2013, 15( 1): 275– 282
CrossRef
Google scholar
|
[20] |
Dalai S , Pakrashi S , Joyce Nirmala M , Chaudhri A , Chandrasekaran N , Mandal A B , Mukherjee A . Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology (Amsterdam, Netherlands), 2013,
CrossRef
Google scholar
|
[21] |
da Silva M B , Abrantes N , Nogueira V , Gonçalves F . TiO2 nanoparticles for the remediation of eutrophic shallow freshwater systems: Efficiency and impacts on aquatic biota under a microcosm experiment. Aquatic Toxicology, 2016, 178
|
[22] |
Dauda S , Chia M A , Bako S P . Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquatic Toxicology (Amsterdam, Netherlands), 2017,
CrossRef
Google scholar
|
[23] |
Dědková K , Bureš Z , Palarčík J , Vlček M , Kukutschová J . Acute aquatic toxicity of gold nanoparticles to freshwater green algae. Procceedings of NanoCon, 2014, 2014
|
[24] |
Ding W , Tan X , Chen G , Xu J , Yu K , Huang Y . Molecular-level insights on the facet-dependent degradation of perfluorooctanoic acid. ACS Applied Materials & Interfaces, 2021, 13( 35): 41584– 41592
CrossRef
Google scholar
|
[25] |
Du F , Hu C , Sun X , Zhang L , Xu N . Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture (Amsterdam, Netherlands), 2021,
CrossRef
Google scholar
|
[26] |
Eroglu E , Eggers P K , Winslade M , Smith S M , Raston C L . Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chemistry, 2013, 15( 11): 3155– 3159
CrossRef
Google scholar
|
[27] |
Fan J , Hu Y B , Li X Y . Nanoscale zero-valent iron coated with magnesium hydroxide for effective removal of Cyanobacteria from water. ACS Sustainable Chemistry & Engineering, 2018, 6( 11): 15135– 15142
CrossRef
Google scholar
|
[28] |
Farooq W , Lee H U , Huh Y S , Lee Y C . Chlorella vulgaris cultivation with an additive of magnesium-aminoclay. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2016, 17
|
[29] |
Fazal T , Rehman M S U , Javed F , Akhtar M , Mushtaq A , Hafeez A , Alaud Din A , Iqbal J , Rashid N , Rehman F . Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere, 2021, 281
CrossRef
Google scholar
|
[30] |
Fonseca A J , Pina F , Macedo M F , Leal N , Romanowska-Deskins A , Laiz L , Gomez-Bolea A , Saiz-Jimenez C . Anatase as an alternative application for preventing biodeterioration of mortars: Evaluation and comparison with other biocides. International Biodeterioration & Biodegradation, 2010, 64( 5): 388– 396
CrossRef
Google scholar
|
[31] |
Franklin N M , Rogers N J , Apte S C , Batley G E , Gadd G E , Casey P S . Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 2007, 41( 24): 8484– 8490
CrossRef
Google scholar
|
[32] |
Giraldo J P , Landry M P , Faltermeier S M , McNicholas T P , Iverson N M , Boghossian A A , Reuel N F , Hilmer A J , Sen F , Brew J A , Strano M S . Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 2014, 13( 4): 400– 408
CrossRef
Google scholar
|
[33] |
Glomstad B , Altin D , Sørensen L , Liu J , Jenssen B M , Booth A M . Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environmental Science & Technology, 2016, 50( 5): 2660– 2668
CrossRef
Google scholar
|
[34] |
Graziani L , Quagliarini E , Osimani A , Aquilanti L , Clementi F , Yepremian C , Lariccia V , Amoroso S , D’orazio M . Evaluation of inhibitory effect of TiO2 nanocoatings against microalgal growth on clay brick facades under weak UV exposure conditions. Building and Environment, 2013, 64
CrossRef
Google scholar
|
[35] |
Grigoriev I V , Hayes R D , Calhoun S , Kamel B , Wang A , Ahrendt S , Dusheyko S , Nikitin R , Mondo S J , Salamov A , Shabalov I , Kuo A . PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research, 2021, 49( D1): D1004– D1011
CrossRef
Google scholar
|
[36] |
Guleri S , Singh K , Kaushik R , Dhankar R , Tiwari A . Phycoremediation: A novel and synergistic approach in wastewater remediation. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 10( 1): 98– 106
CrossRef
Google scholar
|
[37] |
Gunasekaran D , Chandrasekaran N , Jenkins D , Mukherjee A . Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina. Journal of Environmental Chemical Engineering, 2020, 8( 5): 104250–
CrossRef
Google scholar
|
[38] |
Gunawan C , Sirimanoonphan A , Teoh W Y , Marquis C P , Amal R . Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 2013, 260
CrossRef
Google scholar
|
[39] |
Hagen A , Hertel T . Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Letters, 2003, 3( 3): 383– 388
CrossRef
Google scholar
|
[40] |
Haque E , Ward A C . Zebrafish as a model to evaluate nanoparticle toxicity. Nanomaterials, 2018, 8
|
[41] |
Hartmann N B , Von der Kammer F , Hofmann T , Baalousha M , Ottofuelling S , Baun A . Algal testing of titanium dioxide nanoparticles: Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 2010, 269( 2–3): 190– 197
CrossRef
Google scholar
|
[42] |
Hazani A A , Ibrahim M M , Arif I A , Shehata A I , El-Gaaly G , Daoud M , Fouad D , Rizwana H , Moubayed N . Ecotoxicity of Ag-nanoparticles to microalgae. Journal of Pure & Applied Microbiology, 2013, 7
|
[43] |
Hazeem L J , Kuku G , Dewailly E , Slomianny C , Barras A , Hamdi A , Boukherroub R , Culha M , Bououdina M . Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris.. Nanomaterials (Basel, Switzerland), 2019, 9( 7): 914–
CrossRef
Google scholar
|
[44] |
Hazeem L J , Yesilay G , Bououdina M , Perna S , Cetin D , Suludere Z , Barras A , Boukherroub R . Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. Marine Pollution Bulletin, 2020, 156
CrossRef
Google scholar
|
[45] |
He M , Chen Y , Yan Y , Zhou S , Wang C . Influence of interaction between α-Fe2O3 nanoparticles and dissolved fulvic acid on the physiological responses in Synechococcus sp. PCC7942. Bulletin of Environmental Contamination and Toxicology, 2017, 99( 6): 719– 727
CrossRef
Google scholar
|
[46] |
Hu Y R , Wang F , Wang S K , Liu C Z , Guo C . Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresource Technology, 2013, 138
CrossRef
Google scholar
|
[47] |
Huang Y , Adeleye A S , Zhao L , Minakova A S , Anumol T , Keller A A . Antioxidant response of cucumber (Cucumis sativus) exposed to nano copper pesticide: Quantitative determination via LC-MS/MS. Food Chemistry, 2019, 270
CrossRef
Google scholar
|
[48] |
Huang Y X , Keller A A , Cervantes-Aviles P , Nelson J . Fast multielement quantification of nanoparticles in wastewater and sludge using single-particle ICP-MS. ACS ES&T Water, 2021, 1( 1): 205– 213
|
[49] |
Huang Y X , Li W W , Minakova A S , Anumol T , Keller A A . Quantitative analysis of changes in amino acids levels for cucumber (Cucumis sativus) exposed to nano copper. NanoImpact, 2018, 12
CrossRef
Google scholar
|
[50] |
Iswarya V , Bhuvaneshwari M , Alex S A , Iyer S , Chaudhuri G , Chandrasekaran P T , Bhalerao G M , Chakravarty S , Raichur A M , Chandrasekaran N , Mukherjee A . Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicology (Amsterdam, Netherlands), 2015,
CrossRef
Google scholar
|
[51] |
Ji J , Long Z F , Lin D H . Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 2011, 170( 2-3): 525– 530
CrossRef
Google scholar
|
[52] |
Jiang Z , Tan X , Huang Y . Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806( Pt 4): 150924–
CrossRef
Google scholar
|
[53] |
Jing L , Xu Y , Xie M , Liu J , Deng J , Huang L , Xu H , Li H . Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production. Current Opinion in Biotechnology, 2018, 23( 3): 346– 351
|
[54] |
Jones C S , Mayfield S P . Algae biofuels: Versatility for the future of bioenergy. Current opinion in biotechnology, 2012, 23( 3): 346– 351
|
[55] |
Kartik A , Akhil D , Lakshmi D , Panchamoorthy Gopinath K , Arun J , Sivaramakrishnan R , Pugazhendhi A . A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology, 2021, 329
CrossRef
Google scholar
|
[56] |
Keller A A , Mcferran S , Lazareva A , Suh S . Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 2013, 15( 6): 1692–
CrossRef
Google scholar
|
[57] |
Kim B , Praveenkumar R , Lee J , Nam B , Kim D M , Lee K , Lee Y C , Oh Y K . Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations. Bioresource Technology, 2016, 219
CrossRef
Google scholar
|
[58] |
Kim J , Yoo G , Lee H , Lim J , Kim K , Kim C W , Park M S , Yang J W . Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances, 2013, 31( 6): 862– 876
CrossRef
Google scholar
|
[59] |
Kong Y , Sun H , Zhang S , Zhao B , Zhao Q , Zhang X , Li H . Oxidation process of lead sulfide nanoparticle in the atmosphere or natural water and influence on toxicity toward Chlorella vulgaris. Journal of Hazardous Materials, 2021, 417
CrossRef
Google scholar
|
[60] |
Kubatova H , Zemanová E , Klouda K , Bilek K , Kadukova J . Effects of C60 fullerene and its derivatives on selected microorganisms. Journal of Microbiology Research (Rosemead, Calif.), 2013,
|
[61] |
Kumar R , Gopal M , Pabbi S , Paul S , Imteyaz Alam M , Yadav S , Nair K K , Chauhan N , Srivastava C , Gogoi R , Singh P K , Goswami A . Effect of nanohexaconazole on nitrogen fixing blue green algae and bacteria. Journal of Nanoscience and Nanotechnology, 2016, 16( 1): 643– 647
CrossRef
Google scholar
|
[62] |
Lambreva M D , Lavecchia T , Tyystjärvi E , Antal T K , Orlanducci S , Margonelli A , Rea G . Potential of carbon nanotubes in algal biotechnology. Photosynthesis Research, 2015, 125( 3): 451– 471
CrossRef
Google scholar
|
[63] |
Lauritano C , Ferrante M I , Rogato A . Marine natural products from microalgae: An omics overview. Marine Drugs, 2019, 17( 5): 269–
CrossRef
Google scholar
|
[64] |
Lee S , Kang Y I , Ha S J , Moon J H . Carbon-deposited TiO2 nanoparticle balls for high-performance visible photocatalysis. RSC Advances, 2014, 4( 98): 55371– 55376
CrossRef
Google scholar
|
[65] |
Li F , Liang Z , Zheng X , Zhao W , Wu M , Wang Z . Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology (Amsterdam, Netherlands), 2015a,
CrossRef
Google scholar
|
[66] |
Li X , Zhou S , Fan W . Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. International Journal of Environmental Research and Public Health, 2016, 13( 6): 575–
CrossRef
Google scholar
|
[67] |
Li X M , Schirmer K , Bernard L , Sigg L , Pillai S , Behra R . Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environmental Science. Nano, 2015b, 2( 6): 594– 602
CrossRef
Google scholar
|
[68] |
Li Y , Zhang W , Niu J , Chen Y . Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6( 6): 5164– 5173
CrossRef
Google scholar
|
[69] |
Li Z , Juneau P , Lian Y , Zhang W , Wang S , Wang C , Shu L , Yan Q , He Z , Xu K . Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus. Plants (Basel, Switzerland), 2020a, 9( 12): 1748–
|
[70] |
Liu P , Corilo Y E , Marshall A G . Polar lipid composition of biodiesel algae candidates Nannochloropsis oculata and Haematococcus pluvialis from nano liquid chromatography coupled with negative electrospray ionization 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 2016, 30( 10): 8270– 8276
CrossRef
Google scholar
|
[71] |
Liu X S , Wang J M . Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 2020, 14( 6): 97–
CrossRef
Google scholar
|
[72] |
Liu X S , Wang J M , Huang Y W . Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling—Is it additive or synergistic? Frontiers of Environmental Science & Engineering, 2022, 16( 5): 59–
CrossRef
Google scholar
|
[73] |
Liu Y , Wang S , Wang Z , Ye N , Fang H , Wang D . TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials (Basel, Switzerland), 2018, 8( 2): 95–
CrossRef
Google scholar
|
[74] |
López-Alonso M , Díaz-Soler B , Martínez-Rojas M , Fito-López C , Martínez-Aires M D . Management of occupational risk prevention of nanomaterials manufactured in construction sites in the EU. International Journal of Environmental Research and Public Health, 2020, 17( 24): 9211–
CrossRef
Google scholar
|
[75] |
Manier N , Bado-Nilles A , Delalain P , Aguerre-Chariol O , Pandard P . Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental Pollution (Barking, Essex: 1987), 2013, 180
|
[76] |
Manzo S , Miglietta M L , Rametta G , Buono S , Di Francia G . Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 2013, 445–446
CrossRef
Google scholar
|
[77] |
Masojidek J , Ranglova K , Lakatos G , Silva Benavides A M , Torzillo G . Variables governing photosynthesis and growth in microalgae mass cultures. Processes (Basel, Switzerland), 2021, 9( 5): 820–
CrossRef
Google scholar
|
[78] |
Metzler D M , Erdem A , Tseng Y H , Huang C P . Responses of algal cells to engineered nanoparticles measured as algal cell population, Chlorophyll a, and lipid peroxidation: Effect of particle size and type. Journal of Nanotechnology, 2012, 2012
CrossRef
Google scholar
|
[79] |
Metzler D M , Li M , Erdem A , Huang C P . Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 2011, 170( 2–3): 538– 546
CrossRef
Google scholar
|
[80] |
Middepogu A , Hou J , Gao X , Lin D . Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2018, 161
CrossRef
Google scholar
|
[81] |
Mohsenpour S F , Hennige S , Willoughby N , Adeloye A , Gutierrez T . Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 2021, 752
CrossRef
Google scholar
|
[82] |
Morelli E , Cioni P , Posarelli M , Gabellieri E . Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquatic Toxicology (Amsterdam, Netherlands), 2012,
CrossRef
Google scholar
|
[83] |
Nogueira P F M , Nakabayashi D , Zucolotto V . The effects of graphene oxide on green algae Raphidocelis subcapitata.. Aquatic Toxicology (Amsterdam, Netherlands), 2015,
CrossRef
Google scholar
|
[84] |
Ouabadi N , Gauthier-Brunet V , Cabioc’h T , Bei G P , Dubois S . Formation mechanisms of Ti3SnC2 nanolaminate carbide using Fe as additive. Journal of the American Ceramic Society, Oukarroum A, Bras S, Perreault F, Popovic R (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta.. Ecotoxicology and Environmental Safety, 2013,
|
[85] |
Oukarroum A , Bras S , Perreault F , Popovic R . Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 2012, 78
CrossRef
Google scholar
|
[86] |
PattarkineM V, PattarkineV M (2012). Nanotechnology for algal biofuels. New York: Springer
|
[87] |
Pillai S , Behra R , Nestler H , Suter J F , Schirmer K . Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111( 9): 3490– 3495
CrossRef
Google scholar
|
[88] |
Praveenkumar R , Gwak R , Kang M , Shim T S , Cho S , Lee J , Oh Y K , Lee K , Kim B . Regenerative astaxanthin extraction from a single microalgal (Haematococcus pluvialis) cell using a gold nano-scalpel. ACS Applied Materials & Interfaces, 2015, 7( 40): 22702– 22708
CrossRef
Google scholar
|
[89] |
Premnath N , Mohanrasu K , Guru Raj Rao R , Dinesh G H , Prakash G S , Ananthi V , Ponnuchamy K , Muthusamy G , Arun A . A crucial review on polycyclic aromatic hydrocarbons: Environmental occurrence and strategies for microbial degradation. Chemosphere, 2021, 280
CrossRef
Google scholar
|
[90] |
RaiV, KarthikaichamyA, DasD, NoronhaS, WangikarP P, SrivastavaS (2016). Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. Omics A Journal of Integrative Biology: omi.2016.0065
|
[91] |
Rhiem S , Riding M J , Baumgartner W , Martin F L , Semple K T , Jones K C , Schäffer A , Maes H M . Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells. Environmental Pollution (Barking, Essex: 1987), 2015,
|
[92] |
Rocha T L , Gomes T , Sousa V S , Mestre N C , Bebianno M J . Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview. Marine Environmental Research, 2015, 111
CrossRef
Google scholar
|
[93] |
Rodea-Palomares I , Gonzalo S , Santiago-Morales J , Leganés F , García-Calvo E , Rosal R , Fernández-Piñas F . An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquatic Toxicology (Amsterdam, Netherlands), 2012,
CrossRef
Google scholar
|
[94] |
Saber M , Golzary A , Hosseinpour M , Takahashi F , Yoshikawa K . Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Applied Energy, 2016, 183( dec.1): 566– 576
|
[95] |
Sadiq I M , Dalai S , Chandrasekaran N , Mukherjee A . Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 2011a, 74( 5): 1180– 1187
CrossRef
Google scholar
|
[96] |
Sadiq I M , Pakrashi S , Chandrasekaran N , Mukherjee A . Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research, 2011b, 13( 8): 3287– 3299
CrossRef
Google scholar
|
[97] |
Saison C , Perreault F , Daigle J C , Fortin C , Claverie J , Morin M , Popovic R . Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.. Aquatic Toxicology (Amsterdam, Netherlands), 2010, 96( 2): 109– 114
CrossRef
Google scholar
|
[98] |
Samara Sanchez-Sandoval D , Gonzalez-Ortega O , Fernanda Navarro-Martinez M , Marcos Castro-Tapia J , Garcia De La Cruz R F , Elena Soria-Guerra R . Photodegradation and removal of diclofenac by the green alga Nannochloropsis oculata. Phyton, 2021, 90( 5): 1519– 1533
CrossRef
Google scholar
|
[99] |
Santschi C , Von Moos N , Koman V B , Slaveykova V I , Bowen P , Martin O J F . Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. Journal of Nanobiotechnology, 2017, 15( 1): 19–
CrossRef
Google scholar
|
[100] |
ScheererS, Ortega-MoralesO, GaylardeC (2009). Advances in Applied Microbiology, Vol 66. Laskin A L, Sariaslani S, Gadd G, eds. San Diego.: Academic Press, 97–139
|
[101] |
Schwab F , Bucheli T D , Lukhele L P , Magrez A , Nowack B , Sigg L , Knauer K . Are carbon nanotube effects on green algae caused by shading and agglomeration?. Environmental Science & Technology, 2011, 45( 14): 6136– 6144
CrossRef
Google scholar
|
[102] |
Serag M F , Kaji N , Habuchi S , Bianco A , Baba Y . Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 2013, 3( 15): 4856– 4862
CrossRef
Google scholar
|
[103] |
Sohn E K , Chung Y S , Johari S A , Kim T G , Kim J K , Lee J H , Lee Y H , Kang S W , Yu I J . Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. BioMed Research International, 2015, 2015
|
[104] |
Song J , Li C , Wang X , Zhi S , Wang X , Sun J . Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Frontiers of Environmental Science & Engineering, 2021, 15( 6): 129–
CrossRef
Google scholar
|
[105] |
Sun S , Deng H , Yang J , Zhou D , Wan X , Han F . Photodegradation of butyl 4-hydroxybenzoate in the presence of peroxides and mediated by dissolved organic matter. Environmental Engineering Science, 2020, 37( 7): 497– 508
CrossRef
Google scholar
|
[106] |
Tan X , Chen G , Xing D , Ding W , Liu H , Li T , Huang Y . Indium-modified Ga2O3 hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid. Environmental Science: Nano, 2020, 7( 8): 2229– 2239
CrossRef
Google scholar
|
[107] |
Taylor M P , Forbes M K , Opeskin B , Parr N , Lanphear B P . The relationship between atmospheric lead emissions and aggressive crime: An ecological study. Environmental Health, 2016, 15
CrossRef
Google scholar
|
[108] |
Thiagarajan V , Alex S A , Seenivasan R , Chandrasekaran N , Mukherjee A . Toxicity evaluation of nano-TiO2 in the presence of functionalized microplastics at two trophic levels: Algae and crustaceans. Science of the Total Environment, 2021, 784
CrossRef
Google scholar
|
[109] |
Torkamani S , Wani S N , Tang Y J , Sureshkumar R . Plasmon-enhanced microalgal growth in miniphotobioreactors. Applied Physics Letters, 2010, 97( 4): 043703–
CrossRef
Google scholar
|
[110] |
Tu Y D , Zhou Z , Yan R J , Gan Y P , Huang W Z , Weng X X , Huang H , Zhang W K , Tao X Y . Bio-template synthesis of spirulina/TiO2 composite with enhanced photocatalytic performance. RSC Advances, 2012, 2( 28): 10585– 10591
CrossRef
Google scholar
|
[111] |
Tyne W , Little S , Spurgeon D J , Svendsen C . Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial. Ecotoxicology and Environmental Safety, 2015, 120
CrossRef
Google scholar
|
[112] |
Vargas-Estrada L , Torres-Arellano S , Longoria A , Arias D M , Okoye P U , Sebastian P J . Role of nanoparticles on microalgal cultivation: A review. Fuel, 2020, 280
CrossRef
Google scholar
|
[113] |
Verma A , Prakash N T , Toor A P . An efficient TiO2 coated immobilized system for the degradation studies of herbicide isoproturon: Durability studies. Chemosphere, 2014, 109
CrossRef
Google scholar
|
[114] |
Verneuil L , Silvestre J , Randrianjatovo I , Marcato-Romain C E , Girbal-Neuhauser E , Mouchet F , Flahaut E , Gauthier L , Pinelli E . Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea: An adhesive response for an adaptive issue. Carbon, 2015, 88
CrossRef
Google scholar
|
[115] |
von Moos N , Slaveykova V I . Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae: State of the art and knowledge gaps. Nanotoxicology, 2014, 8( 6): 605– 630
CrossRef
Google scholar
|
[116] |
Wahid M H , Eroglu E , Chen X , Smith S M , Raston C L . Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Advances, 2013, 3( 22): 8180– 8183
CrossRef
Google scholar
|
[117] |
Wang P , Zhao L , Huang Y , Qian W , Zhu X , Wang Z , Cai Z . Combined toxicity of nano-TiO2 and Cd2+ to Scenedesmus obliquus: Effects at different concentration ratios. Journal of Hazardous Materials, 2021a, 418
CrossRef
Google scholar
|
[118] |
Wang S , Wang Z , Chen M , Fang H , Wang D . Co-exposure of freshwater microalgae to tetrabromobisphenol A and sulfadiazine: Oxidative stress biomarker responses and joint toxicity prediction. Bulletin of Environmental Contamination and Toxicology, 2017, 99( 4): 438– 444
CrossRef
Google scholar
|
[119] |
Wang X , Zhang J , Sun W , Yang W , Cao J , Li Q , Peng Y , Shang J K . Anti-algal activity of palladium oxide-modified nitrogen-doped titanium oxide photocatalyst on Anabaena sp. PCC 7120 and its photocatalytic degradation on Microcystin LR under visible light illumination. Chemical Engineering Journal, 2015, 264
CrossRef
Google scholar
|
[120] |
Wang Z , Li J , Zhao J , Xing B . Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science & Technology, 2011, 45( 14): 6032– 6040
CrossRef
Google scholar
|
[121] |
Wang Z , Zhang F , Vijver M G , Peijnenburg W J G M . Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere, 2021b, 276
CrossRef
Google scholar
|
[122] |
Wei C , Zhang Y , Guo J , Han B , Yang X , Yuan J . Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. Journal of Environmental Sciences (China), 2010a, 22( 1): 155– 160
CrossRef
Google scholar
|
[123] |
Wei L , Li H , Lu J . Algae-induced photodegradation of antibiotics: A review. Environmental Pollution, 2021, 272
CrossRef
Google scholar
|
[124] |
Wei L , Thakkar M , Chen Y , Ntim S A , Mitra S , Zhang X . Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta.. Aquatic Toxicology (Amsterdam, Netherlands), 2010, 100( 2): 194– 201
CrossRef
Google scholar
|
[125] |
Wong S W Y , Leung P T Y , Djurisić A B , Leung K M Y . Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry, 2010, 396( 2): 609– 618
CrossRef
Google scholar
|
[126] |
Xiao A , Wang C , Chen J , Guo R , Yan Z , Chen J . Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2016, 133
CrossRef
Google scholar
|
[127] |
Xin X , Huang G , Zhang B , Zhou Y . Trophic transfer potential of nTiO2, nZnO, and triclosan in an algae-algae eating fish food chain. Aquatic Toxicology (Amsterdam, Netherlands), 2021, 235
CrossRef
Google scholar
|
[128] |
Xiong Q , Hu L X , Liu Y S , Zhao J L , He L Y , Ying G G . Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment International, 2021a, 155
CrossRef
Google scholar
|
[129] |
Xiong S , Cao X , Fang H , Guo H , Xing B . Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light. Science of the Total Environment, 2021b, 775
CrossRef
Google scholar
|
[130] |
Xu J , Luo X , Wang Y , Feng Y . Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L). growth and soil bacterial community. Environmental Science and Pollution Research International, 2018, 25( 6): 6026– 6035
CrossRef
Google scholar
|
[131] |
Yan Z C J , Xiao A , Shu J , Chen J . Effects of representative quantum dots on microorganisms and phytoplankton: A comparative study. RSC Advances, 2015, 5( 129): 106406– 106412
CrossRef
Google scholar
|
[132] |
Yang X Y , He Q , Guo F C , Liu X B , Chen Y . Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system. Frontiers of Environmental Science & Engineering, 2021, 15( 6): 138–
CrossRef
Google scholar
|
[133] |
Yap J K , Sankaran R , Chew K W , Halimatul Munawaroh H S , Ho S H , Rajesh Banu J , Show P L . Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere, 2021, 281
CrossRef
Google scholar
|
[134] |
Yue Y , Li X , Sigg L , Suter M J F , Pillai S , Behar R , Schirmer K . Interaction of silver nanoparticles with algae and fish cells: A side by side comparison. Journal of Nanobiotechnol, 2017, 15
|
[135] |
Zhang C , Chen X , Tan L , Wang J . Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environmental Science and Pollution Research International, 2018a, 25( 13): 13127– 13133
CrossRef
Google scholar
|
[136] |
Zhang C , Wang J , Tan L , Chen X . Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: Attention to the accumulation of intracellular Zn. Aquatic Toxicology (Amsterdam, Netherlands), 2016a,
CrossRef
Google scholar
|
[137] |
Zhang L Q , Lei C , Yang K , White J C , Lin D H . Cellular response of Chlorella pyrenoidosa to oxidized multi-walled carbon nanotubes. Environmental Science. Nano, 2018b, 5( 10): 2415– 2425
CrossRef
Google scholar
|
[138] |
Zhang Q , Hu J , Lee D J . Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 2016b, 98
CrossRef
Google scholar
|
[139] |
Zhang W X , Elliott D W . Applications of iron nanoparticles for groundwater remediation. Hoboken: Wiley Subscription Services, Inc., 2006, 16( 2): 7– 21
|
[140] |
Zhang Y D , Liu N , Wang W , Sun J T , Zhu L Z . Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L). growth by TiO2 nanoparticles. Frontiers of Environmental Science & Engineering, 2020, 14( 6): 103–
CrossRef
Google scholar
|
[141] |
Zhao C M , Wang W X . Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environmental Science & Technology, 2010, 44( 19): 7699– 7704
CrossRef
Google scholar
|
[142] |
Zhao J , Cao X , Liu X , Wang Z , Zhang C , White J C , Xing B . Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity. Nanotoxicology, 2016, 10( 9): 1297– 1305
CrossRef
Google scholar
|
[143] |
Zhao J , Cao X , Wang Z , Dai Y , Xing B . Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Research, 2017, 111
CrossRef
Google scholar
|
/
〈 | 〉 |