Effects of manufactured nanomaterials on algae: Implications and applications

Yuxiong Huang , Manyu Gao , Wenjing Wang , Ziyi Liu , Wei Qian , Ciara Chun Chen , Xiaoshan Zhu , Zhonghua Cai

Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 122

PDF (1514KB)
Front. Environ. Sci. Eng. ›› 2022, Vol. 16 ›› Issue (9) : 122 DOI: 10.1007/s11783-022-1554-3
REVIEW ARTICLE
REVIEW ARTICLE

Effects of manufactured nanomaterials on algae: Implications and applications

Author information +
History +
PDF (1514KB)

Abstract

● Summary of positive and negative effects of MNMs on algae.

● MNMs adversely affect algal gene expression, metabolite, and growth.

● MNMs induce oxidative stress, mechanical damage and light-shielding effects on algae.

● MNMs can promote production of bioactive substances and environmental remediation.

The wide application of manufactured nanomaterials (MNMs) has resulted in the inevitable release of MNMs into the aquatic environment along their life cycle. As the primary producer in aquatic ecosystems, algae play a critical role in maintaining the balance of ecosystems’ energy flow, material circulation and information transmission. Thus, thoroughly understanding the biological effects of MNMs on algae as well as the underlying mechanisms is of vital importance. We conducted a comprehensive review on both positive and negative effects of MNMs on algae and thoroughly discussed the underlying mechanisms. In general, exposure to MNMs may adversely affect algae’s gene expression, metabolites, photosynthesis, nitrogen fixation and growth rate. The major mechanisms of MNMs-induced inhibition are attributed to oxidative stress, mechanical damages, released metal ions and light-shielding effects. Meanwhile, the rational application of MNMs-algae interactions would promote valuable bioactive substances production as well as control biological and chemical pollutants. Our review could provide a better understanding of the biological effects of MNMs on algae and narrow the knowledge gaps on the underlying mechanisms. It would shed light on the investigation of environmental implications and applications of MNMs-algae interactions and meet the increasing demand for sustainable nanotechnology development.

Graphical abstract

Keywords

Manufactured nanomaterials / Algae / Mechanisms / Effects / Implications / Applications

Cite this article

Download citation ▾
Yuxiong Huang, Manyu Gao, Wenjing Wang, Ziyi Liu, Wei Qian, Ciara Chun Chen, Xiaoshan Zhu, Zhonghua Cai. Effects of manufactured nanomaterials on algae: Implications and applications. Front. Environ. Sci. Eng., 2022, 16(9): 122 DOI:10.1007/s11783-022-1554-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ahmed I , Zhang B , Muneeb-Ur-Rehman M , Fan W . Effect of different shapes of Nano-Cu2O and humic acid on two-generations of Daphnia Magna. Ecotoxicology and Environmental Safety, 2021, 207 : 111274–

[2]

Angela I , Imbi K , Kaja K , Irina B , Villem A , Sandra S , Heiki V , Aleksandr K , Tiina T , Margit H . Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, rrustaceans and mammalian cells in vitro. PLoS One, 2014, 9( 7): e102108–

[3]

Aruoja V , Dubourguier H C , Kasemets K , Kahru A . Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. , 2009, 4( 207): 1461– 1468

[4]

Bhuvaneshwari M , Iswarya V , Vishnu S , Chandrasekaran N , Mukherjee A . Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia). Environmental Research, 2018, 164 : 395– 404

[5]

Borlido L , Azevedo A M , Roque A C A , Aires-Barros M R . Magnetic separations in biotechnology. Biotechnology Advances, 2013, 31( 8): 1374– 1385

[6]

Bouldin J L , Ingle T M , Sengupta A , Alexander R , Hannigan R E , Buchanan R A . Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 2008, 27( 9): 1958– 1963

[7]

Burchardt A D , Carvalho R N , Valence A , Nativo P , Gilliland D , Garcia C P , Passarella R , Pedroni V , Rossi F , Lettieri T . Effects of silver nanoparticles in diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp. Environmental Science & Technology, 2012, 46( 20): 11336– 11344

[8]

Cai A , Guo A , Ma Z . Immobilization of TiO2 nanoparticles on Chlorella pyrenoidosa cells for enhanced visible-light-driven photocatalysis. Materials (Basel), 2017, 10( 5): 541–

[9]

Campos B , Rivetti C , Rosenkranz P , Navas J M , Barata C . Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.. Aquatic Toxicology (Amsterdam, Netherlands), 2013, ( 130–131): 174– 183

[10]

Cedervall T , Hansson L A , Lard M , Frohm B , Linse S . Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One, 2012, 7( 2): e32254–

[11]

Chang Y H , Wu M C . Enhanced photocatalytic reduction of Cr(VI) by combined magnetic TiO2-based NFs and ammonium oxalate hole scavengers. Catalysts, 2019, 9( 1): 72– 84

[12]

Chen C , Zhu K , Chen K , Alsaedi A , Hayat T . Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI). Journal of Colloid and Interface Science, 2018, 526 : 1– 8

[13]

Chen F R , Xiao Z G , Yue L , Wang J , Feng Y , Zhu X S , Wang Z Y , Xing B S . Algae response to engineered nanoparticles: Current understanding, mechanisms and implications. Environmental Science. Nano, 2019, 6( 4): 1026– 1042

[14]

Chen G , Wang H , Dong W , Huang Y , Zhao Z , Zeng Y . Graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine. Chemical Engineering Journal, 2021, 405 : 126850–

[15]

Chen J , Qian Y , Li H , Cheng Y , Zhao M . The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa. Environmental Science and Pollution Research International, 2015, 22( 16): 12407– 12414

[16]

Chen J E , Smith A G . A look at diacylglycerol acyltransferases (DGATs) in algae. Journal of Biotechnology, 2012, 162( 1): 28– 39

[17]

Cherchi C , Gu A Z . Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environmental Science & Technology, 2010, 44( 21): 8302– 8307

[18]

Cherchi C , Miljkovic M , Diem M , Gu A Z . nTiO2 induced changes in intracellular composition and nutrient stoichiometry in primary producer —cyanobacteria. Science of the Total Environment, 2015, ( 512–513): 345– 352

[19]

Chowdhury I , Walker S L , Mylon S E . Aggregate morphology of nano-TiO2: Role of primary particle size, solution chemistry, and organic matter. Environmental Science. Processes & Impacts, 2013, 15( 1): 275– 282

[20]

Dalai S , Pakrashi S , Joyce Nirmala M , Chaudhri A , Chandrasekaran N , Mandal A B , Mukherjee A . Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology (Amsterdam, Netherlands), 2013, ( 138–139): 1– 11

[21]

da Silva M B , Abrantes N , Nogueira V , Gonçalves F . TiO2 nanoparticles for the remediation of eutrophic shallow freshwater systems: Efficiency and impacts on aquatic biota under a microcosm experiment. Aquatic Toxicology, 2016, 178 : 58– 71

[22]

Dauda S , Chia M A , Bako S P . Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquatic Toxicology (Amsterdam, Netherlands), 2017, ( 187): 108– 114

[23]

Dědková K , Bureš Z , Palarčík J , Vlček M , Kukutschová J . Acute aquatic toxicity of gold nanoparticles to freshwater green algae. Procceedings of NanoCon, 2014, 2014 : 5– 7

[24]

Ding W , Tan X , Chen G , Xu J , Yu K , Huang Y . Molecular-level insights on the facet-dependent degradation of perfluorooctanoic acid. ACS Applied Materials & Interfaces, 2021, 13( 35): 41584– 41592

[25]

Du F , Hu C , Sun X , Zhang L , Xu N . Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture (Amsterdam, Netherlands), 2021, ( 543): 736978–

[26]

Eroglu E , Eggers P K , Winslade M , Smith S M , Raston C L . Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chemistry, 2013, 15( 11): 3155– 3159

[27]

Fan J , Hu Y B , Li X Y . Nanoscale zero-valent iron coated with magnesium hydroxide for effective removal of Cyanobacteria from water. ACS Sustainable Chemistry & Engineering, 2018, 6( 11): 15135– 15142

[28]

Farooq W , Lee H U , Huh Y S , Lee Y C . Chlorella vulgaris cultivation with an additive of magnesium-aminoclay. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2016, 17 : 211– 216

[29]

Fazal T , Rehman M S U , Javed F , Akhtar M , Mushtaq A , Hafeez A , Alaud Din A , Iqbal J , Rashid N , Rehman F . Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere, 2021, 281 : 130758–

[30]

Fonseca A J , Pina F , Macedo M F , Leal N , Romanowska-Deskins A , Laiz L , Gomez-Bolea A , Saiz-Jimenez C . Anatase as an alternative application for preventing biodeterioration of mortars: Evaluation and comparison with other biocides. International Biodeterioration & Biodegradation, 2010, 64( 5): 388– 396

[31]

Franklin N M , Rogers N J , Apte S C , Batley G E , Gadd G E , Casey P S . Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 2007, 41( 24): 8484– 8490

[32]

Giraldo J P , Landry M P , Faltermeier S M , McNicholas T P , Iverson N M , Boghossian A A , Reuel N F , Hilmer A J , Sen F , Brew J A , Strano M S . Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 2014, 13( 4): 400– 408

[33]

Glomstad B , Altin D , Sørensen L , Liu J , Jenssen B M , Booth A M . Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environmental Science & Technology, 2016, 50( 5): 2660– 2668

[34]

Graziani L , Quagliarini E , Osimani A , Aquilanti L , Clementi F , Yepremian C , Lariccia V , Amoroso S , D’orazio M . Evaluation of inhibitory effect of TiO2 nanocoatings against microalgal growth on clay brick facades under weak UV exposure conditions. Building and Environment, 2013, 64 : 38– 45

[35]

Grigoriev I V , Hayes R D , Calhoun S , Kamel B , Wang A , Ahrendt S , Dusheyko S , Nikitin R , Mondo S J , Salamov A , Shabalov I , Kuo A . PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research, 2021, 49( D1): D1004– D1011

[36]

Guleri S , Singh K , Kaushik R , Dhankar R , Tiwari A . Phycoremediation: A novel and synergistic approach in wastewater remediation. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 10( 1): 98– 106

[37]

Gunasekaran D , Chandrasekaran N , Jenkins D , Mukherjee A . Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina. Journal of Environmental Chemical Engineering, 2020, 8( 5): 104250–

[38]

Gunawan C , Sirimanoonphan A , Teoh W Y , Marquis C P , Amal R . Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 2013, 260 : 984– 992

[39]

Hagen A , Hertel T . Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Letters, 2003, 3( 3): 383– 388

[40]

Haque E , Ward A C . Zebrafish as a model to evaluate nanoparticle toxicity. Nanomaterials, 2018, 8 : 561–

[41]

Hartmann N B , Von der Kammer F , Hofmann T , Baalousha M , Ottofuelling S , Baun A . Algal testing of titanium dioxide nanoparticles: Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 2010, 269( 2–3): 190– 197

[42]

Hazani A A , Ibrahim M M , Arif I A , Shehata A I , El-Gaaly G , Daoud M , Fouad D , Rizwana H , Moubayed N . Ecotoxicity of Ag-nanoparticles to microalgae. Journal of Pure & Applied Microbiology, 2013, 7 : 233– 241

[43]

Hazeem L J , Kuku G , Dewailly E , Slomianny C , Barras A , Hamdi A , Boukherroub R , Culha M , Bououdina M . Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris.. Nanomaterials (Basel, Switzerland), 2019, 9( 7): 914–

[44]

Hazeem L J , Yesilay G , Bououdina M , Perna S , Cetin D , Suludere Z , Barras A , Boukherroub R . Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. Marine Pollution Bulletin, 2020, 156 : 111278–

[45]

He M , Chen Y , Yan Y , Zhou S , Wang C . Influence of interaction between α-Fe2O3 nanoparticles and dissolved fulvic acid on the physiological responses in Synechococcus sp. PCC7942. Bulletin of Environmental Contamination and Toxicology, 2017, 99( 6): 719– 727

[46]

Hu Y R , Wang F , Wang S K , Liu C Z , Guo C . Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresource Technology, 2013, 138 : 387– 390

[47]

Huang Y , Adeleye A S , Zhao L , Minakova A S , Anumol T , Keller A A . Antioxidant response of cucumber (Cucumis sativus) exposed to nano copper pesticide: Quantitative determination via LC-MS/MS. Food Chemistry, 2019, 270 : 47– 52

[48]

Huang Y X , Keller A A , Cervantes-Aviles P , Nelson J . Fast multielement quantification of nanoparticles in wastewater and sludge using single-particle ICP-MS. ACS ES&T Water, 2021, 1( 1): 205– 213

[49]

Huang Y X , Li W W , Minakova A S , Anumol T , Keller A A . Quantitative analysis of changes in amino acids levels for cucumber (Cucumis sativus) exposed to nano copper. NanoImpact, 2018, 12 : 9– 17

[50]

Iswarya V , Bhuvaneshwari M , Alex S A , Iyer S , Chaudhuri G , Chandrasekaran P T , Bhalerao G M , Chakravarty S , Raichur A M , Chandrasekaran N , Mukherjee A . Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicology (Amsterdam, Netherlands), 2015, ( 161): 154– 169

[51]

Ji J , Long Z F , Lin D H . Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 2011, 170( 2-3): 525– 530

[52]

Jiang Z , Tan X , Huang Y . Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806( Pt 4): 150924–

[53]

Jing L , Xu Y , Xie M , Liu J , Deng J , Huang L , Xu H , Li H . Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production. Current Opinion in Biotechnology, 2018, 23( 3): 346– 351

[54]

Jones C S , Mayfield S P . Algae biofuels: Versatility for the future of bioenergy. Current opinion in biotechnology, 2012, 23( 3): 346– 351

[55]

Kartik A , Akhil D , Lakshmi D , Panchamoorthy Gopinath K , Arun J , Sivaramakrishnan R , Pugazhendhi A . A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology, 2021, 329 : 124868–

[56]

Keller A A , Mcferran S , Lazareva A , Suh S . Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 2013, 15( 6): 1692–

[57]

Kim B , Praveenkumar R , Lee J , Nam B , Kim D M , Lee K , Lee Y C , Oh Y K . Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations. Bioresource Technology, 2016, 219 : 608– 613

[58]

Kim J , Yoo G , Lee H , Lim J , Kim K , Kim C W , Park M S , Yang J W . Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances, 2013, 31( 6): 862– 876

[59]

Kong Y , Sun H , Zhang S , Zhao B , Zhao Q , Zhang X , Li H . Oxidation process of lead sulfide nanoparticle in the atmosphere or natural water and influence on toxicity toward Chlorella vulgaris. Journal of Hazardous Materials, 2021, 417 : 126016–

[60]

Kubatova H , Zemanová E , Klouda K , Bilek K , Kadukova J . Effects of C60 fullerene and its derivatives on selected microorganisms. Journal of Microbiology Research (Rosemead, Calif.), 2013, ( 3): 152– 162

[61]

Kumar R , Gopal M , Pabbi S , Paul S , Imteyaz Alam M , Yadav S , Nair K K , Chauhan N , Srivastava C , Gogoi R , Singh P K , Goswami A . Effect of nanohexaconazole on nitrogen fixing blue green algae and bacteria. Journal of Nanoscience and Nanotechnology, 2016, 16( 1): 643– 647

[62]

Lambreva M D , Lavecchia T , Tyystjärvi E , Antal T K , Orlanducci S , Margonelli A , Rea G . Potential of carbon nanotubes in algal biotechnology. Photosynthesis Research, 2015, 125( 3): 451– 471

[63]

Lauritano C , Ferrante M I , Rogato A . Marine natural products from microalgae: An omics overview. Marine Drugs, 2019, 17( 5): 269–

[64]

Lee S , Kang Y I , Ha S J , Moon J H . Carbon-deposited TiO2 nanoparticle balls for high-performance visible photocatalysis. RSC Advances, 2014, 4( 98): 55371– 55376

[65]

Li F , Liang Z , Zheng X , Zhao W , Wu M , Wang Z . Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology (Amsterdam, Netherlands), 2015a, ( 158): 1– 13

[66]

Li X , Zhou S , Fan W . Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. International Journal of Environmental Research and Public Health, 2016, 13( 6): 575–

[67]

Li X M , Schirmer K , Bernard L , Sigg L , Pillai S , Behra R . Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environmental Science. Nano, 2015b, 2( 6): 594– 602

[68]

Li Y , Zhang W , Niu J , Chen Y . Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6( 6): 5164– 5173

[69]

Li Z , Juneau P , Lian Y , Zhang W , Wang S , Wang C , Shu L , Yan Q , He Z , Xu K . Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus. Plants (Basel, Switzerland), 2020a, 9( 12): 1748–

[70]

Liu P , Corilo Y E , Marshall A G . Polar lipid composition of biodiesel algae candidates Nannochloropsis oculata and Haematococcus pluvialis from nano liquid chromatography coupled with negative electrospray ionization 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 2016, 30( 10): 8270– 8276

[71]

Liu X S , Wang J M . Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 2020, 14( 6): 97–

[72]

Liu X S , Wang J M , Huang Y W . Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling—Is it additive or synergistic? Frontiers of Environmental Science & Engineering, 2022, 16( 5): 59–

[73]

Liu Y , Wang S , Wang Z , Ye N , Fang H , Wang D . TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials (Basel, Switzerland), 2018, 8( 2): 95–

[74]

López-Alonso M , Díaz-Soler B , Martínez-Rojas M , Fito-López C , Martínez-Aires M D . Management of occupational risk prevention of nanomaterials manufactured in construction sites in the EU. International Journal of Environmental Research and Public Health, 2020, 17( 24): 9211–

[75]

Manier N , Bado-Nilles A , Delalain P , Aguerre-Chariol O , Pandard P . Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental Pollution (Barking, Essex: 1987), 2013, 180 : 63– 70

[76]

Manzo S , Miglietta M L , Rametta G , Buono S , Di Francia G . Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 2013, 445–446 : 371– 376

[77]

Masojidek J , Ranglova K , Lakatos G , Silva Benavides A M , Torzillo G . Variables governing photosynthesis and growth in microalgae mass cultures. Processes (Basel, Switzerland), 2021, 9( 5): 820–

[78]

Metzler D M , Erdem A , Tseng Y H , Huang C P . Responses of algal cells to engineered nanoparticles measured as algal cell population, Chlorophyll a, and lipid peroxidation: Effect of particle size and type. Journal of Nanotechnology, 2012, 2012 : 237212– 237284

[79]

Metzler D M , Li M , Erdem A , Huang C P . Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 2011, 170( 2–3): 538– 546

[80]

Middepogu A , Hou J , Gao X , Lin D . Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2018, 161 : 497– 506

[81]

Mohsenpour S F , Hennige S , Willoughby N , Adeloye A , Gutierrez T . Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 2021, 752 : 142168–

[82]

Morelli E , Cioni P , Posarelli M , Gabellieri E . Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquatic Toxicology (Amsterdam, Netherlands), 2012, ( 122–123): 122– 123

[83]

Nogueira P F M , Nakabayashi D , Zucolotto V . The effects of graphene oxide on green algae Raphidocelis subcapitata.. Aquatic Toxicology (Amsterdam, Netherlands), 2015, ( 166): 29– 35

[84]

Ouabadi N , Gauthier-Brunet V , Cabioc’h T , Bei G P , Dubois S . Formation mechanisms of Ti3SnC2 nanolaminate carbide using Fe as additive. Journal of the American Ceramic Society, Oukarroum A, Bras S, Perreault F, Popovic R (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta.. Ecotoxicology and Environmental Safety, 2013, ( 78): 80– 85

[85]

Oukarroum A , Bras S , Perreault F , Popovic R . Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 2012, 78 : 80– 85

[86]

PattarkineM V, PattarkineV M (2012). Nanotechnology for algal biofuels. New York: Springer

[87]

Pillai S , Behra R , Nestler H , Suter J F , Schirmer K . Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111( 9): 3490– 3495

[88]

Praveenkumar R , Gwak R , Kang M , Shim T S , Cho S , Lee J , Oh Y K , Lee K , Kim B . Regenerative astaxanthin extraction from a single microalgal (Haematococcus pluvialis) cell using a gold nano-scalpel. ACS Applied Materials & Interfaces, 2015, 7( 40): 22702– 22708

[89]

Premnath N , Mohanrasu K , Guru Raj Rao R , Dinesh G H , Prakash G S , Ananthi V , Ponnuchamy K , Muthusamy G , Arun A . A crucial review on polycyclic aromatic hydrocarbons: Environmental occurrence and strategies for microbial degradation. Chemosphere, 2021, 280 : 130608–

[90]

RaiV, KarthikaichamyA, DasD, NoronhaS, WangikarP P, SrivastavaS (2016). Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. Omics A Journal of Integrative Biology: omi.2016.0065

[91]

Rhiem S , Riding M J , Baumgartner W , Martin F L , Semple K T , Jones K C , Schäffer A , Maes H M . Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells. Environmental Pollution (Barking, Essex: 1987), 2015, ( 196): 431– 439

[92]

Rocha T L , Gomes T , Sousa V S , Mestre N C , Bebianno M J . Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview. Marine Environmental Research, 2015, 111 : 74– 88

[93]

Rodea-Palomares I , Gonzalo S , Santiago-Morales J , Leganés F , García-Calvo E , Rosal R , Fernández-Piñas F . An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquatic Toxicology (Amsterdam, Netherlands), 2012, ( 122–123): 122– 123

[94]

Saber M , Golzary A , Hosseinpour M , Takahashi F , Yoshikawa K . Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Applied Energy, 2016, 183( dec.1): 566– 576

[95]

Sadiq I M , Dalai S , Chandrasekaran N , Mukherjee A . Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 2011a, 74( 5): 1180– 1187

[96]

Sadiq I M , Pakrashi S , Chandrasekaran N , Mukherjee A . Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research, 2011b, 13( 8): 3287– 3299

[97]

Saison C , Perreault F , Daigle J C , Fortin C , Claverie J , Morin M , Popovic R . Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.. Aquatic Toxicology (Amsterdam, Netherlands), 2010, 96( 2): 109– 114

[98]

Samara Sanchez-Sandoval D , Gonzalez-Ortega O , Fernanda Navarro-Martinez M , Marcos Castro-Tapia J , Garcia De La Cruz R F , Elena Soria-Guerra R . Photodegradation and removal of diclofenac by the green alga Nannochloropsis oculata. Phyton, 2021, 90( 5): 1519– 1533

[99]

Santschi C , Von Moos N , Koman V B , Slaveykova V I , Bowen P , Martin O J F . Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. Journal of Nanobiotechnology, 2017, 15( 1): 19–

[100]

ScheererS, Ortega-MoralesO, GaylardeC (2009). Advances in Applied Microbiology, Vol 66. Laskin A L, Sariaslani S, Gadd G, eds. San Diego.: Academic Press, 97–139

[101]

Schwab F , Bucheli T D , Lukhele L P , Magrez A , Nowack B , Sigg L , Knauer K . Are carbon nanotube effects on green algae caused by shading and agglomeration?. Environmental Science & Technology, 2011, 45( 14): 6136– 6144

[102]

Serag M F , Kaji N , Habuchi S , Bianco A , Baba Y . Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 2013, 3( 15): 4856– 4862

[103]

Sohn E K , Chung Y S , Johari S A , Kim T G , Kim J K , Lee J H , Lee Y H , Kang S W , Yu I J . Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. BioMed Research International, 2015, 2015 : 323090–

[104]

Song J , Li C , Wang X , Zhi S , Wang X , Sun J . Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Frontiers of Environmental Science & Engineering, 2021, 15( 6): 129–

[105]

Sun S , Deng H , Yang J , Zhou D , Wan X , Han F . Photodegradation of butyl 4-hydroxybenzoate in the presence of peroxides and mediated by dissolved organic matter. Environmental Engineering Science, 2020, 37( 7): 497– 508

[106]

Tan X , Chen G , Xing D , Ding W , Liu H , Li T , Huang Y . Indium-modified Ga2O3 hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid. Environmental Science: Nano, 2020, 7( 8): 2229– 2239

[107]

Taylor M P , Forbes M K , Opeskin B , Parr N , Lanphear B P . The relationship between atmospheric lead emissions and aggressive crime: An ecological study. Environmental Health, 2016, 15 : 23–

[108]

Thiagarajan V , Alex S A , Seenivasan R , Chandrasekaran N , Mukherjee A . Toxicity evaluation of nano-TiO2 in the presence of functionalized microplastics at two trophic levels: Algae and crustaceans. Science of the Total Environment, 2021, 784 : 147262–

[109]

Torkamani S , Wani S N , Tang Y J , Sureshkumar R . Plasmon-enhanced microalgal growth in miniphotobioreactors. Applied Physics Letters, 2010, 97( 4): 043703–

[110]

Tu Y D , Zhou Z , Yan R J , Gan Y P , Huang W Z , Weng X X , Huang H , Zhang W K , Tao X Y . Bio-template synthesis of spirulina/TiO2 composite with enhanced photocatalytic performance. RSC Advances, 2012, 2( 28): 10585– 10591

[111]

Tyne W , Little S , Spurgeon D J , Svendsen C . Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial. Ecotoxicology and Environmental Safety, 2015, 120 : 117– 123

[112]

Vargas-Estrada L , Torres-Arellano S , Longoria A , Arias D M , Okoye P U , Sebastian P J . Role of nanoparticles on microalgal cultivation: A review. Fuel, 2020, 280 : 118598–

[113]

Verma A , Prakash N T , Toor A P . An efficient TiO2 coated immobilized system for the degradation studies of herbicide isoproturon: Durability studies. Chemosphere, 2014, 109 : 7– 13

[114]

Verneuil L , Silvestre J , Randrianjatovo I , Marcato-Romain C E , Girbal-Neuhauser E , Mouchet F , Flahaut E , Gauthier L , Pinelli E . Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea: An adhesive response for an adaptive issue. Carbon, 2015, 88 : 113– 125

[115]

von Moos N , Slaveykova V I . Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae: State of the art and knowledge gaps. Nanotoxicology, 2014, 8( 6): 605– 630

[116]

Wahid M H , Eroglu E , Chen X , Smith S M , Raston C L . Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Advances, 2013, 3( 22): 8180– 8183

[117]

Wang P , Zhao L , Huang Y , Qian W , Zhu X , Wang Z , Cai Z . Combined toxicity of nano-TiO2 and Cd2+ to Scenedesmus obliquus: Effects at different concentration ratios. Journal of Hazardous Materials, 2021a, 418 : 126354–

[118]

Wang S , Wang Z , Chen M , Fang H , Wang D . Co-exposure of freshwater microalgae to tetrabromobisphenol A and sulfadiazine: Oxidative stress biomarker responses and joint toxicity prediction. Bulletin of Environmental Contamination and Toxicology, 2017, 99( 4): 438– 444

[119]

Wang X , Zhang J , Sun W , Yang W , Cao J , Li Q , Peng Y , Shang J K . Anti-algal activity of palladium oxide-modified nitrogen-doped titanium oxide photocatalyst on Anabaena sp. PCC 7120 and its photocatalytic degradation on Microcystin LR under visible light illumination. Chemical Engineering Journal, 2015, 264 : 437– 444

[120]

Wang Z , Li J , Zhao J , Xing B . Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science & Technology, 2011, 45( 14): 6032– 6040

[121]

Wang Z , Zhang F , Vijver M G , Peijnenburg W J G M . Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere, 2021b, 276 : 130015–

[122]

Wei C , Zhang Y , Guo J , Han B , Yang X , Yuan J . Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. Journal of Environmental Sciences (China), 2010a, 22( 1): 155– 160

[123]

Wei L , Li H , Lu J . Algae-induced photodegradation of antibiotics: A review. Environmental Pollution, 2021, 272 : 115589–

[124]

Wei L , Thakkar M , Chen Y , Ntim S A , Mitra S , Zhang X . Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta.. Aquatic Toxicology (Amsterdam, Netherlands), 2010, 100( 2): 194– 201

[125]

Wong S W Y , Leung P T Y , Djurisić A B , Leung K M Y . Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry, 2010, 396( 2): 609– 618

[126]

Xiao A , Wang C , Chen J , Guo R , Yan Z , Chen J . Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2016, 133 : 211– 217

[127]

Xin X , Huang G , Zhang B , Zhou Y . Trophic transfer potential of nTiO2, nZnO, and triclosan in an algae-algae eating fish food chain. Aquatic Toxicology (Amsterdam, Netherlands), 2021, 235 : 105824–

[128]

Xiong Q , Hu L X , Liu Y S , Zhao J L , He L Y , Ying G G . Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment International, 2021a, 155 : 106594–

[129]

Xiong S , Cao X , Fang H , Guo H , Xing B . Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light. Science of the Total Environment, 2021b, 775 : 145867–

[130]

Xu J , Luo X , Wang Y , Feng Y . Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L). growth and soil bacterial community. Environmental Science and Pollution Research International, 2018, 25( 6): 6026– 6035

[131]

Yan Z C J , Xiao A , Shu J , Chen J . Effects of representative quantum dots on microorganisms and phytoplankton: A comparative study. RSC Advances, 2015, 5( 129): 106406– 106412

[132]

Yang X Y , He Q , Guo F C , Liu X B , Chen Y . Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system. Frontiers of Environmental Science & Engineering, 2021, 15( 6): 138–

[133]

Yap J K , Sankaran R , Chew K W , Halimatul Munawaroh H S , Ho S H , Rajesh Banu J , Show P L . Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere, 2021, 281 : 130886–

[134]

Yue Y , Li X , Sigg L , Suter M J F , Pillai S , Behar R , Schirmer K . Interaction of silver nanoparticles with algae and fish cells: A side by side comparison. Journal of Nanobiotechnol, 2017, 15 : 16–

[135]

Zhang C , Chen X , Tan L , Wang J . Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environmental Science and Pollution Research International, 2018a, 25( 13): 13127– 13133

[136]

Zhang C , Wang J , Tan L , Chen X . Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: Attention to the accumulation of intracellular Zn. Aquatic Toxicology (Amsterdam, Netherlands), 2016a, 158– 164

[137]

Zhang L Q , Lei C , Yang K , White J C , Lin D H . Cellular response of Chlorella pyrenoidosa to oxidized multi-walled carbon nanotubes. Environmental Science. Nano, 2018b, 5( 10): 2415– 2425

[138]

Zhang Q , Hu J , Lee D J . Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 2016b, 98 : 108– 119

[139]

Zhang W X , Elliott D W . Applications of iron nanoparticles for groundwater remediation. Hoboken: Wiley Subscription Services, Inc., 2006, 16( 2): 7– 21

[140]

Zhang Y D , Liu N , Wang W , Sun J T , Zhu L Z . Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L). growth by TiO2 nanoparticles. Frontiers of Environmental Science & Engineering, 2020, 14( 6): 103–

[141]

Zhao C M , Wang W X . Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environmental Science & Technology, 2010, 44( 19): 7699– 7704

[142]

Zhao J , Cao X , Liu X , Wang Z , Zhang C , White J C , Xing B . Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity. Nanotoxicology, 2016, 10( 9): 1297– 1305

[143]

Zhao J , Cao X , Wang Z , Dai Y , Xing B . Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Research, 2017, 111 : 18– 27

RIGHTS & PERMISSIONS

The Author(s) 2022. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (1514KB)

3846

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/